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Abstract: The term “optical thermoelasticity” is used to describe how the optical properties of a
material change when it is heated or deformed mechanically. The issues of effective elastic and heat
transfer symmetry are given particular focus. This study gives a new nonlocal theoretical formulation
for a thermo-optical elastic material that can be used to describe how thermomechanical waves and
plasma waves relate to the symmetry of semiconductor materials such as silicon or germanium. The
suggested model includes the idea of nonlocal elasticity and a modified Moore–Gibson–Thompson
(MGT) heat conduction equation with nonsingular fractional derivative operators. The heat trans-
fer equation has been converted and generalized into a nonsingular fractional form based on the
concepts of Atangana and Baleanu (AB) using the Mittag–Leffler kernel. The developed model is
used to examine the effect of thermal loading by ramp-type heating on a free plane of unbounded
semiconductor material symmetries. Using the Laplace transform approach, we may analytically
obtain linear solutions for the investigated thermo-photo-elastic fields, such as temperature. The
Discussion section includes a set of graphs that were generated using Mathematica to evaluate the
impact of the essential parameters.

Keywords: nonlocal thermoelasticity; photo-excitation; ramp-type; fractional Atangana and Baleanu
operator

MSC: 35Q79; 35B40; 35J55; 73B30; 45F15

1. Introduction

There has been a new rise of interest in the photoacoustic (PA) impact as the funda-
mental physics behind a variety of techniques for studying the optical properties, heat
transfer, and mechanical and electrical properties of condensed media, particularly semi-
conducting material symmetry. The symmetries of flexible semiconductor materials are
referred to as physical symmetries. It finds widespread application in detecting defects
and larger tolerances in opaque objects. In a similar vein, physical studies of the effect
of PA have advanced significantly [1]. In the field of continuum mechanics, symmetry
is important because it can show how materials behave and the properties of solutions
to boundary-value problems that are important. The absorption of photons of various
intensities by materials and their subsequent conversion into heat is the ubiquitous and
fundamental mechanism upon which the PA influence is based. The crackling and popping
sounds caused by thermal expansion are one of the techniques used to identify the resultant
heat waves. Taking into account fluctuations in measured temperatures can shed light on
the thermal characteristics of a material with uniform symmetry, the nature of its flaws
and heterogeneities, and the conditions under which heat waves travel. As a result, heat
sources offer information on the photon-to-thermal energy conversion process, including
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the absorption coefficient, the movement of absorbed energy, and the presence or absence
of heterogeneity [2,3].

Since heat waves have a critical role in the PA influence and associated phenomena,
the term “PA influence” has recently been replaced by the term “photothermal influence,”
which is well suited if non-thermal sound sources are not present. Due to the inclusion
of non-thermal forcing processes for PA, the thermoelastic interaction of a material with
radiation must be determined by more than just the displacement field [4]. Non-constant
temperature (mostly on the surface of an object) and deformation measurements are
often used to probe the influence of PA (usually also on the surface of an object). In the
present work, responses to changes in temperature and motion within semiconducting
media will be studied. Through experimental results, it was observed that mechanical
stress appeared in semiconductors and microelectromechanical devices after electron-hole
plasma generation. The mechanism of electronic deformation relies on the fact that the
photogenerated plasma changes the crystal structure and the effective symmetry of the
material, which in turn alters the potential of the conduction and valence bands in the
semiconductor. This indicates that photocarriers may induce local stress in the material.
Like thermal asymmetry waves, which are generated by local periodic elastic deformation,
this strain may alter the propagation of plasma waves in semiconductors [5].

However, Rosenzweig and Gersho’s hypothesis suffers from a major flaw that severely
limits its applicability, notably in the field of semiconductors. The downside is that the true
process of turning light energy into heat is not considered. Absorption of light is known to
result in the creation of transient electron excitations that can only travel a limited distance
in that period [6]. When electron excitations settle down to their ground states, energy is
released as heat. In this case, the spatial and temporal dependencies of the heat source
functions are distinct from those of the light intensity. Electron excitations at the surface
of semiconducting material symmetry can recombine with the roughness of the potential
relief, which generates additional heat. The PA impact in semiconductors is also crucial
to study because of the nonthermal sound sources that might result from nonequilibrium
charge carrier interplay with the lattice [7].

The term “MEMS” refers to a system that uses microfabrication and nanotechnology
to combine mechanical, sensor, actuator, and electrical components onto a single integrated
circuit. Microelectromechanical systems (MEMS) comprise both silicon-based and non-
silicon-based devices made using micromachining technology initially designed to make
integrated circuits. Sensors, actuators, and passive structures are the three broad categories
that describe them [8]. Devices that combine electrical and mechanical capabilities at the
nanoscale are known as nanoelectromechanical systems (NEMS). Microelectromechanical
systems (MEMS) have paved the way for the development of NEMS devices, which are the
next logical step in the miniaturization process. Nanoelectromechanical systems (NEMS) of-
ten utilize transistor-like nanoelectronics in conjunction with mechanical actuators, pumps,
or engines to produce physicochemical sensors [9]. When used as mechanical biosensors
during surgery, NEMSs offer three primary benefits. Because the least detectable mass
added is directly proportional to the overall mass of the device, they are capable of mass
resolution on the nanogram scale even while working in a fluid environment. Second,
uniformly decreasing a NEMS device’s size enhances its capacity to be shifted or distorted,
a property known as mechanical compliance.

Classical continuum mechanics postulates that all materials are composed of an infi-
nite number of points, such as particles that can only move with respect to their nearest
neighbors. There are few applications for classical mechanics since it does not specify the
material’s discrete structure or reveal numerous microscopic processes such as microdefor-
mation and microdislocation. In light of this discovery, it became apparent that a unified
perspective was necessary to instill the concept that a material particle is a volume element
that would deform and rotate and that the material is generally a multiscale material. Cal-
culating its equilibrium also requires taking into account the particle’s nonlocal interactions
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with other particles in the medium. Based on these things, the material model can be seen
as a nonlocal micro-continuum theory.

As is often known, the laws of conventional continuum mechanics (CCM) do not
change with the dimensions of the system being studied. Given the nature of its system of
equations, it is unable to forecast any size effect. It may thus fail in situations where such
factors as size dependency and scaling of mechanical phenomena play a significant role.
All of the aforementioned issues are solvable with discrete models, but doing so is compu-
tationally intensive. Because of this, there has been a push to formulate models of modified
continuum mechanics that can account for size effects by including intrinsic lengths.

The modern form of nonlocal mechanics was established by Eringen and colleagues
[10–12]. Nonlocal theories describe particles of matter as points of mass that can only
translate and not spin or rotate. As the distance between the particles increases, their
long-range interactions weaken, and attenuation functions are created to represent this
phenomenon. Constitutive equations have been derived from these functions, and the
integral functions for kinematic variables define the equilibrium equations in continuum
theory. This was similar to the theories of classical mechanics. Nonlocal continuum
mechanics on small scales was introduced to be more inclusive of local mechanics [13].

In the field of thermoelasticity, Biot [14] created the coupled heat transfer (CTE) model,
which is based on Fourier’s law of heat flux transfer rate. This model has been used in many
modern technologies, especially those that involve high temperatures. These models do
not work well at low temperatures or when there are sudden changes in temperature. The
traditional models associated with infinite velocities of thermal signals are also assumed
but are not acceptable physically. To address this problem, many ideas and suggestions
were presented. Lord and Shulman made one of the most famous of these proposals [15]
(LS) by adding an additional term to the heat flux differential and including the concept of
relaxation or phase delay in the Fourier equation of heat transfer. In this context, Green
and Naghdi [16–18] also proposed three different types of thermal conductivity equations,
which are referred to by the abbreviations GN-III, GN-II, and GN-I. The first model GN-
I is similar to conventional correlated thermoelasticity. In contrast, the second model,
GN-II, shows the rate-limited transmission of thermal signals without energy loss. The
last type of Green and Naghdi models, GN-III, shows an unlimited diffusion rate with
energy dissipation.

The Moore–Gibson–Thompson (MGT) concept has gained popularity recently because
it allows scientists to understand many physical properties of many phenomena in flexible
semiconducting materials. Models incorporating the MGT equation are largely concerned
with studying the behavior of waves as they travel through media, especially liquid
and viscous rubber materials. This rate relies heavily on including relaxation periods
(thermal memory) in the transport equations in order to represent the medium under
study more accurately [19]. Modifying the system of equations within the context of
the Green–Naghdi type III theory, Quintanilla [20,21] developed a new version of the
improved thermoelasticity concept that significantly expands the idea of MGT. Abouelregal
et al. [22,23] used the GN-III framework to formulate the heat transfer equation under the
influence of a heterogeneous heat source based on the idea of a modified MGT. Marin
et al. [24] used the concept of thermoelasticity to examine a dipole fluid under a modified
MGT by adding appropriate initial conditions. Using the GN-III [25] thermoelasticity model,
the researchers considered thermomechanical waves and plasma waves in the rotating field
of a semiconductor. Additionally, using MGT heat transfer theory, Abouelregal et al. [26]
examined an endless cylinder-shaped thermoelastic material.

Fractional calculus uses fractional derivatives to study integrals and derivatives of
real or complex orders. Fractional calculus has recently gained prominence due to its
widespread use in fields as diverse as viscoelasticity, biomedical engineering, and contin-
uum mechanics in physics. It is also widely used in digital signal processing, heat diffusion,
bio-biology, dispersion, physical chemistry, and decision theory. Models with genetic
decentralization and “long memory” can be quantified using fractional-order differential
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equations [27]. Many different formulations describing the concept of fractional derivatives
have been proposed and developed [28], and the ideas of derivatives and integrals have
been expanded into non-integral orders through different definitions. Major contributors
to previous publications are Fourier, Abel, Leibniz, Grünwald, and Letnikov. Liouville
and Riemann were two of the most influential mathematicians in the development of the
concept of fractional calculus [29].

Photothermal nanomaterials can effectively convert the absorbed solar energy into
surface-based local thermal energy. In contrast to conventional photocatalysts that operate
at room temperature, photothermal catalysts usually have a much broader solar spec-
trum and a much higher local reaction temperature. In addition, photothermal catalysis
shows the obvious benefits of lower cost and purity using solar energy as a cleaner heat
source compared to fossil energy-based thermocatalysis [30]. The foregoing encourages the
widespread use of photothermal nanomaterials in various contexts, particularly in envi-
ronmental and catalytic processes. The application of fractional differential equations has
recently attracted much attention as a basis for theoretical models. Because of the memory
effect and the fact that it is nonlocal, mathematical frameworks that include a fractional-
order differential equation can provide a deeper understanding of the phenomenon. The
present work aims to overcome some of the limitations caused by the reliance on physical
models of conventional fractional derivatives. Several incorrect-order operators with single
and non-unitary kernels have been proposed in the literature [31,32].

Due to the widespread use of photothermal nanomaterials in a variety of fields, es-
pecially in environmental and catalytic applications, in the present work, a new, nonlocal
anomalous core fractional thermal conduction framework will be proposed to study the
behavior of semiconducting solids. To construct the photothermal model, the fractional
derivative operator proposed by Atangana–Baleanu–Caputo (ABC) was used in addition
to applying the theory of nonlocal contact mechanics. Moreover, the photo-thermoelasticity
framework was obtained based on the concept of the Moore–Gibson–Thomson equa-
tion [20] and the improvement of Green and Naghdi’s third-class theory [17]. To the best of
the authors’ knowledge, this model is one of the few presented in this context and can be
applied to thermoelectric materials with nanostructures and plasmonic structures.

Applying the proposed model, the plasma transfer process and the mechanical ther-
moelasticity phenomenon are studied in an infinitely flexible semiconductor medium with
homogeneous, isotropic, and thermoelastic properties. According to the use of the Laplace
transformation and inversion technique, the system of governing equations has been solved,
and the analytical solutions have been presented numerically for the domain variables.
The effects of thermal parameters, nonlocal factors, and fractional-order index have been
shown graphically and tabulated in the Discussion section. In the last section of this paper,
the most important conclusions and recommendations that can be drawn from the analysis
and study are presented.

2. Mathematical Formulation

In a material that is homogeneous, isotropic, nonlocal, thermoelastic, and semiconduct-
ing, the fundamental field equations and the constitutive relations may be stated as [33–38]

τij(r) =
∫
V

Y
(∣∣r, r′

∣∣, ξ
)
σij
(
r′
)
dV
(
r′
)

(1)

τij(r)− ξ2∇2τij = σij
(
r′
)

(2)

σij = 2µεij + [λεkk − γθθ − γnN]δij, (3)

εij =
1
2
(
uj,i + ui,j

)
(4)(

1 + τ0D(α)
t

)→
q = −k∇θ − k∗∇ϑ−

Eg

τ

∫
Nd
→
r (5)
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ρCe
∂θ

∂t
+ γθT0

∂e
∂t

= −∇·→q + Q (6)

∂N
∂t

= DE∇2N − N
τ
+ κθ (7)

τij,j + Fi = ρ
∂2ui
∂t2 (8)

In the above equations, the nonlocal stress field is denoted by τij, εij are the local
thermal stress and strain tensors, ui the displacements, e = ui,i, N the phase of carrier
intensity, θ = T − T0 the temperature increment, T0 the reference temperature, δkl the
Kronecker’s delta function, γn = (3λ + 2µ)dn, γθ = (3λ + 2µ)αt, dn is the electronic
deformation parameter, αt the linear thermal expansion, λ and µ stand for the usual Lame’
coefficients, ρ the density, Q external heat sources, k the thermal conductivity, Ce the
specific heat,

→
q the vector of the heat flux, τ the photo-generated carrier lifetime and Eg

the energy gap of the semiconductor, ϑ thermal displacement (satisfies
.
ϑ = θ) and k∗ a

material constant.
Additionally, Y(|r, r′|, ξ) represents the kernel operator, V the volume, ξ = e0a/l

is the nonlocal scale coefficient, and a and l are the lengths of the internal and exterior
characteristic scales, respectively. The parameter e0 is an experimentally measured value.
The value e0a denotes the small-scale parameter.

After inserting Equation (3) into Equation (2), we obtain the nonlocal stress–strain
relationships shown below:

τij − ξ2∇2τij = 2µεij + λεkkδij − γθθδij − γnNδij (9)

By using Equation (8) in Equation (9), we can obtain:

µ∇2→u + (λ + µ)∇
(
∇·→u

)
− γθ∇θ − γn∇N +

(
1− ξ2∇2

)→
F = ρ

(
1− ξ2∇2

)∂2→u
∂t2 (10)

To obtain an improved fractional model for extended thermoelasticity, we replace
partial derivatives ∂

∂t with respect to time t in the revised Fourier law (5) with the fractional

differential operator denoted by D(α)
t of order α, α ∈ [0, 1]. The symbol D(α)

t means one of
the Riemann–Liouville (RL) or Atangana and Baleanu (AB) fractional operators, which are
defined by [30,39,40]:

RLD(α)
t Y(t) = 1

Γ(1−α)
d
dt

∫ t
0

Y(ξ)
(t−ξ)α dξ

ABD(α)
t Y(t) = 1

1−α

∫ t
0 Eα

(
−µα(t− ξ)α) dY(ξ)

dt dξ, µα = α
1−α , α ∈ [0, 1]

(11)

The derivative of Equation (5) with respect to the position vector
→
r yields(

1 + τ0D(α)
t

)(
∇·→q

)
= −k∇2θ − k∗∇2ϑ−

Eg

τ
N (12)

Once again, by differentiating the above equation with respect to time and utilizing
the relationship

.
ϑ = θ, we obtain:(

1 + τ0D(α)
t

) ∂

∂t

(
∇·→q

)
= −

[
k

∂

∂t
+ k∗

]
∇2θ −

Eg

τ

∂N
∂t

(13)

After differentiating Equation (6) with respect to time and using Equation (13), we can
obtain the fractional Moore–Gibson–Thompson heat transport equation for the semicon-
ductor materials as(

1 + τ0D(α)
t

)(
ρCe

∂2θ

∂t2 + T0γθ
∂2e
∂t2 −

∂Q
∂t

)
−

Eg

τ

∂N
∂t

=

[
k

∂

∂t
+ k∗

]
∇2θ (14)
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3. Statement of the Problem

The properties of infinite, isotropic, and homogeneous semiconducting media will be
studied here. A simplified representation of the proposed case is illustrated in Figure 1.
It will be assumed that the studied region z ≥ 0 is initially quiet and at the reference
temperature T0. It will be assumed that a variable-slope heat source heats the free region
above the barrier z = 0. The Cartesian coordinates (x, y, z) will be used to study the
problem, with the z-axis pointing in a direction perpendicular to the hot surface of the
half-space. In this investigation, too, it will be taken into account that all physical fields
and temperature changes occur only along the z-axis direction. Thus, the displacement
component operates exclusively in the z-axis i.e.,

→
u = (0, 0, w(z, t)).
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In this illustration, the basic equations can be reconstructed in one dimension in the
following manner (Q = 0):

ρ

(
1− ξ2 ∂2

∂z2

)
∂2w
∂t2 = (λ + 2µ)

∂2w
∂z2 − γn

∂N
∂z
− γθ

∂θ

∂z
(15)

(
1 + τ0D(α)

t

)(
ρCe

∂2θ

∂t2 + γθT0
∂3w

∂z ∂t2

)
−

Eg

τ

∂N
∂t

=

[
k

∂

∂t
+ k∗

]
∂2θ

∂z2 (16)

∂N
∂t

= DE
∂2N
∂z2 −

N
t
+ kθ (17)(

1− ξ2 ∂2

∂z2

)
σzz = (λ + 2µ)

∂ w
∂z
− γnN − γθθ (18)

The following dimensionless variables are defined:

{z′, w′, ξ ′} = v0η{z, w, ξ},
{

t′, τ′0
}
= v2

0η{t, τ0}, σ′zz =
σzz
ρv2

0
,

{θ′, N′} = 1
ρv2

0
{γθθ, γnN}, η = ρCE

K , v2
0 = λ+2µ

ρ .
(19)

Basic Equations (15)–(18) can be recast using dimensionless quantities with the primes
canceled out as follows:

∂2w
∂z2 −

(
1− ξ2 ∂2

∂z2

)
∂2w
∂t2 =

∂

∂z
(θ + N) (20)

(
∂2

∂z2 − g2
∂

∂t
− g1

)
N = g3θ (21)[

∂

∂t
+ ε2

]
∂2θ

∂z2 =
(

1 + τ0D(α)
t

)[∂2θ

∂t2 + ε1
∂3w

∂z ∂t2 + ε3
∂N
∂t

]
(22)(

1− ξ2 ∂2

∂z2

)
σzz =

∂ w
∂z
− θ − N (23)
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g1 =
ρ

DEη
, g2 =

1
DEητ

, g3 =
κdn

γη2DEv2
0

, ε1 =
γ2T0

ρ2CEv2
0

, ε2 =
K∗

v2
0ηK

, ε3 =
γEgv2

0
τdnK

(24)

To arrive at an analytical solution to the suggested problem, it is necessary first to
establish the initial conditions listed below:

w(z, t)|t=0 = 0 = ∂w(z, t)
∂t

∣∣∣
t=0

, θ(z, t)|t=0 = 0 = ∂θ(z, t)
∂t

∣∣∣
t=0

,

N(z, t)|t=0 = 0 = ∂N(z, t)
∂t

∣∣∣
t=0

.
(25)

Using many models, it is possible to gradually raise the temperature controller’s
active setting to the desired temperature. In order to ensure that the operation strictly
adheres to the slope, deviation warnings are frequently used with this function. After
maximum incline, the set point enters a “soaking phase,” where it remains stationary. The
current study examines a thermoelastic homogeneous isotropic stress-free semiconductor
medium thermally loaded by ramp-type heating. In this case, we have the following
boundary conditions:

θ(z, t) =


0, t ≤ 0

t0
t , 0 < t ≤ t0

1, t > t0

at z = 0 (26)

σzz(z, t) = 0 at z = 0 (27)

DEN(z, t) = n0
∂N(z, t)

∂z
at z = 0 (28)

where t0 and n0 are constants.
Protecting the process from “thermal shock” caused by the controller trying to catch

up to a sudden change in the setpoint is what “ramping” means. This is particularly useful
in the event of a power outage, as it directs the temperature increase back to the desired
level once the electricity is restored.

4. Problem Solution

The Laplace transformation of any function g(z, t) can be defined as follows:

L(g(z, t)) = g(z, s) =
∫ ∞

0
g(z, t) exp(−st)dt, s > 0 (29)

The following results were obtained after Equations (20)–(23) were subjected to a
Laplace transform: (

D2 − η1

)
w = η2Dθ + η2DN (30)(

D2 − η3

)
N = g3θ (31)(

D2 − ψ
)

θ = ψε1Dw +
ψε2

s
N (32)(

1− ξ2D2
)

σzz = Dw− θ − N (33)

where
D = d

dz , η1 = s2

(1+ξ2s2)
, η2 = 1

(1+ξ2s2)
,

η3 = (g1 + g2s), ψ = s2(1+τ α0)
s+ε2

.
(34)

and

α0 =

{
sα for RL fractional operator,
sα

sα(1−α)+α
for AB fractional operator. (35)
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By differentiating Equation (30) with regard to z and making use of the connection
e = Dw, we have found that (

D2 − η1

)
e = η2D2θ + η2D2N (36)

(
D2 − ψ

)
θ = ψε1e +

ψε2

s
N (37)(

D2 − η3

)
N = g3θ (38)

Decoupling Equations (36)–(38) yields(
D6 − δ1D4 + δ2D2 − δ3

){
θ, e, N

}
= 0 (39)

where
δ1 = η1 + η8 + η7η5, δ2 = η1η8 + η7η6 + η9, δ3 = η1η9,

η5 = η2
g3

, η6 = η2η3
g3
− η2, η7 = ψg3ε1, η8 = ψ + η3,

η9 = g3ψε2
s + ψη3.

(40)

The following outcomes are achieved when the parameters µi, i = 1, 2, 3 are inserted
in Equation (39): (

D2 − µ2
1

)(
D2 − µ2

2

)(
D2 − µ2

3

){
θ, e, N

}
= 0 (41)

where the parameters µ2
1, µ2

2 and µ2
3 mean two roots of a given equation:

µ6
i − δ1µ4

i + δ2µ2
i − δ3 = 0 (42)

The solution to Equation (41) satisfying the radiation requirement that θ, e, and N be
equal to zero as z→ ∞ can be written as follows:

θ(z, s) =
3

∑
i=1

Aie−µiz (43)

e(z, s) =
3

∑
i=1

Ωi Aie−µiz (44)

N(z, s) = −
3

∑
i=1

Ψi Aie−µiz (45)

where

Ωi =
µ4

i − η8µ2
i + η9

η7
, Ψi =

g3

µ2
i − η3

. (46)

Additionally, Equations (43)–(45) yield the generic solutions of the field variables w
and σzz, which take the following forms:

w(z, s) = −
3

∑
i=1

Ωi
µi

Aie−µiz (47)

σzz =
3

∑
i=1

Φi Aie−µiz (48)

where Φi =
(Ωi−(1+Ψi))

(1−ξ2µ2
i )

.
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The unidentified coefficients Ai, i = 1, 2, 3 can be produced by applying various
thermal, mechanical, and plasma conditions to the free border of a nonlocal semiconductor
medium. We will take into account the ensuing application to calculate it.

As a result of applying the Laplace transformation to the boundary conditions (26)–
(28), we obtain:

θ(0, s) = 1−est0
s2t0

= G(s)
σzz(0, s) = 0,

DE N(0, s) = n0 DN(0, s)
(49)

After applying the boundary conditions described above to Equations (43), (45) and
(48), we obtain:

A1 + A2 + A3 = G(s) (50)

Φ1 A1 + Φ2 A2 + Φ3 A3 = 0 (51)

(Ψ1 − n0µ1)A1 + (Ψ2 − n0µ2)A2 + (Ψ3 − n0µ3)A3 = 0 (52)

The solution to the previously mentioned set of linear equations gives the values of the
unidentified coefficients Ai, where i can take on the values 1, 2, or 3. All the studied fields
within the Laplace transform have therefore been completely solved. The Riemann-sum
approximation procedure is used to obtain numerical conclusions in the physical domain.
The work of Honig and Hirdes [41] provides further details on this strategy.

5. Numerical Results

In the current section, some numerical data will be introduced to study the suggested
photo-thermoelasticity model, which was developed to highlight the behavior of tempera-
ture, displacement, carrier intensity, and nonlocal thermal stress. The investigation was
also conducted by comparing the results of previous work with the results obtained. The
values of the following physical coefficients have been taken into consideration, assuming
that the material under study is silicon (Si) [42]

λ = 6.4× 1010
(

N
m2

)
, µ = 6.5× 1010

(
N
m2

)
,

Eg = 1.11 eV, ρ = 2330
(

kg/m3
)

, τ = 5× 10−10 s,

DE = 2.5× 10−3
(

m2/s
)

, dn = −9× 10−31 m,

αt = 4.14× 10−6K−1, CE = 695 J/(kg K),

k = 150 Wm−1K−1, n0 = 2(m/s).

The Mathematica software package was used to set the numerical computations for
all application domains within the medium. The numerical outcomes for the photothermal
physical fields are displayed graphically in Figures 1–9 along the z-axis. These graphs and
analyses will show how the nonlocal parameter (ξ), thermal relaxation time (τ0), Atangana
and Baleanu differential operators, and fractional order derivatives influence the behavior
of the studied field quantities.
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5.1. Implications of the Nonlocal Coefficient

In the field of elasticity as well as thermoelasticity, nonlocal concepts have recently
received much attention for their multiple applications for modeling small-scale systems.
When developing nanoscale devices, the nonlocal continuum theory outperforms the
conventional theory compared to alternative methods. However, because many small-scale
systems have photothermal properties, there has not been much research on the dynamic
response of nanostructured thermoelastic materials. Moreover, fewer computer resources
are required to achieve conclusions compared to computationally expensive methodologies
such as molecular dynamics simulations.

In this study, the nonlocal Eringen model was used to comprehensively survey the
photothermal vibration of an elastic medium in the form of an infinite, nonlocal half-
space embedded in a semiconductor material; the effect of macroscopic and microscopic
measurements was also considered. To evaluate the impact of the nonlocal modulus
on the responses of those semiconducting materials, a numerical discussion of different
fields of study such as displacement w, temperature increase, carrier intensity N, and
nonlocal thermal stress will be performed. To evaluate the effect of the nonlocal modulus
on the responses of these semiconductor materials, different numerical simulations will be
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performed for the fields of study. In the calculations, the values of the constants t= 0.12,
τ0 = 0.03, α = 0.75, and t0 = 0.1 were taken into account.

It is clear from the graphs that the nonlocal nanoscale coefficient has a significant
effect on the spatial diversity of the studied photothermal physical fields. It can be seen
that when the nonlocal coefficient is set to zero, the result is the same as in the case of the
standard local model of photothermal elasticity. In contrast, in the case of nonlocal models
of photothermal elasticity, values ξ = 0.01, 0.03, and 0.05 are taken into account.

All these plots show that at z→ ∞ , all curves converge, and all studied physical
domains satisfy the imposed boundary conditions. It is evident from each graph that the
values of each thermophysical field are confined to a certain region within the medium near
the free surface and do not expand to infinity, which indicates that the speed of propagation
of thermal and mechanical waves is limited. These observations are in contrast to the dual
photothermal conduction theory, in which the solutions of the system domains tend toward
infinity. These findings are consistent with the extended thermoelasticity model concept,
which lends credibility to the proposed model and the studied physical facts.

Graph 2 shows the change in temperature θ against distance (z) for different values
of the nonlocal coefficient ξ. It can be seen that the maximum temperatures are at the
beginning of Figure 2 and then decrease steadily with increasing distance z until they
finally stabilize. Further interpretation of the figure reveals that the nonlocality parameter
ξ has a clear, though slight, influence on the temperature change θ. The temperature curves
decrease with increasing nonlocality parameters ξ. Because of this, researchers have been
pushing to formulate theories of modified continuum mechanics that can account for size
effects by including intrinsic lengths (see [43] for details).

The nonlocal thermal stress σzz, shown in Figure 3, varies within a limited region
within the semiconducting medium and displays a consistent pattern over a wide range
of nonlocal modulus (ξ) values. In Figure 3, it can be noticed that the stress modes σzz all
show zero values initially in accordance with the boundary conditions and then jump to
their extreme ranges thereafter before settling back to zero. Outside the perturbation region,
the differences disappear, although the nonlocal coefficient (ξ) changes. Moreover, when
the value of the nonlocality index increases, the magnitude of the nonlocal thermal stress
σzz increases prominently. This is because the medium is softer with the increase in this
nonlocal effect, in accordance with the results of [44]. Raising the length scale indicators has
the same impact on both nonlocal models, rising thermal stresses and hence the stiffness of
the structure [45].

Along with the distance z and different values of the nonlocality index ξ, the spatial
changes of the displacement w are shown in Figure 4. The figure clearly shows that the
nonlocal parameter values significantly affect the dynamic displacement field w. It can be
seen from the figure that the amount of deformation w within the medium increases with
the increase in the values of the nonlocal parameters. When studying an infinite semicon-
ductor material, the nonlocal parameter is a very important part of the thermodynamic
deformation of micro/nanostructures.

Like experimental results, displacement (w) values gradually disappear with increas-
ing distance. Thus, the present results showed that the hyperbolic MGT photoelectric heat
transfer framework is more accurate from a physical point of view than the Fourier heat
transfer model. The reason for this is the limited propagation of mechanical and thermal
waves within a semiconductor material because of the relaxation time τ0.

Hyperbolic heat transfer has recently been verified experimentally in heterogeneous
materials such as sand and NaHCO3, with a relaxation time of approximately 20 s [46], in
supercooled materials such as graphite [47], and biological materials such as lipid films [48].
The delay in the interaction between convection flux and temperature gradient, caused by
the heterogeneous structures, appears to be the mechanism by which waves are induced.
The phase lag may indicate the time required for sufficient heat to build up to cause large
convection currents to flow between structural parts [46]. This behavior of a heat wave is
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not predicted by the classical Fourier law, which allows heat flow to respond quickly to
changes in the temperature gradient [49].

The graph in Figure 5 depicts the relationship between carrier intensity N and nonlo-
cality ξ as depth z changes. Except for the magnitude, the behavior of the carrier density N
is very consistent across all the different cases. With nonlocality ξ decreasing, the effect of
the nonlocality index on the carrier density profile over time appears to be weak. As the
nonlocal parameter ξ increases, the magnitude of the carrier density, N, decreases.

As a result of the high thermal load from ramp-type heating, a nonlocal index is
required for both static and dynamic studies of a micro- or nanoscale semiconductor
medium. It is the value of the nonlocal parameter that determines when the waves will
reach the steady state, as seen in Figures 2–5. These results, along with the preceding
explanation, show that the microscale impact is not detectable in structures with dimensions
on the nanometer scale. At the same time, it may be seen in nanostructures, as corroborated
by the results found by Abouelregal [50] and Cong and Duc [51]. Moreover, the nonlocal
responses are an essential factor that cannot be ignored when trying to estimate the stress
at the origin of a nanoscale thermal problem [52]. While the Fourier model predicts that
heat will spread instantly across a sample, the tests were meant to demonstrate that it really
takes a finite amount of time (relaxation time τ0) for heat waves to reach a specific place
inside the sample [53].

5.2. The Influence of the Fractional Operators

The rapid emergence of fractional calculus has attracted many researchers in many
different applied fields. Based on many theoretical and experimental studies, it was found
that physical systems with fractal order are superior to the traditional ones that include
integer orders. Not only that, but it also turns out to be more of a reflection of reality.
As in the present work, many real properties of semiconductor nanostructures can be
represented more accurately by proposing nonlocal photothermal models that incorporate
the fractional-order derivative.

In this sub-section of the discussion, the effects of ramp-type heating on a nonlocal
half-area of a thermal semiconductor will be explored with a change in the fractional
operator as well as the fractional order. The numerical results for all studied physical fields
were calculated when values of ξ = 0.01, τ0 = 0.02 and t0 = 0.1 were taken into account.
The numerical results are represented graphically in Figures 6–9 during the range 0 ≤ z ≤ 3.
We will set the value α = 1 in the context of the nonlocal extended theory of MGT thermo-
optical elasticity with one phase delay and no fractional actuators. When 0 < α < 1, the
numerical results will be compared in the case of the nonlocal MGT photothermoelasticity
model, which includes fractional actuators with both the Atangana and the Baleanu (AB)
operator or Riemann–Liouville (RL) fractional operator. For each of the fractional operators,
two different values of the fractional order will be taken (α = 0.8 and α = 0.7).

It is clear that the effects of the fractional order coefficient α and the nonlocal fractional
differential operators proposed by Atangana and Baleanu (AB) are striking. It is evident
that the curves and behavior of the studied fields change according to the operator used,
as well as the order of the fractional differential (α). We suggest that time-dependent
fractional differentiation may be understood as the presence of memory effects that match
the system’s inherent dissipation. Sheikh et al. [54] discussed some of the characteristics of
this new phenomenon, and there was some agreement on the same behavior.

In addition, thermomechanical waves reach a steady state depending on the selected
fractal order (α) values. An important observation that must be taken into account is the
superiority of the improved fractional operator AB over the traditional fractional operator
(RL) in terms of memory effect. It is noted that the amplitude values of the different fields
studied in the case of the fractional operator AB are less than in the case of using the
conventional operator (RL). In addition, using higher-order values of fractal differential
improves the process of thermal conductivity as it slows down the speed of heat waves,
which is assumed to be infinite in the case of the conventional model of thermoelasticity.
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For different values of the chemical reaction model in [55], similar behavior can be seen in
terms of speed and temperature.

Looking at all Figure 7, it is clear that the nonlocal thermal stress σzz that are being
examined move away from the free surface of the material that is affected by the changing
thermal field, and the waves dissipate faster within the medium. Thermal stress is com-
pressive as a result of deformation due to thermal loading. One of the most significant
observations from these results is the inverse proportion of fractional modulus (α) values
to wave propagation, as it was shown that they fade faster with increasing fractional
modulus values. Thus, it can be said that when the value of the fractional parameter (α)
grows, the temperature change θ, displacement u, and carrier force N all grow, but in
the case of nonlocal thermal stress σxx, they decrease. The findings also suggest that the
Atangana–Baleanu fractional concept is more rapid than the Riemann–Liouville fractional
version for calculating fractional derivatives. The results observed by Khan et al. [56] are
strongly consistent with the study conducted. All of this demonstrates the reliability of the
suggested model and the importance of the present effort.

The Atangana and Baleanu (AB) fractional derivatives provide a more realistic repre-
sentation of the world than the one that makes use of a power function kernel [57]. This
is due to the fact that the singularity does not take place at the end of the interval that is
used to calculate the fractional derivative of a function. This occurrence corresponds to the
description that is given in [58]. The power function is a worse filter than the exponent
function, so the best choice is the fractional derivative, whose kernel is the exponent func-
tion. In fact, the Atangana and Baleanu fractional derivative has seen quite a bit of activity
in the realm of filter control [30].

The figures also show that the behavior of the fields in the nonlocal differential
operator of Atangana and Baleanu (AB) is less than in the case of the Riemann–Liouville
(RL) operator. Finally, it is worth mentioning that this new fractional derivative operator
(Atangana and Baleanu (AB)) will play a pivotal role in the investigation of the macroscopic
behavior of semiconductor materials where nonlocal interactions play a potential role in
determining the properties of materials [59]. Thermoelastic models, including fractional
derivatives of non-integer orders, are effective for explaining heat transfer processes and
semiconductor systems with exponentially distributed delays.

6. Conclusions

This study develops a new nonlocal photo-thermoelasticity model to describe the
coupling between plasma and thermomechanical waves in semiconductors. Nonlocal elas-
ticity theory and the concept of extended MGT thermal conductivity with time derivatives
with fractional operators are both included in the proposed framework. To solve some
problems of traditional fractional models, the fractional derivative proposed by Atangana
and Baleanu (AB) (described by Mittag–Leffler functions), which includes a non-singular
and nonlocal kernel, has been taken into account. The governing differential equations are
solved using Laplace transforms. System parameter simulations of silicon as a semicon-
ductor material were presented and analyzed using graphical representations of the data.
The following are the most important conclusions that can be drawn from the discussion
and analysis:

• Nonlocal factors have a significant role in changing the behavior of thermomechanical
interactions in small-sized semiconductor materials. As a result, when modeling nonlo-
cal microstructures, the value of the nonlocal coefficient must be chosen very carefully.

• The new nonlocal photothermal model predicts smaller amounts than those in the case
of the traditional (local) photothermal model. For this reason, nanoscale factors must
be included in reducing the mechanical wave behavior of (nonlocal) nanostructures.

• The fractional-order index can be used to reclassify semiconductor materials in terms
of photoelectric thermal conductivity. The fractional coefficient of the derivative op-
erator of Atangana and Baleanu slightly affects the rate of temperature fluctuation.
Thermoplastic models with fractional derivatives have much larger standard devi-
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ations than thermoplastic models. As a result, the fractional coefficient is gaining
ground as an excellent thermal indicator.

• When using fractional actuators, the values of the thermo-photophysical fields were
found to be lower compared to what would be expected by conventional thermopho-
tometric models. Therefore, by varying the fractional parameter, we may be able
to estimate the function that the Atangana and Baleanu derivative operators play
in heat transfer regimes and perform more detailed examinations of elastic thermal
deformation in rigid mechanics. The method and results from this work can also be
used to solve similar problems in thermoelasticity and thermodynamics.
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