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Abstract: Many authors have obtained some inclusion properties of certain subclasses of univalent
and functions associated with distribution series, such as Pascal distribution, Binomial distribution,
Poisson distribution, Mittag–Leffler-type Poisson distribution, and Geometric distribution. In the
present paper, we obtain some inclusion relations of the harmonic classH(α, δ) with the classes S∗H
of starlike harmonic functions and KH of convex harmonic functions, also for the harmonic classes
T NH(β) and T RH(β) associated with the operator Υ defined by applying certain convolution
operator regarding Poisson distribution series. Several consequences and corollaries of the main
results are also obtained.
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1. Introduction

The focus of this paper is on harmonic analytic functions associated with a convolution
operator defined using Poisson distribution series. Connecting certain classes of analytic
functions with operators in studies for obtaining properties of the investigated classes
follows a line of research popular in geometric function theory. Recently, harmonic classes
of analytic functions have been defined and studied for obtaining coefficient estimates
and inclusion relations. A generalized linear operator is applied in [1] for defining a new
subclass of univalent functions and obtaining some geometrical properties. In [2], two new
families of harmonic meromorphically functions are introduced using a certain generalized
convolution q-operator and investigations regarding inclusion properties are conducted.
A q-derivative operator is used for defining and researching a new class of harmonic
functions in [3] and a new class of harmonic functions involving Janowski functions is
defined in [4] using symmetric Sălăgean q-differential operator. Studies involving the
concept of subordination and Ruscheweyh derivative are performed on a new class of
harmonic functions related to starlike harmonic functions and harmonic convex functions
in [5]. The concept of subordination is also used for defining the q-analogue of a new
subclass of univalent harmonic functions in [6]. The dual concept of superordination is
associated with harmonic complex-valued functions in [7]. Special functions continue to be
used for the research on harmonic functions, such as hypergeometric functions [8–10].

The presentation of the results obtained in this paper begins by describing the classes
of harmonic functions used for the study.

A continuous complex valued function f = U + iV defined in a simply connected
complex domain D is said to be harmonic in D if both U and V are real harmonic in D. In
any simply connected domain we can write f = w + v, where w and v are analytic in D.
We call w the analytic part and v the co-analytic part of f . A necessary and sufficient for f
to be locally univalent and sense preserving in D is that |w′(z)| > |v′(z)| in D.
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LetH be the family of all harmonic functions of the form f = w + v, where

w(ζ) = ζ +
∞

∑
s=2

asζs, v(ζ) =
∞

∑
s=1

bsζs, |b1| < 1. (1)

are analytic in the open unit disk E={ζ : |ζ| < 1} . Furthermore, let SH denote the family

of functions f = w +
−
v that are harmonic univalent and sense preserving in E.

In 1984, Clunie and Sheil-Small [11] studied the class SH and its geometric subclasses
and obtained some coefficient bounds. This paper opened the way for a prolific research
involving harmonic functions. Numerous results related on SH and on harmonic functions
one may refer to some papers where it was studied harmonic univalent functions with
negative coefficients [12], subclasses of harmonic univalent functions [13], starlike harmonic
functions [14], Noshiro-type harmonic univalent functions [15], harmonic mappings [16],
harmonic univalent functions [17], Planar harmonic mappings [18], harmonic functions
with negative coefficients defined by the Dziok–Srivastava operator [19], uniformly har-
monic β-starlike functions of complex order [20], and harmonic mappings of bounded
boundary rotation [21,22].

Consider the subclass S0
H of SH as

S0
H =

{
f = w + v ∈ SH : v′(0) = b1 = 0

}
,

first studied in [11].
A sense-preserving harmonic mapping f ∈ S0

H is in the class S∗ if the range f (E) is
starlike with respect to the origin. A function f ∈ S∗H is called a harmonic starlike mapping
in E. Additionally, a function f defined in E is included in the class KH if f ∈ S0

H and if
f (E) is a convex domain. A function f ∈ KH is called convex harmonic in E. Analytically,
we have

f ∈ S∗H iff arg
(

∂

∂θ
f
(

reiθ
))
≥ 0,

and

f ∈ KH iff
∂

∂θ

{
arg
(

arg
(

∂

∂θ
f
(

reiθ
)))}

≥ 0,

ζ = reiθ ∈ E, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

These classes and their properties are described in [15].

Let TH be the class of functions in SH that may be expressed as f = w +
−
v, where

w(ζ) = ζ −
∞

∑
s=2
|as|ζs‚ v(ζ) =

∞

∑
s=1
|bs|ζs‚ |b1| < 1. (2)

For 0 ≤ β < 1, let

NH(β) =

{
f ∈ H : Re

(
f ′(ζ)

ζ ′

)
≥ β, ζ = reiθ ∈ E

}
,

and

RH(β) =

{
f ∈ H : Re

(
f ′′(ζ)

ζ ′′

)
≥ β, ζ = reiθ ∈ E

}
where

ζ ′ =
∂

∂θ

(
ζ = reiθ

)
, ζ ′′ =

∂

∂θ

(
ζ ′
)
, f ′(ζ) =

∂

∂θ
f
(

reiθ
)

, f ′′ =
∂

∂θ

(
f ′(ζ)

)
.

Define

T NH(β) = NH(β) ∩ TH and T RH(β) = RH(β) ∩ TH.
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The classes TH, NH(β), T NH(β), RH(β) and T RH(β) were defined and studied
in [12,23].

Sokòl et al. [24] defined and studied the classH(α, δ) of functions of the form (1) that
satisfy the condition

Re
{

w′(ζ) + v′(ζ) + 3αζ(w′′(ζ) + v′′(ζ)) + αζ3(w′′′(ζ) + v′′′(ζ))
}
> δ,

for some α ≥ 0 and 0 ≤ δ < 1. In particular, for α = 0, we obtain the class H(δ) which
satisfy the condition

Re
{

w′(ζ) + v′(ζ)
}
> δ.

A discrete random variable X is said to have a Poisson distribution, with parameter m
if it has a probability mass function given by

Pr(X = κ) =
e−m

κ!
mκ , κ = 0, 1, 2, . . .

and m is the parameter of the distribution.
Very recently, Porwal [25] (see also, [26,27]) defined a Poisson distribution series as

G(m, ζ) = ζ +
∞

∑
s=2

ms−1

(s− 1)!
e−mζs,

where m is called the parameter.
Now, for ε1, ε2 > 0, Porwal and Srivastava [28] introduced the operator Υ(ε1, ε2) for

f (ζ) ∈ SH as

Υ( f ) = Υ(ε1, ε2) f (ζ) = G(ε1, ζ) ∗ w(ζ) +G(ε2, ζ) ∗ v(ζ) = Φ(ζ) + Ψ(ζ), (3)

where

Φ(ζ) = ζ +
∞

∑
s=2

εs−1
1

(s− 1)!
e−ε1 asζs, Ψ(ζ) = b1ζ +

∞

∑
s=2

εs−1
2

(s− 1)!
e−ε2 bsζs. (4)

for f = w + v inH.
Following the work of Porwal and Srivastava [28] (see also, [29–37]), and by applying

the convolution operator Υ,we obtain some inclusion relations of the harmonic classes
H(α, δ), S∗H, KH, T NH(β) and T RH(β).

2. Preliminary Lemmas

Before starting and proving our main results, we need several lemmas to be used in
the sequel.

Lemma 1 ([24]). Consider f = w + v, where w and v are given by (1) and suppose that α ≥ 0,
0 ≤ δ < 1 and

∞

∑
s=2

s[1 + α
(

s2 − 1
)
]|as|+

∞

∑
s=1

s[1 + α
(

s2 − 1
)
]|bs| ≤ 1− δ. (5)

then f ∈ H(α, δ).
When f ∈ H(α, δ), then

|as| ≤
1− δ

s[1 + α(s2 − 1)]
, s ≥ 2, (6)

and
|bs| ≤

1− δ

s[1 + α(s2 − 1)]
, s ≥ 1. (7)
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Lemma 2 ([15]). Consider f = w + v, where w and v are given by (2) and assume that 0 ≤ β < 1.
Then f ∈ T NH(β) if, and only if,

∞

∑
s=2

s|as|+
∞

∑
s=1

s|bs| ≤ 1− β. (8)

When f ∈ T NH(β), then

|as| ≤
1− β

s
, s ≥ 2, (9)

and
|bs| ≤

1− β

s
, s ≥ 1. (10)

Lemma 3 ([23]). Consider f = w+ v, where w and v are given by (2), and assume that 0 ≤ β < 1.
Then f ∈ T RH(β) if, and only if,

∞

∑
s=2

s2|as|+
∞

∑
s=1

s2|bs| ≤ 1− β. (11)

When f ∈ T RH(β), then

|as| ≤
1− β

s2 , s ≥ 2 (12)

and
|bs| ≤

1− β

s2 , s ≥ 1. (13)

Lemma 4 ([11]). If f = w +
−
v ∈ S∗H, where w and v are given by (1) with b1 = 0, then

|as| ≤
(2s + 1)(s + 1)

6
and |bs| ≤

(2s− 1)(s− 1)
6

. (14)

Lemma 5 ([11]). If f = w +
−
v ∈ KH, where w and v are given by (1) with b1 = 0, then

|as| ≤
s + 1

2
and |bs| ≤

s− 1
2

. (15)

For convenience throughout in the sequel, we use the following notations:

∞

∑
s=2

ts−1

(s− 1)!
= et − 1

and
∞

∑
s=j

ts−1

(s− j)!
= tj−1et, j ≥ 2.

3. Inclusion Relations of the ClassH(α, δ)

In this section we will prove the inclusion relations of the harmonic classH(α, δ) with
the classes S∗H and KH associated of the operator Υ defined by (3).

Theorem 1. Let ε1, ε2 > 0, α ≥ 0 and δ ∈ [0, 1). If[
2α
(
ε5

1 + ε5
2
)
+ 3α

(
11ε4

1 + 9ε4
2
)
+ (159α + 2)ε3

1 + (246α + 15)ε2
1 + (90α + 24)ε1

+6(1− e−ε1) + (99α + 2)ε3
2 + (102α + 9)ε2

2 + (18α + 6)ε2
]
≤ 6(1− δ),

(16)
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then
Υ(S∗H) ⊂ H(α, δ).

Proof. Let f = w +
−
v ∈ S∗H so that w and v are given by (1) with b1 = 0. We have to show

that Υ( f ) = Φ + Ψ ∈ H(α, δ), where Φ and Ψ are analytic functions in E defined by (4)
with b1 = 0. In view of Lemma 1, we need to prove that

Q(ε1, ε2, α) ≤ 1− δ,

where

Q(ε1, ε2, α) =
∞

∑
s=2

s
(

1 + α
(

s2 − 1
))∣∣∣∣∣ e−ε1 εs−1

1
(s− 1)!

as

∣∣∣∣∣+ ∞

∑
s=2

s
(

1 + α
(

s2 − 1
))∣∣∣∣∣ e−ε2 εs−1

2
(s− 1)!

bs

∣∣∣∣∣. (17)

Using the inequalities (14) of Lemma 4, we obtain

Q(ε1, ε2, α) ≤ 1
6

[
∞
∑

s=2
(2s + 1)(s + 1)

(
s + αs

(
s2 − 1

)) e−ε1 εs−1
1

(s−1)!

+
∞
∑

s=2
(2s− 1)(s− 1)

(
s + αs

(
s2 − 1

)) e−ε2 εs−1
2

(s−1)!

]
= 1

6

[
∞
∑

s=2

[
2αs5 + 3αs4 + (2− α)s3 + (3− 3α)s2 + (1− α)s

] e−ε1 εs−1
1

(s−1)!

+
∞
∑

s=2

[
2αs5 − 3αs4 + (2− α)s3 + (3α− 3)s2 + (1− α)s

] e−ε2 εs−1
2

(s−1)!

]
.

(18)

Writing

s = (s− 1) + 1, (19)

s2 = (s− 1)(s− 2) + 3(s− 1) + 1, (20)

s3 = (s− 1)(s− 2)(s− 3) + 6(s− 1)(s− 2) + 7(s− 1) + 1, (21)

s4 = (s− 1)(s− 2)(s− 3)(s− 4) + 10(s− 1)(s− 2)(s− 3) + 25(s− 1)(s− 2) + 15(s− 1) + 1, (22)

and

s5 = (s− 1)(s− 2)(s− 3)(s− 4)(s− 5) + 15(s− 1)(s− 2)(s− 3)(s− 4)
+65(s− 1)(s− 2)(s− 3) + 90(s− 1)(s− 2) + 31(s− 1) + 1,

(23)

in (18), we have

Q(ε1, ε2, α) ≤ 1
6

[
∞

∑
s=2

[2α(s− 1)(s− 2)(s− 3)(s− 4)(s− 5)+

33α(s− 1)(s− 2)(s− 3)(s− 4) + (159α + 2)(s− 1)(s− 2)(s− 3)+

(246α + 15)(s− 1)(s− 2) + (90α + 24)(s− 1) + 6]
e−ε1 εs−1

1
(s− 1)!

+
∞

∑
s=2

[2α(s− 1)(s− 2)(s− 3)(s− 4)(s− 5) + 27α(s− 1)(s− 2)(s− 3)(s− 4)

+(99α + 2)(s− 1)(s− 2)(s− 3) + (102α + 9)(s− 1)(s− 2)

+(18α + 6)(s− 1)]
e−ε2 εs−1

2
(s− 1)!

]
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=
1
6

[
2α

∞

∑
s=6

e−ε1 εs−1
1

(s− 6)!
+ 33α

∞

∑
s=5

e−ε1 εs−1
1

(s− 5)!
+ (159α + 2)

∞

∑
s=4

e−ε1 εs−1
1

(s− 4)!

+(246α + 15)
∞

∑
s=3

e−ε1 εs−1
1

(s− 3)!
+ (90α + 24)

∞

∑
s=2

e−ε1 εs−1
1

(s− 2)!
+ 6

∞

∑
s=2

e−ε1 εs−1
1

(s− 1)!

+2α
∞

∑
s=6

e−ε2 εs−1
2

(s− 6)!
+ 27α

∞

∑
s=5

e−ε2 εs−1
2

(s− 5)!
+ (99α + 2)

∞

∑
s=4

e−ε2 εs−1
2

(s− 4)!

+(102α + 9)
∞

∑
s=3

e−ε2 εs−1
2

(s− 3)!
+ (18α + 6)

∞

∑
s=2

e−ε2 εs−1
2

(s− 2)!

]

=
1
6

[
2αε5

1 + 33αε4
1 + (159α + 2)ε3

1 + (246α + 15)ε2
1 + (90α + 24)ε1 + 6

(
1− e−ε1

)
2αε5

2 + 27αε4
2 + (99α + 2)ε3

2 + (102α + 9)ε2
2 + (18α + 6)ε2

]
.

The last relation is bounded above by 1− δ if condition (16) holds.

Theorem 2. Let ε1, ε2 > 0, α ≥ 0, and δ ∈ [0, 1). If[
α
(
ε4

1 + ε4
2
)
+ 11αε3

1 + (30α + 1)ε2
1 + (18α + 4)ε1 + 2(1− e−ε1)

+αε4
2 + 9αε3

2 + (18α + 1)ε2
2 + (6α + 2)ε2

]
≤ 2(1− δ),

(24)

then
Υ(KH) ⊂ H(α, δ).

Proof. Let f = w +
−
v ∈ KH so that w and v are given by (1) with b1 = 0. We have to prove

that Υ( f ) = Φ + Ψ ∈ H(α, δ), where Φ and Ψ are analytic functions in E defined by (4)
with b1 = 0. We have to show, in view of Lemma 1, that

Q(ε1, ε2, α) ≤ 1− δ,

where Q(ε1, ε2, α) as given in (17). Using the inequalities (15) of Lemma 5, we obtain

Q(ε1, ε2, α) ≤ 1
2

[
∞
∑

s=2
(s + 1)

(
s + αs

(
s2 − 1

)) e−ε1 εs−1
1

(s−1)! +

∞
∑

s=2
(s− 1)

(
s + αs

(
s2 − 1

)) e−ε2 εs−1
2

(s−1)!

]
= 1

2

[
∞
∑

s=2

[
αs4 + αs3 + (1− α)s2 + (1− α)s

] e−ε1 εs−1
1

(s−1)!

+
∞
∑

s=2

[
αs4 − αs3 + (1− α)s2 + (α− 1)s

] e−ε2 εs−1
2

(s−1)!

]
.

(25)

Using the Equations (19)–(22) in (25), we have

Q(ε1, ε2, α) ≤ 1
2

[
∞

∑
s=2

[α(s− 1)(s− 2)(s− 3)(s− 4) + 11α(s− 1)(s− 2)(s− 3)+

(30α + 1)(s− 1)(s− 2) + (18α + 4)(s− 1) + 2]
e−ε1 εs−1

1
(s− 1)!

]

+
1
2

[
∞

∑
s=2

[α(s− 1)(s− 2)(s− 3)(s− 4) + 9α(s− 1)(s− 2)(s− 3)+
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(18α + 1)(s− 1)(s− 2) + (6α + 2)(s− 1)]
e−ε2 εs−1

2
(s− 1)!

]

=
1
2

[
α

∞

∑
s=5

e−ε1 εs−1
1

(s− 5)!
+ 11α

∞

∑
s=4

e−ε1 εs−1
1

(s− 4)!
+ (30α + 1)

∞

∑
s=3

e−ε1 εs−1
1

(s− 3)!

+(18α + 4)
∞

∑
s=2

e−ε1 εs−1
1

(s− 2)!
+ 2

∞

∑
s=2

e−ε1 εs−1
1

(s− 1)!
+ α

∞

∑
s=5

e−ε1 εs−1
1

(s− 5)!
+

9α
∞

∑
s=4

e−ε2 εs−1
2

(s− 4)!
+ (18α + 1)

∞

∑
s=3

e−ε2 εs−1
2

(s− 3)!
+ (6α + 2)

∞

∑
s=2

e−ε2 εs−1
2

(s− 2)!

]

=
1
2

[
αε4

1 + 11αε3
1 + (30α + 1)ε2

1 + (18α + 4)ε1 + 2
(
1− e−ε1

)
+

αε4
2 + 9αε3

2 + (18α + 1)ε2
2 + (6α + 2)ε2].

The last relation is bounded above by 1− δ if condition (24) holds.

Next, we determine the connection between the classes T NH(β) andH(α, δ).

Theorem 3. Let ε1, ε2 > 0, α ≥ 0 and δ, β ∈ [0, 1). If

(1− β)[α
(

ε2
1 + ε2

2

)
+ 3α(ε1 + ε2)−

(
e−ε1 + e−ε2

)
+ 2] ≤ 1− δ− |b1|,

then
Υ(T NH(β)) ⊂ H(α, δ).

Proof. Let f = w +
−
v ∈ T NH(β) so that w and v are given by (2). Using Lemma 1, we

have to prove that L(ε1, ε2, α) ≤ 1− δ, where

L(ε1, ε2, α) =
∞
∑

s=2

(
s + αs

(
s2 − 1

))∣∣∣∣ e−ε1 εs−1
1

(s−1)! as

∣∣∣∣
+|b1|+

∞
∑

s=2

(
s + αs

(
s2 − 1

))∣∣∣∣ e−ε2 εs−1
2

(s−1)! bs

∣∣∣∣. (26)

Using the inequalities (9) and (10) of Lemma 2, it follows that

L(ε1, ε2, α) ≤ (1− β)

[
∞

∑
s=2

(
1− α + αs2

) e−ε1 εs−1
1

(s− 1)!

+
∞

∑
s=2

(
1− α + αs2

) e−ε2 εs−1
2

(s− 1)!

]
+ |b1|

= (1− β)

[
∞

∑
s=2

[α(s− 1)(s− 2) + 3α(s− 1) + 1]
e−ε1 εs−1

1
(s− 1)!

+
∞

∑
s=2

[α(s− 1)(s− 2) + 3α(s− 1) + 1]
e−ε2 εs−1

2
(s− 1)!

]
+ |b1|

= (1− β)
[
α
(

ε2
1 + ε2

2

)
+ 3α(ε1 + ε2)−

(
e−ε1 + e−ε2

)
+ 2
]
+ |b1| ≤ 1− δ,

by the given hypothesis, which completes the proof of Theorem 3.

Next, we find the relationship between the classes T RH(β) andH(α, δ).
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Theorem 4. Let ε1, ε2 > 0, α ≥ 0 and δ, β ∈ [0, 1). If

(1− β)

[
α(ε1 + ε2) + α

(
2− e−ε1 − e−ε2

)
+

1
ε1
(1− e−ε1 − ε1e−ε1 )+

1
ε2
(1− e−ε2 − ε2e−ε2)

]
≤ 1− δ− |b1|,

then
Υ(T RH(β)) ⊂ H(α, δ).

Proof. Applying Lemma 1, we need only to show that L(ε1, ε2, α) ≤ 1− δ, where L(ε1, ε2, α)
as given in (26). Using the inequalities (12) and (13) of Lemma 3, it follows that

L(ε1, ε2, α) =
∞

∑
s=2

(
s + αs

(
s2 − 1

))∣∣∣∣∣ e−ε1εs−1
1

(s− 1)!
as

∣∣∣∣∣
+|b1|+

∞

∑
s=2

(
s + αs

(
s2 − 1

))∣∣∣∣∣ e−ε2 εs−1
2

(s− 1)!
bs

∣∣∣∣∣
≤ (1− β)

[
∞

∑
s=2

(
αs +

1− α

s

)
e−ε1 εs−1

1
(s− 1)!

+
∞

∑
s=2

(
αs +

1− α

s

)
e−ε2 εs−1

2
(s− 1)!

]
+ |b1|

= (1− β)

[
∞

∑
s=2

α
e−ε1 εs−1

1
(s− 2)!

+
∞

∑
s=2

α
e−ε1 εs−1

1
(s− 1)!

+
∞

∑
s=0

(
1− α

s + 2

)
e−ε1 εs+1

1
(s + 1)!

+
∞

∑
s=2

α
e−ε2 εs−1

2
(s− 2)!

+
∞

∑
s=2

α
e−ε2 εs−1

2
(s− 1)!

+
∞

∑
s=0

(
1− α

s + 2

)
e−ε1 εs+1

1
(s + 1)!

]
+ |b1|

= (1− β)

[
αε1 + α

(
1− e−ε1

)
+

1
ε1
(1− e−ε1 − ε1e−ε1 )

+αε2 + α
(
1− e−ε2

)
+

1
ε2
(1− e−ε2 − ε2e−ε2)

]
+ |b1| ≤ 1− δ,

by given hypothesis.

Theorem 5. Let ε1, ε2 > 0, α ≥ 0 and δ ∈ [0, 1). If

e−ε1 + e−ε2 ≥ 1 +
|b1|

1− δ
, (27)

then
Υ(H(α, δ)) ⊂ H(α, δ).

Proof. Using the inequalities (6) and (7) of Lemma 1, we obtain

L(ε1, ε2, α) ≤ (1− δ)

[
∞

∑
s=2

e−ε1 εs−1
1

(s− 1)!
+

∞

∑
s=2

e−ε2 εs−1
2

(s− 1)!

]
+ |b1|

= (1− δ)
[
1− e−ε1 + 1− e−ε2

]
+ |b1|

= (1− δ)[2− e−ε1 − e−ε2 ] + |b1| ≤ 1− δ,

by the given condition (7).



Symmetry 2023, 15, 590 9 of 11

4. Corollaries and Consequences

By specializing the parameter α = 0 in main results, we obtain the following special
cases for the subclassH(δ).

Corollary 1. Let ε1, ε2 > 0 and δ ∈ [0, 1). If

2ε3
1 + 15ε2

1 + 24ε1 + 2ε3
2 + 9ε2

2 + 6ε2 + 6
(
1− e−ε1

)
≤ 6(1− δ),

then
Υ(S∗H) ⊂ H(δ).

Corollary 2. Let ε1, ε2 > 0 and δ ∈ [0, 1). If

ε2
1 + 4ε1 + 2

(
1− e−ε1

)
+ ε2

2 + 2ε2 ≤ 2(1− δ),

then
Υ(KH) ⊂ H(δ).

Corollary 3. Let ε1, ε2 > 0 and δ, β ∈ [0, 1). If

(1− β)
(
2− e−ε1 − e−ε2

)
≤ 1− δ− |b1|,

then
Υ(T NH(β)) ⊂ H(δ).

Corollary 4. Let ε1, ε2 > 0 and δ, β ∈ [0, 1). If

(1− β)

[(
1
ε1
(1− e−ε1 − ε1 e−ε1) +

1
ε2
(1− e−ε2 − ε2e−ε2)

)]
≤ 1− δ− |b1|,

then
Υ(T RH(β)) ⊂ H(δ).

5. Conclusions

This paper deals with the applications of the Poisson distribution on some subclasses
of harmonic functions. The main scope of this paper is to find some inclusion relations of
the harmonic classH(α, δ) with the classes S∗H of starlike harmonic functions and KH of
convex harmonic functions, also for the harmonic classes T NH(β) and T RH(β) associated
with the operator Υ defined by Poisson distribution series. Further by specializing the
parameter α = 0, several consequences of the main results are mentioned.

Making use of the operator Υ researchers could be inspired to find new inclusion
relations for new harmonic classes of analytic functions with the classes S∗H, KH, T NH(β)
and T RH(β).
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