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Abstract: In this paper, we introduce and study the concept of the ingredient modulus of smoothness
in component form in L~p(Rd) and a kind of mixed-norm Sobolev space. We obtain some new
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1. Introduction

The classical Besov space, Bs
p,q(Rd), introduced by Besov [1,2] for s > 0, is a family

of smoothness spaces rooted in Lebesgue spaces, Lp(Rd), via the modulus of continuity
method. Several classical function spaces, such as Lebesgue, Sobolev, and Hölder spaces,
can be recovered as special cases of Besov spaces. In view of the importance of Besov space
theory in some mathematical fields, such as harmonic analysis (see [3–7]), approximation
theory (see [8]), the regularity of solutions of partial differential equations (see [9]), and
probability and statistics (see [10]), it has been a significant research field that has attracted
attention in the past few decades.

A number of problems in financial mathematics, quantum physical chemistry, and
related fields are modeled on Sobolev-type function spaces (see, for example, [11,12]). For
more general versions (Bessel potential) of Sobolev-type function spaces, we refer the
reader to the paper of Cleanthous–Georgiadis–Nielsen [13]. For this reason, there has been
an increasing interest recently in the study of linear or nonlinear approximations of Sobolev
spaces and Besov spaces. To solve these important problems, the use of the theory of
classical Besov spaces may be technically very difficult or its application may not give sharp
and meaningful results. Therefore, the necessity to employ modifications to classical Besov
spaces has arisen. It is well known that Besov spaces have been extended and generalized in
many various different directions and in a variety of settings with equivalent norms, which
are defined by various moduli of smoothness or different kinds of series decompositions,
see, e.g., [10,11]. In order to be widely used in function theory and approximation theory,
it is necessary to study the equivalent relationship between these norms of Besov spaces
defined by various moduli of smoothness. Many equivalent decompositions theorems have
been investigated by several authors, see [11,14–18] and the references therein. There is a
rich literature on classical equivalence decompositions; however, it is worth noting that
the works on equivalent decomposition theorem on Besov spaces with mixed norms are
relatively few compared to classical theories.
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The notion of a mixed-norm Lebesgue space, L~p(Rd), with ~p = (p1, · · · , pd) ∈ [1, ∞]d

is a natural generalization of the classical Lebesgue space Lp(Rd), which was originally
introduced by Hörmander [3] ((3.1.3) in Section 3.1, page 125) in 1960 and Benedek and
Panzone [19] (Section 1, page 301) in 1961. In fact, mixed-norm Lebesgue spaces have
significant practical significance and important applications. In PDEs, functions defined by
special and time quantities may belong to some mixed-norm spaces. Recently, the studies of
inhomogeneous Besov spaces, Triebel–Lizorkin spaces, and Hardy spaces has been widely
developed under mixed Lebesgue norms (see [15,20–23]). In addition, sampling theory has
also been studied based on mixed-norm theories (see [24,25]).

In recent years, there has been growing interest in obtaining some equivalent norms
of these function spaces, see, for example, [26,27]. It is well known that the modulus
of smoothness has been used to approximate the ingenious measure of the structural
characteristics of functions in approximation theory. A natural and important question is
how to define a mixed-norm Besov space, Bs

~p,q(R
d), by various equivalent norms. In [28]

(Definition 4.1), we demonstrated research on mixed-norm Besov spaces defined by iterated
difference-type moduli of smoothness. With the help of Littlewood–Paley decomposition
theory of space, we established a sufficient condition for characterization of mixed-norm
Besov spaces (for more details, see [28]).

The main contributions of this paper can be summarized as follows:

(i) We introduce and study the concept of ingredient modulus of smoothness in com-
ponent form in L~p(Rd) and establish some properties and auxiliary results in mixed-
norm spaces, L~p(Rd) (for more details, see Section 2.2).

(ii) We introduce a kind of mixed-norm Sobolev space (see Definition 4 below) and obtain
useful inequalities (see Theorem 1 below).

(iii) We present a Bernstain type inequality in L~p(Rd) sense (see Lemma 4 below) and an
auxiliary inequality (see Lemma 5 below) by using the Littlewood-Paley decomposi-
tion.

(iv) We introduce and study the concept of mixed-norm Besov space Bs
~p,q(R

d) (see Defini-

tion 5 below) and establish a new decomposition theorem in Bs
~p,q(R

d) (see Theorem 2
below).

The special function decomposition results for the study of ingredient differential
operators and electronic wave functions may instigate further research in the future.

2. Concepts, Properties and Auxiliary Results in Mixed-Norm Spaces
2.1. Preliminaries

Let us start with some fundamental notations or definitions needed in this paper.
The symbols R, Z, and N will denote the set of real numbers, the set of integers, and the
set of positive integers, respectively. For convenience, let N0 := N∪ {0} be the set of
non-negative integers. Recall that the discrete space lp(Z) is defined by

lp(Z) =

c = (ck)k∈Z :

(
∑
k∈Z
|ck|p

) 1
p

< ∞

 if 1 ≤ p < ∞,

and

lp(Z) =
{

c = (ck)k∈Z : sup
k∈Z
|ck| < ∞

}
if p = ∞.

For c = {ck}k∈Z ∈ lp(Z), we define lp(Z)-norm of c by

‖c‖lp = ‖{ck}k‖lp =


(

∑
k∈Z
|ck|p

) 1
p
, if 1 ≤ p < ∞;

supk∈Z |ck|, if p = ∞.
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A mixed-norm Lebesgue space is a natural generalization of the classical Lebesgue space
Lp(Rd), in which independent variables that may have different meanings are considered.

Definition 1. (see, e.g., [19] ((3.1.3) in Section 3.1, page 125), [29] (page 357), and [18] ((6.1.3.1)
on page 726)).

Let ~p = (p1, . . . , pd) ∈ [1, ∞]d be a mixed-norm index. The mixed-norm Lebesgue space
L~p(Rd) is the set of all measurable functions f on Rd such that

∫
R
· · ·

∫
R

(∫
R

(∫
R
| f (x1, x2, . . . , xd)|p1 dx1

) p2
p1

dx2

) p3
p2

dx3 . . . dxd


1

pd

< ∞.

For f ∈ L~p(Rd), we define the L~p(Rd)-norm of f by

‖ f ‖L~p(Rd) =

∫
R
· · ·

∫
R

(∫
R

(∫
R
| f (x1, x2, . . . , xd)|p1 dx1

) p2
p1

dx2

) p3
p2

dx3 . . . dxd


1

pd

=

∥∥∥∥. . .
∥∥∥‖ f (x1, x2, . . . , xd)‖Lp1 (x1)

∥∥∥
Lp2 (x2)

. . .
∥∥∥∥

Lpd (xd)

.

If pi = ∞ for i = 1, . . . , d, then the relevant Lpi -norms are replaced by L∞-norms. To simplify
the notation ‖ f ‖L~p(Rd), we also abbreviate this to ‖ f ‖~p.

Throughout this article, positive constants will be denoted by C, and they may vary at
every occurrence. The Schwartz class will be stated by S(Rd), with the Fourier transform
defined by

f̂ (ξ) =
∫
Rd

f (x)e−ix·ξ dx

for every f ∈ S(Rd). Other types of Fourier transform are the classical extension of this
form (see [30] (pp. 96–106)). The symbol S ′(Rd) denotes the space of functionals of S(Rd).

2.2. Ingredient Modulus of Smoothness in Component Form in L~p(Rd)

For clarity, let us first recall the definition of the classical modulus of smoothness
originally below.

Definition 2. (Classical modulus of smoothness) (see, e.g., [8]) Let ~p ∈ [1, ∞]d and f ∈ L~p(Rd).
Denote

∆1
h f (x) := f (x− h)− f (x)

and
∆M

h f (x) := ∆1
h∆M−1

h f (x) f or M ∈ N.

Let t > 0. Then, the modulus of smoothness of M-order is defined by

ρM
~p ( f , t) := sup

|h|≤t
‖∆M

h f ‖~p.

In this paper, we introduce and study the concept of ingredient modulus of smooth-
ness in component form in L~p(Rd), which will be used for statistics and anisotropic Nikol-
skij spaces.
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Definition 3. (Ingredient modulus of smoothness in component form.) Let ~p ∈ [1, ∞]d and
f ∈ L~p(Rd). For any 1 ≤ i ≤ d, let ei denote the vector with 1 in the ith coordinate and 0’s
elsewhere. Define

∆1
hei

f (x) := f (x− hei)− f (x)

and
∆L

hei
f (x) := ∆L−1

hei
∆1

hei
f (x) for L ∈ N with L ≥ 2.

Let t > 0. Then, the L-order ingredient modulus of smoothness in component form of f is
defined by

ωL
~p,i( f , t) := sup

|h|≤t
‖∆L

hei
f ‖~p. (1)

Remark 1. In this paper, we will use L = 1 and L = 2 in (1) for characterization, that is

ω1
~p,i( f , t) := sup

|h|≤t
‖∆1

hei
f ‖~p,

and
ω2
~p,i( f , t) := sup

|h|≤t
‖∆2

hei
f ‖~p.

We start with the following fundamental properties for the ingredient modulus of
smoothness of first and second order in the setting of L~p(Rd). The one-dimensional case
will degenerate to the case in [10] (Lemma 9.1, page 100). Of course, the corresponding
characterization is also the same.

Proposition 1. Let ~p ∈ [1, ∞]d and f ∈ L~p(Rd). Then, the following statements hold.

(1) Both functions ω1
~p,i( f , t) and ω2

~p,i( f , t) are nondecreasing in the second argument;

(2) ω2
~p,i( f , t) ≤ 2ω1

~p,i( f , t) ≤ 4‖ f ‖~p for all t > 0;

(3) ω1
~p,i( f , t) ≤

∞
∑

j=0
2−(j+1)ω2

~p,i( f , 2jt) ≤ t
∫ ∞

t
ω2
~p,i( f ,s)

s2 ds for all t > 0;

(4) ω1
~p,i( f , ts) ≤ (s + 1)ω1

~p,i( f , t) for all s, t > 0;

(5) ω2
~p,i( f , ts) ≤ (s + 1)2ω2

~p,i( f , t) for all s, t > 0.

Proof. From the definitions of ω1
~p,i( f , t) and ω2

~p,i( f , t), the conclusions (1) and (2) follow.

To see (3), let t > 0 be given. Since 2∆1
hei

= ∆1
2hei
− ∆2

hei
, it leads to

ω1
~p,i( f , t) ≤ 1

2

[
ω2
~p,i( f , t) + ω1

~p,i( f , 2t)
]
.

Thus, for any k, we obtain

ω1
~p,i( f , t) ≤

k

∑
j=0

2−(j+1)ω2
~p,i( f , 2jt) + 2−(k+1)ω1

~p,i( f , 2k+1t). (2)

Taking the limit of k as tending to infinity in (2) yields

ω1
~p,i( f , t) ≤

∞

∑
j=0

2−(j+1)ω2
~p,i( f , 2jt).

On the other hand, since

2−(j+1)ω2
~p,i( f , 2jt) = t2−(j+1)

ω2
~p,i( f , 2jt)

t
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= t
∫ 2(j+1)t

2jt

ω2
~p,i( f , 2jt)

s2 ds

≤ t
∫ 2(j+1)t

2jt

ω2
~p,i( f , s)

s2 ds,

the last inequality implies

∞

∑
j=0

2−(j+1)ω2
~p,i( f , 2jt) ≤ t

∫ ∞

t

ω2
~p,i( f , s)

s2 ds.

We now verify (4). Note that ∆1
nhei

f (x) =
n−1
∑

k=0
∆1

hei
f (x− kh) leads to

ω1
~p,i( f , nt) ≤ nω1

~p,i( f , t) for n ∈ N.

Therefore, we obtain

ω1
~p,i( f , st) ≤ ω1

~p,i( f , ([s] + 1)t) ≤ ([s] + 1)ω1
~p,i( f , t) ≤ (s + 1)ω1

~p,i( f , t),

where [s] is the greatest integer less than or equal to s. Finally, we show conclusions (5). Since

∆2
nhei

f (x) = ∆1
nhei

∆1
nhei

f (x)

= ∆1
nhei

(
n−1

∑
k=0

∆1
hei

f (x− khei)

)

=
n−1

∑
k′=0

n−1

∑
k=0

∆1
hei

∆1
hei

f (x− khei − k′hei)

=
n−1

∑
k′=0

n−1

∑
k=0

∆2
hei

f (x− khei − k′hei),

we obtain ω2
~p,i( f , nt) ≤ n2ω2

~p,i( f , t) for n ∈ N. Hence, we obtain

ω2
~p,i( f , st) ≤ ω2

~p,i( f , ([s] + 1)t) ≤ ([s] + 1)2ω2
~p,i( f , t) ≤ (s + 1)2ω2

~p,i( f , t).

The proof is complete.

In order to link ingredient modulus of smoothness in component form with the
traditional modulus of smoothness defined by ∆1

h and ∆2
h (see, e.g., [10] (Definition 9.1,

page 99)), we establish the following useful result.

Lemma 1. Let ~p ∈ [1, ∞]d. Define ∆1
h f (x) = f (x − h)− f (x) and ∆2

h f (x) = ∆1
h∆1

h f (x) for
f ∈ L~p(Rd) and h ∈ Rd. Then

‖∆2
h f (x)‖L~p(Rd) ≤ C

(
d

∑
i=1
‖∆1

hei
f (x)‖L~p(Rd)

)
,

where C is a positive constant independent of f , ~p, and hei.

Proof. In fact,
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∆1
h f (x1, x2, · · · , xd)

= f (x1 − h1, x2 − h2, · · · , xd − hd)− f (x1, x2, · · · , xd)

= f (x1 − h1, x2 − h2, · · · , xd − hd)− f (x1 − h1, x2 − h2, · · · , xd)

+ f (x1 − h1, x2 − h2, · · · , xd) + · · ·+ f (x1 − h1, x2, · · · , xd)− f (x1, x2, · · · , xd)

= ∆1
hed

f (x1 − h1, · · · , xd−1 − hd−1, xd) + · · ·+ ∆1
he1

f (x1, · · · , xd).

(3)

Using (3), we obtain

∆2
h f (x1, x2, · · · , xd)

= ∆1
h∆1

h f (x1, x2, · · · , xd)

= ∆1
h

(
∆1

hed
f (x1 − h1, · · · , xd−1 − hd−1, xd) + · · ·+ ∆1

he1
f (x1, · · · , xd)

)
= [∆1

hed
f (x1 − h1 − h1, · · · , xd−1 − hd−1 − hd−1, xd − hd) + · · ·+ ∆1

he1
f (x1 − h1, · · · , xd − hd)]

−[∆1
hed

f (x1 − h1 − h1, · · · , xd−1 − hd−1 − hd−1, xd) + · · ·+ ∆1
he1

f (x1 − h1, · · · , xd)]

+[∆1
hed

f (x1 − h1 − h1, · · · , xd−1 − hd−1 − hd−1, xd) + · · ·+ ∆1
he1

f (x1 − h1, · · · , xd)]

· · ·+ [∆1
hed

f (x1 − h1 − h1, · · · , xd−1 − hd−1, xd) + · · ·+ ∆1
he1

f (x1 − h1, · · · , xd)]

−[∆1
hed

f (x1 − h1, · · · , xd−1 − hd−1, xd) + · · ·+ ∆1
he1

f (x1, · · · , xd)]

= ∆1
hed

[
∆1

hed
f (x1 − h1 − h1 · · · , xd−1 − hd−1 − hd−1, xd)

]
+ · · ·+ ∆1

he1

[
∆1

he1
f (x1, · · · , xd)

]
.

(4)

By the definition of ∆1
hei

and (4), we can prove

‖∆2
h f (x)‖L~p(Rd) ≤ C

(
d

∑
i=1
‖∆1

hei
f (x)‖L~p(Rd)

)
for some positive constant C.

2.3. A Kind of Mixed-Norm Sobolev Space Wn
~p (R

d)

In this section, we will introduce and study a kind of mixed-norm Sobolev space,
whose definition can be considered as a natural generalization of [31] ((1) on page 722).
Antonić and Ivec [32] (Corollary 3, page 197) proved the boundedness of Fourier multipliers
in this kind of mixed Sobolev space.

Definition 4. Let ~p ∈ [1, ∞]d. The mixed-norm Sobolev space Wn
~p (R

d) is given by all Lebesgue

measurable functions f (x) ∈ L~p(Rd) with finite norms

‖ f ‖Wn
~p (Rd) := ‖ f ‖L~p(Rd) + ∑

|k|=n
‖∂k f ‖L~p(Rd)

for k = (k1, k2, · · · , kd) and n ∈ N. Here, ∂k f := (∂k1
1 ∂k2

2 · · · ∂
kd
d ) f (x1, x2, · · · , xd) means the

k-order partial derivative of f .

Remark 2. It is worth mentioning that in Definition 4, if ~p cannot be taken as infinity, then the
mixed-norm Sobolev space at this time is a generalization of the function space in [27] (Sobolev
spaces, page 7). If ~p can be taken as infinity, then the functions in this mixed-norm Sobolev space
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are uniformly continuous and bounded after obtaining weak derivatives (see [10] (Remark 8.4) and
[33] (Proposition 8.4)).

Remark 3. Let ~p ∈ (1, ∞)d and~k ∈ Nd
0. Recall that the mixed-norm Sobolev space W~k

~p in the

sense of Lizorkin approach [34] (page 227) was defined as the set of all f ∈ S′(Rd) such that

‖ f ‖
W~k

~p
:= ‖ f ‖L~p(Rd) +

n

∑
j=1

∥∥∥∥∥∥∂kj f

∂x
kj
j

∥∥∥∥∥∥
L~p(Rd)

< ∞.

It is quite obvious that Definition 4 and Lizorkin’s definition for the mixed-norm
Sobolev space are different. In fact, the spaces in Remark 3 are anisotropic and of course
are not the ordinary version that we presented in Definition 4.

The following mixed-norm Minkowski inequality in the setting of L~p(Rd) is crucial in
this paper.

Lemma 2. (Mixed-norm Minkowski inequality, see [35] (Theorem 3, page 5).) Let f (x, y) be a
Borel function on Rd ×Rd and ~p ∈ [1, ∞]d. Then∥∥∥∥∫Rd

f (x, ·)dx
∥∥∥∥

L~p(Rd)
≤
∫
Rd
‖ f (x, ·)‖L~p(Rd)dx.

Theorem 1. Let ~p ∈ [1, ∞]d. Then, the following inequalities hold.

(a) ω1
~p,i( f , t) ≤ t‖∂1 f ‖~p for all f ∈W1

~p(R
d) and t > 0;

(b) ω2
~p,i( f , t) ≤ t2‖∂2 f ‖~p for all f ∈W2

~p(R
d) and t > 0.

Proof. We only verify the case d = 2, and a similar argument could be made for d > 2.
Clearly, we have

f (x1 − h1, x2)− f (x1, x2) = −h1

∫ 1

0
∂1 f (x1 − s1h1, x2)ds1. (5)

By Lemma 2,

sup
|h|≤t
‖ f (x1 − h1, x2)− f (x1, x2)‖L~p(Rd) ≤ sup

|h|≤t
|h1|

∫ 1

0
‖∂1 f (x1 − s1h1, x2)‖L~p(Rd)ds1

≤ t‖∂1 f (x1, x2)‖L~p(Rd)

≤ t‖∂1 f (x1, x2)‖L~p(Rd).

In a similar way, we obtain

sup
|h|≤t
‖ f (x1, x2 − h2)− f (x1, x2)‖L~p(Rd) ≤ sup

|h|≤t
|h2|

∫ 1

0
‖∂2 f (x1, x2 − s2h2)‖L~p(Rd)ds2

≤ t‖∂2 f (x1, x2)‖L~p(Rd).

Hence, ω1
~p,i( f , t) ≤ t‖∂1 f ‖~p follows and conclusion (a) is proved. To see (b), by (5), we

obtain

∆2
he1

f (x1, x2) = ∆1
he1

∆1
he1

f (x1, x2)

= −h1

∫ 1

0
∂1(∆1

he1
f )(x1 − s1h1, x2)ds1
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= −h1

∫ 1

0
∆1

hei
(∂1 f )(x1 − s1h1, x2)ds1

= −h1

∫ 1

0
(−h1)

∫ 1

0
(∂1∂1 f )(x1 − s1h1 − l1h1, x2)dl1ds1.

Therefore, using Lemma 2, we obtain

sup
|h|≤t
‖∆2

he1
f (x1, x2)‖L~p(Rd) ≤ sup

|h|≤t
(h1)

2‖∂1∂1 f ‖L~p(Rd) ≤ t2‖∂1∂1 f ‖~p ≤ t2‖∂2 f ‖L~p(Rd)

and

sup
|h|≤t
‖∆2

he2
f (x1, x2)‖L~p(Rd) ≤ sup

|h|≤t
(h2)

2‖∂2∂2 f ‖L~p(Rd) ≤ t2‖∂2∂2 f ‖~p ≤ t2‖∂2 f ‖L~p(Rd).

Therefore, we prove ω2
~p,i( f , t) ≤ t2‖∂2 f ‖L~p(Rd) for any d and f ∈ W2

~p(R
d). The proof

is complete.

2.4. Littlewood–Paley Decomposition in L~p(Rd)

The convolution f ∗ g is defined by the formula f ∗ g(x) :=
∫
Rd f (x − y)g(y)dy for

f ∈ Lp (1 ≤ p ≤ ∞) and g ∈ L1. In this section, we first recall the well-known Littlewood–
Paley decomposition. Let D(Rd) be a space with infinitely many times differentiable
compactly supported functions. Define γ by γ̂(ξ) ∈ D(Rd) with supp γ̂(ξ) ⊂ [−A, A]d for
some A > 0, and

γ̂(ξ) = 1 for ξ ∈
[
−3A

4
,

3A
4

]d
.

Meanwhile, a function β is given by

β̂(ξ) := γ̂

(
ξ

2

)
− γ̂(ξ).

Let βk(x) := 2kdβ(2kx) for k ∈ N0. Then

β̂k(ξ) = β̂

(
ξ

2k

)
and

γ̂(ξ) +
∞

∑
k=0

β̂

(
ξ

2k

)
= 1.

Hence, the Littlewood–Paley decomposition operators are defined by

Pk f (x) := βk ∗ f (x) for k ∈ N0

and
P−1 f (x) := γ ∗ f (x).

Therefore, we have the Littlewood–Paley decomposition

f =
∞

∑
k=−1

Pk f

(
de f
= lim

n→∞

n

∑
k=−1

Pk f

)
(6)

for all f ∈ S ′(Rd).
The following result is a generalized convolution inequality in mixed-norm Lebesgue spaces.
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Lemma 3. (Mixed-norm convolution inequality, see [36] ((2.5) in page 4) or [35] (Theorem 4,
page 6).) Let f (x) ∈ L~p(Rd) and g(x) ∈ L1(Rd) for ~p ∈ [1, ∞]d. Then

‖ f ∗ g‖L~p(Rd) ≤ ‖ f ‖L~p(Rd)‖g‖L1(Rd).

The next lemma is a Bernstain-type inequality in L~p(Rd) sense inspired by the Littlewood–
Paley decomposition, which is important in the decomposition estimation for the partial
modulus of smoothness in component form. Note that the definition of the derivative
(the definition of derivative in this paper is also based on this meaning) is based on a
distributional or is called the weak derivative [10] (Proposition 8.1, page 70). Here, we give
a concise and quick proof.

Lemma 4. Let ~p ∈ [1, ∞]d and f ∈ L~p(Rd). If supp f̂ ∈ [−M, M]d for some M > 0, then there
exists a constant C > 0, such that for K ∈ N,

‖∂K f ‖L~p(Rd) ≤ CMK‖ f ‖L~p(Rd).

Proof. Assume A = 2. Then, suppγ̂(ξ) ⊂ [−2, 2]d and γ̂(ξ) = 1 for ξ ∈ [− 3
2 , 3

2 ]
d. Define

γ∗(x) := Mdγ(Mx). Thus, γ̂∗(ξ) = γ̂( ξ
M ), which means γ̂∗(ξ) = 1 for ξ ∈ [− 3M

2 , 3M
2 ]d.

Therefore, it follows that
f̂ (ξ) = γ̂∗(ξ) f̂ (ξ),

f (x) = γ∗ ∗ f (x)

and
∂K f (x) = (∂Kγ∗) ∗ f (x).

Using the mixed-norm convolution inequality in Lemma 3, we obtain

‖∂K f ‖L~p(Rd) ≤ ‖∂
Kγ∗‖L1(Rd)‖ f ‖L~p(Rd) = MK‖∂Kγ‖L1(Rd)‖ f ‖L~p(Rd).

The proof is complete.

We can also obtain the above lemma by referring to Proposition 4 of [22] (with ~p =~r
and R1 = · · · = Rd = M).

Applying Littlewood–Paley decomposition theory, we establish the following impor-
tant lemma which will be used for the sufficiency estimation in our new decomposition
theorem (see Theorem 2 below).

Lemma 5. Let ~p ∈ [1, ∞]d and f ∈ L~p(Rd). If
∞
∑

j=−1
‖Pj(∂

n f )‖L~p(Rd) < ∞ for some n ∈ N.

Then, ∂n f ∈ L~p(Rd) and

ω2
~p,i(∂

n f , t) ≤
∞

∑
j=−1

ω2
~p,i(Pj(∂

n f ), t).

Proof. Using the Littlewood–Paley decomposition in (6) (the detailed proof is left to the
readers), we obtain

∂n f =
∞

∑
j=−1
Pj(∂

n f )

and

‖∂n f ‖L~p(Rd) ≤
∞

∑
j=−1
‖Pj(∂

n f )‖L~p(Rd) < ∞.
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Hence, we obtain ∂n f ∈ L~p(Rd). Moreover, since

‖∆2
hei
(∂n f )(x)‖L~p(Rd) ≤

∞

∑
j=−1
‖∆2

hei
(Pj(∂

n f ))‖L~p(Rd),

by Proposition 1 (2), we have ω2
~p,i(Pj(∂

n f )), t) < ∞. With the help of

∞

∑
j=−1
‖Pj(∂

n f )‖L~p(Rd) < ∞,

we can finish the proof.

3. New Decomposition Theorem of Bs
~p,q(R

d)

In this section, we first introduce the following concept of mixed-norm Besov spaces
induced by the ingredient modulus of smoothness.

Definition 5. Let 1 ≤ q ≤ ∞, ~p ∈ [1, ∞]d, and s = n + α for n ∈ N0 and 0 < α < 1.
The mixed-norm Besov space Bs

~p,q(R
d) is the space of all Lebesgue measurable functions f on Rd

such that f ∈Wn
~p (R

d) with

d

∑
i=1

 ∞∫
0

∣∣∣∣∣ω
2
~p,i(∂

n f , t)

tα

∣∣∣∣∣
q

dt
t

 1
q

< ∞ for 1 ≤ q < ∞,

and

esssupt

∣∣∣∣∣ω
2
~p,i(∂

n f , t)

tα

∣∣∣∣∣ < ∞ for q = ∞.

For f ∈ Bs
~p,q(R

d), we define an integral version of Bs
~p,q(R

d)-norm of f by

‖ f ‖(int)
Bs
~p,q

:=


‖ f ‖Wn

~p (Rd) +
d

∑
i=1

 ∞∫
0

∣∣∣∣ω2
~p,i(∂

n f ,t)
tα

∣∣∣∣q dt
t

 1
q

, 1 ≤ q < ∞,

‖ f ‖Wn
~p (Rd) +

d

∑
i=1

esssupt

∣∣∣∣ω2
~p,i(∂

n f ,t)
tα

∣∣∣∣, q = ∞.

.

We begin by proving a discrete version of Bs
~p,q(R

d)-norm which will be used to estab-
lish a new decomposition theorem in mixed-norm Besov spaces.

Lemma 6. Let 1 ≤ q ≤ ∞, ~p ∈ [1, ∞]d, and s = n + α for n ∈ N0 and 0 < α < 1. For any
f ∈ Bs

~p,q(R
d), we define

‖ f ‖(dis)
Bs
~p,q

:= ‖ f ‖Wn
~p
+

d

∑
i=1

∥∥∥{2jαω2
~p,i(∂

n f , 2j)}j

∥∥∥
lq

.

Then, ‖ f ‖(dis)
Bs
~p,q

is also a Bs
~p,q(R

d)-norm of f and is equivalent to ‖ f ‖(int)
Bs
~p,q

.

Proof. It is easy to see that

∫ ∞

0

∣∣∣∣∣ω
2
~p,i(∂

n f , t)

tα

∣∣∣∣∣
q

dt
t
=

∞

∑
j=−∞

∫ 2j+1

2j

∣∣∣∣∣ω
2
~p,i(∂

n f , t)

tα

∣∣∣∣∣
q

dt
t
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and

log(2)

∣∣∣∣∣ω
2
~p,i(∂

n f , 2j)

2(j+1)α

∣∣∣∣∣
q

≤
∫ 2j+1

2j

∣∣∣∣∣ω
2
~p,i(∂

n f , t)

tα

∣∣∣∣∣
q

dt
t
≤ log(2)

∣∣∣∣∣ω
2
~p,i(∂

n f , 2j+1)

2jα

∣∣∣∣∣
q

.

Hence, ‖ f ‖(dis)
Bs
~p,q

and ‖ f ‖(int)
Bs
~p,q

are two equivalent norms of Bs
~p,q(R

d).

We can describe the relationship between ω1
~p,i(∂

n f , 2j) and ω2
~p,i(∂

n f , 2j) as follows.

Lemma 7. Let 1 ≤ q ≤ ∞, ~p ∈ [1, ∞]d and s = n + α for n ∈ N0 and 0 < α < 1. Then

C1

d

∑
i=1

∥∥∥∥{2jαω1
~p,i(∂

n f , 2j)
}

j

∥∥∥∥
lq
≤

d

∑
i=1

∥∥∥∥{2jαω2
~p,i(∂

n f , 2j)
}

j

∥∥∥∥
lq
≤ C2

d

∑
i=1

∥∥∥∥{2jαω1
~p,i(∂

n f , 2j)
}

j

∥∥∥∥
lq

for some positive constants C1 and C2.

Proof. By Proposition 1 (2), we can prove the right inequality immediately. To verify the
left inequality, by Proposition 1 (3) and the Hardy inequality in the spirit of Remark 9.1
in [10], we can come to the desired conclusion.

The following discrete Hardy inequality is very crucial for computing some discrete
inequalities in this paper.

Lemma 8. (Discrete Hardy inequality, see [37] (Lemma 3.4, page 27) or [10] (Lemma 9.2,
page 102).) Let {aj} ∈ l1 and {bj} ∈ lp for 1 ≤ p ≤ ∞. Then, {ck} ∈ lp and {dk} ∈ lp

for ck = ∑∞
j=k ajbj−k and dk = ∑k

j=0 ak−jbj.

We now prove the following new decomposition theorem in mixed-norm Besov spaces,
which is the main result of the section.

Theorem 2. Let 1 ≤ q ≤ ∞, ~p ∈ [1, ∞]d, and s = n + α for n ∈ N0 and 0 < α < 1. Then,

f ∈ Bs
~p,q(R

d) if and only if P−1 f ∈ L~p(Rd) and
{

2js‖Pj f ‖L~p(Rd)

}∞

j=0
∈ lq.

Proof. Necessity. Suppose f ∈ Bs
~p,q(R

d). Then, P−1 f ∈ L~p(Rd). Therefore, it remains to

prove
{

2js‖Pj f ‖L~p(Rd)

}∞

j=0
∈ lq. By using the Fourier transform, we obtain

(iξ1)
n β̂

(
ξ

2j

)
f̂ (ξ) = F (∂n

1 (β j ∗ f )(ξ)),

where the symbol ∂n
1 f is used to denote n-order partial derivatives for the 1st variable of f .

It is worth noting that ∂n
1 f in the above equality can be replaced by ∂n

2 f , ∂n
3 f , or any other

type of n-order partial derivatives ∂k f with |k| = n, which would not have any impact

on the proof that we will carry out. Since suppβ̂ ⊂ [−2A, 2A]d \
[
− 3A

4
3A
4

]d
, β̂
(

ξ

2j

)
f̂ (ξ) is

compactly supported. Hence, we have

β̂

(
ξ

2j

)
f̂ (ξ) = (2−jn)

(
2j

iξ1

)n

(iξ1)
n β̂

(
ξ

2j

)
f̂ (ξ)

= (2−jn)(−i)n
η̂
(

ξ1
2j

)
(

iξ1
2j

)n η̂

(
ξ2

2j

)
· · · η̂

(
ξd

2j

)
F (∂n

1 (β j ∗ f )(ξ))

= (2−jn)(−i)nη̂n

(
ξ1

2j

)
η̂

(
ξ2

2j

)
· · · η̂

(
ξd

2j

)
F (∂n

1 (β j ∗ f )(ξ)),
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where η̂n is given by η̂n(ξ1) := η̂(ξ1)
ξn

1
, η̂(ξ1), · · · , η̂(ξd) ∈ D(Rd) with

η̂(ξ1) · · · η̂(ξd) = 1

on the support β̂ and 0 in the neighborhood of original point. It follows that

‖Pj f ‖L~p(Rd) ≤ ‖ηn‖L1(Rd)‖η‖
n−1
L1(Rd)

2−jn‖∂n
1 (β j ∗ f )‖L~p(Rd)

= ‖ηn‖L1(Rd)‖η‖
n−1
L1(Rd)

2−jn‖β j ∗ ∂n
1 f ‖L~p(Rd).

Now, we will estimate ‖β j ∗ ∂n
1 f ‖L~p(Rd). From the definition of β, β j is an even function

(i.e., β j(−x) = β j(x)) and, by β̂ j(0) = 0, we can easily obtain
∫

β j(y)dy = 0. Thus,
we deduce

β j ∗ ∂n
1 f (x)

=
∫
Rd β j(y)∂n

1 f (x− y)dy

= 1
2

∫
Rd β j(y){∂n

1 f (x− y)− 2∂n
1 f (x) + ∂n

1 f (x + y)}dy

= 1
2

∫
Rd β(y){∂n

1 f (x− 2−jy)− 2∂n
1 f (x) + ∂n

1 f (x + 2−jy)}dy.

Applying Lemmas 2 and 1, we obtain

‖β j ∗ ∂n
1 f (x)‖L~p(Rd)

≤ 1
2‖
∫
Rd |β(y)||{∂n

1 f (x− 2−jy)− 2∂n
1 f (x) + ∂n

1 f (x + 2−jy)}|dy‖L~p(Rd)

= 1
2‖
∫
Rd |β(y)||∆2

2−jy
∂n

1 f (x + 2−jy)|dy‖L~p(Rd)

≤ 1
2

∫
Rd |β(y)|‖∆2

2−jy
∂n

1 f (x + 2−jy)‖L~p(Rd)dy

≤ 1
2

∫
Rd |β(y)| sup|h|≤2−j |y| ‖∆2

h∂n
1 f (z)‖L~p(Rd)dy,

(7)

where ∆2
2−jy

and ∆2
h come from Lemma 1. Therefore, by Proposition 1 (4) and Lemma 1, we

conclude that

‖β j ∗ ∂n
1 f (x)‖L~p(Rd) ≤

C
2

∫
|β(y)| sup

|h|≤2−j |y|

(
d

∑
i=1
‖∆1

hei
∂n

1 f (x)‖L~p(Rd)

)
dy

≤ C
2

∫
|β(y)|

(
d

∑
i=1

ω1
~p,i(∂

n
1 f , 2−j|y|)

)
dy

≤ C
2

(∫
|β(y)|(1 + |y|)2dy

)( d

∑
i=1

ω1
~p,i(∂

n
1 f , 2−j)

)

:= C′
d

∑
i=1

ω1
~p,i(∂

n
1 f , 2−j).

Thus, we have

2js‖Pj f ‖L~p(Rd) ≤ C′‖ηn‖L1(Rd)‖η‖
d−1
L1(Rd)

2j(s−n)

(
d

∑
i=1

ω1
~p,i(∂

n
1 f , 2−j)

)

:= C′′2jα
d

∑
i=1

ω1
~p,i(∂

n
1 f , 2−j).
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By applying Lemmas 6 and 7,
{

2js‖Pj f ‖L~p(Rd)

}∞

j=0
∈ lq is verified.

Sufficiency. Assume P−1 f ∈ L~p(Rd) and
{

2js‖Pj f ‖L~p(Rd)

}∞

j=0
∈ lq. We claim f ∈

Bs
~p,q(R

d). Using a similar argument as in the proof of the necessity part, we obtain

F [∂n
1 (β j ∗ f )](ξ) = (iξ1)

n β̂

(
ξ

2j

)
f̂ (ξ)

= in
η̂
(

ξ1
2j

)
(

ξ1
2j

)−n

(
iξ1

2j

)n
η̂

(
ξ2

2j

)
· · · η̂

(
ξd

2j

)
2jn β̂

(
ξ

2j

)
f̂ (ξ)

= inη̂−n

(
ξ1

2j

)(
iξ1

2j

)n
η̂

(
ξ2

2j

)
· · · η̂

(
ξd

2j

)
2jn β̂

(
ξ

2j

)
f̂ (ξ)

and
‖Pj[∂

n
1 f ]‖L~p(Rd) = ‖∂n

1 (β j ∗ f )‖L~p(Rd)

= ‖β j ∗ ∂n
1 f ‖L~p(Rd)

≤ 2jn‖η−n‖L1(Rd)‖η‖
d−1
L1(Rd)

‖Pj f ‖L~p(Rd)

= 2j(n−s)‖η−n‖L1(Rd)‖η‖
d−1
L1(Rd)

2js‖Pj f ‖L~p(Rd)

= 2−jα‖η−n‖L1(Rd)‖η‖
d−1
L1(Rd)

2js‖Pj f ‖L~p(Rd).

(8)

Since
{

2js‖Pj f ‖L~p(Rd)

}∞

j=0
∈ lq , from (8), we obtain

∞
∑

j=−1
‖Pj[∂

n
1 f ]‖~p < ∞. This yields

‖∂n
1 f ‖~p < ∞ by Lemma 5. Other estimations of such type of ‖∂n f ‖~p can also be verified;

therefore, we finally conclude ‖ f ‖Wn
~p (Rd) < ∞. Next, we will prove

{
2kαω2

~p,i(∂
n f , 2−k)

}
k∈Z
∈ lq.

We consider three separate cases below:
Case 1. If k = 0, then we are done.
Case 2. Assume k < 0. Then, for 1 ≤ q < ∞, we have

2kαω2
~p,i(∂

n f , 2−k) ≤ 4(2kα)‖∂n f ‖L~p(Rd)

and
−1

∑
j=−∞

(2kαω2
~p,i(∂

n f , 2−k))q < ∞.

If q = ∞, we have max
−∞<k≤−1

(2kαω2
~p,i(∂

n f , 2−k)) ≤ 4‖∂n f ‖L~p(Rd) < ∞. Hence

{
2kαω2

~p,i(∂
n f , 2−k)

}
k∈Z
∈ lq.

Case 3. Assume k > 0. Since suppF [Pj∂
n f ] ⊂ [−2j+1 A, 2j+1 A]d, by Lemma 4, we obtain∥∥∥∂2[Pj(∂

n f )]
∥∥∥

L~p(Rd)
≤ C22j∥∥Pj∂

n f
∥∥

L~p(Rd)
.

Therefore, it follows that

ω2
~p,i(Pj(∂

n f ), 2−k) ≤ (2−k)2‖∂2[Pj(∂
n f )]‖L~p(Rd)

≤ C2−2k22j‖Pj∂
n f ‖L~p(Rd)

≤ C2−2(k−j)2−jα2js‖Pj f ‖L~p(Rd)

(9)
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for all j ∈ N and k ∈ N, where the first inequlaity in (9) comes from Theorem 1 (b) and the
last inequality in (9) comes from (8). In addition, by using Lemma 5, we also have

ω2
~p,i(∂

n f , 2−k) ≤
∞

∑
j=−1

ω2
~p,i(Pj∂

n f , 2−k)

=ω2
~p,i(P−1∂n f , 2−k) +

k−1

∑
j=0

ω2
~p,i(Pj∂

n f , 2−k) +
∞

∑
j=k

ω2
~p,i(Pj∂

n f , 2−k).

In order to finish the proof, we will proceed with the following steps.
Step 1. We show

{
ω2
~p,i(P−1∂n f , 2−k)

}
k
∈ lq.

By Theorem 1 (b), it is easy to obtain

ω2
~p,i(P−1∂n f , 2−k) ≤ C2−2k‖∂2(P−1∂n f )‖L~p(Rd)

≤ C2−2k‖P−1∂n f ‖L~p(Rd)

≤ C2−2k‖∂n f ‖L~p(Rd),

which implies
{

ω2
~p,i(P−1∂n f , 2−k)

}
k
∈ lq.

Step 2. We prove

{
k−1
∑

j=0
ω2
~p,i(Pj∂

n f , 2−k)

}
k

∈ lq.

Using (9), we have

k−1

∑
j=0

ω2
~p,i(Pj∂

n f , 2−k) ≤ C
k−1

∑
j=0

2−2(k−j)2−jα2js‖Pj f ‖L~p(Rd)

≤ 2−kα
k−1

∑
j=0

2−2(k−j)2α(k−j)2js‖Pj f ‖L~p(Rd)

= 2−kα
k−1

∑
j=0

2−(k−j)(2−α)2js‖Pj f ‖L~p(Rd).

Taking into account Lemma 8 and the last inequalities, we deduce{
k−1

∑
j=0

ω2
~p,i(Pj∂

n f , 2−k)

}
k

∈ lq.

Step 3. We prove

{
∞
∑

j=k
ω2
~p,i(Pj∂

n f , 2−k)

}
k

∈ lq.

Using (8) again, we obtain

∞

∑
j=k

ω2
~p,i(Pj∂

n f , 2−k) ≤ 4
∞

∑
j=k
‖Pj(∂

n f )‖L~p(Rd)

≤ 4C
∞

∑
j=k

2−jα2js‖Pj f ‖L~p(Rd)

= 4C2−kα
∞

∑
j=k

2−α(j−k)2js‖Pj f ‖L~p(Rd).

Applying Lemma 8, we show

{
∞
∑

j=k
ω2
~p,i(Pj∂

n f , 2−k)

}
k

∈ lq.
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Therefore, by Steps 1–3, we verify
{

2kαω2
~p,i(∂

n f , 2−k)
}

k∈Z
∈ lq. The proof is com-

plete.

Remark 4. The result of Theorem 3.5 shows that our definition of a Besov space (defined by
ingredient modulus of smoothness) is equivalent with inhomogeneous mixed-norm Besov spaces
in [21]. Therefore, one of the significant findings of this new decomposition theorem is that it is an
extension of Frazier and Jawerth? [16] construction of the discrete decomposition transformation.

Remark 5. (i) It is known that a Besov space defined by the modulus of smoothness is a kind
of very practical space (see [8,37–41] and their references), which can be used to analyze
turbulence [8], the solution of some equations [42], and so on. Hence, we study Besov spaces
defined by moduli of continuity.

(ii) If we can characterize this kind of mixed-norm Besov space by using discrete coefficients,
such as the characterization in [14], then the mixed-norm Besov space studied in this paper
is the same as a classical mixed-norm Besov space [14,36] in the sense of equivalent norms.
Of course, this requires further work. Moreover, the theory of homogeneous mixed-norm Besov
spaces is also worth studying, see [14].

(iii) It can be seen from the proof process of (7) that the following conclusion is not tenable:

‖β j ∗ ∂n
1 f ‖L~p(Rd)

≤ C
d
∑

i=1

1
2

∫
|β(y)| sup|h|≤2−j |y| ‖∆2

hei
∂n

1 f (x)‖L~p(Rd)dy

≤ Cω2
~p,i(∂

n
1 f (x), 2−j).

In other words, although it is obvious that formula

ω2
~p,i(∂

n
1 f (x), 2−j) ≤ ω2

~p(∂
n
1 f (x), 2−j)

holds, the reverse is not true. Therefore, in the previous definition of a Besov space, we
use the definition of a one-order modulus of smoothness instead of a two-order modulus of
smoothness. This corresponds to why we used the equivalent mixed-norm of Besov spaces
under the definition of introducing a one-order modulus of smoothness in Lemma 6. The cost
is that we cannot choose α to be 0 or 1, but only between 0 and 1.

4. Conclusions

The main purpose of this paper is to study the concept of ingredient modulus of
smoothness in component form in L~p(Rd) and a kind of mixed-norm Sobolev space. We ob-
tain some new properties, inequalities, and auxiliary results in mixed-norm spaces L~p(Rd).
A new concept of mixed-norm Besov space is presented and a new decomposition the-
orem for mixed-norm Besov spaces is established. In theory, difference operators may
be applied to the study of partial differential equations. The ingredient-type difference
operator we introduced can analyze a certain component, so it can be used to solve some
partial differential equations. However, in general, we are also exploring these studies,
because the application of mixed norm in this field is a relatively new subject. In fact, some
differential operators have been studied in these places, see [21]. We hope that our new
results will have broad and sustainable applications in nonlinear analysis, mathematical
physics, mechanics, biology, and future related fields.
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