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Abstract: In this article, we introduce a new extension of the Kumaraswamy (Ku) model, which is
called the Kavya Manoharan Kumaraswamy (KMKu) model. The shape forms of the pdf for the
KMKu model for various values of parameters are similar to the Ku model. It can be asymmetric,
such as bathtub, unimodal, increasing and decreasing. In addition, the shape forms of the hrf
for the KMKu model can be bathtub, U-shaped, J-shaped and increasing. Several statistical and
computational properties were computed. Four different measures of entropy were studied. The
maximum likelihood approach was employed to estimate the parameters for the KMKu model under
simple and ranked set sampling. A simulation experiment was conducted in order to calculate
the model parameters of the KMKu model utilizing simple and ranked set sampling and show
the efficiency of the ranked set sampling more than the simple random sampling. The KMKu has
more flexibility than the Ku model and other well-known models, and we proved this using three
real-world data sets.

Keywords: Kumaraswamy model; asymmetric; ranked set sampling; KM transformation family;
simulation; maximum likelihood estimation

MSC: 60E05; 62E15; 62F10

1. Introduction

There are numerous statistical models in the literature, but it is always possible to
construct more flexible models that are better suited to actual real data in various fields
such as engineering, environmental science, biomedical science, economics, reliability,
biology, energy, and physics. Statisticians have previously proposed a variety of methods
for dealing with these problems. When the processes acquire values in the range (0, 1), a
main statistical analysis using the usual beta (B) and Kumaraswamy (Ku) models may be
used. Before proceeding, a review of these models is required. To begin, they are generated
from the B and Ku models. The B model is a continuous model, and it has the range (0, 1)
and two positive shape parameters, θ and µ. The cumulative distribution function (cdf) of
the B model is provided via:

GB(y; θ, µ) =
1

B(θ, µ)

∫ y

0
tθ−1(1− t)µ−1dt ; 0 < y < 1, θ, µ > 0,
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where B(θ, µ) =
∫ 1

0 tθ−1(1− t)µ−1dt.
The appropriate probability density function (pdf) of the B model may take the form

of a U, a monotonic (decreasing or increasing) curve. Conversely, the equivalent hazard
rate function (hrf) might increase with convex or U-shaped forms [1,2]. The Ku model
was created in [3] to supplement the B distribution. The Ku model theoretically depends
on uniform-order statistics, and its functions are exceedingly basic, requiring no special
functions. The cdf and pdf of the Ku model are provided via

GKu(y; θ, µ) = 1−
(

1− yθ
)µ

; 0 < y < 1, θ, µ > 0, (1)

and
gKu(y; θ, µ) = θµyθ−1

(
1− yθ

)µ−1
; 0 < y < 1, θ, µ > 0. (2)

According to the values of the parameter, the pdf of the Ku model is asymmetric, and
it has one of these forms: (i) bathtub when θ, µ < 1, (ii) decreasing when θ 6 1, µ > 1,
(iii) increasing when θ > 1, µ 6 1, (iv) unimodal when θ, µ > 1, (v) steady when θ = µ = 1.

The behavior of the Ku model is similar to that of the B model, but it is simpler since
both its pdf and cdf are closed-form. Both the B and Ku models have the same boundary
behavior and significant special models. This distribution might be a viable alternative in
instances when the limits are, in fact, finite, i.e., (0, 1).

The Ku was primarily designed as a lifetime model. Several researchers explored and
created generalizations of the Ku model, such as an exponentiated Ku model proposed
in [4], the Ku Ku model studied in [5], transmuted Ku model discussed in [6], the size-
biased Ku model proposed in [7], the Marshall–Olkin Ku model introduced in [8], the
exponentiated generalized Ku model suggested in [9], the modified Ku model discussed
in [10], the type II half logistic Ku model proposed in [11], the alpha power Ku model
discussed in [12], and the bivariate and multivariate weighted Ku models proposed in [13].
All of the previous models are a generalization of the Ku model and have the range (0,1).

Additional parameters provide extra flexibility; however, they may increase the esti-
mation’s complexity. Many authors used the approach of adding parameters, such as type
II half-logistic odd Fréchet class of distributions by [14], odd Perks class of distributions
by [15], type II power Topp-Leone class of distributions by [16], generalized power Akshaya
distribution by [17], sec class of distributions by [18]. Recently, the authors of [19] have
developed a novel transformation, known as the KM transformation family of distribu-
tions, to obtain new parsimonious families of distributions. The cdf and pdf of the KM
transformation family of distributions are provided via

FKM (y) =
e

e− 1

(
1− e−G(y)

)
, y ∈ R, (3)

and
fKM(y) =

e
e− 1

g(y)e−G(y), y ∈ R. (4)

where G(y) and g(y) are the cdf and pdf of the parent distribution. The benefit of employing
this transformation is that the produced distribution is parameter-parsimonious since no
additional parameters are introduced.

The major goal of this article is to provide a novel extension of the Ku model named
the KMKu model, which has two shape parameters µ and θ. The below considerations
provide sufficient motivation and reason to investigate the KMKu model. We describe
them as described below:

1. The new KMKu is more flexible than the Ku model, and they have the same number
of parameters.

2. The curves of the pdf for the KMKu model are similar to the Ku model, and it can
be asymmetric, such as (i) bathtub when θ, µ < 1, (ii) decreasing when θ 6 1, µ > 1,
(iii) increasing when θ > 1, µ < 1, (iv) unimodal when θ > 1, µ > 1.
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3. The KMKu model has a closed form for the quantile function, making it simple to
generate random numbers from the KMKu proposed model.

4. Several general statistical features of the KMku model were investigated.
5. The maximum likelihood estimation technique was employed to calculate the param-

eters of the KMKu model, employing simple and ranked set sampling.
6. The KMKu model gives more fit than the Ku model and numerous other well-known

models for modeling real-world data sets in different fields, and we recommended
that in the application section.

This paper is organized as follows. In Section 2, the construction of the KMKu model
is provided by combining the Ku model and the KM transformation. In Section 3, we
derive and investigate some important expansions, which we use to calculate the statistical
properties of the KMKu model. In Section 4, some general statistical features of the
KMKu model are derived. In Section 5, some different measures of entropy are computed.
In Section 6, ranked set sampling is discussed. In Section 7, estimations of the unknown
parameters using the maximum likelihood methodology under simple and ranked set
sampling are studied. In Section 8, simulation outcomes are discussed. In Section 9, the
importance and flexibility of the KMKu model are proved by employing three real data
sets. Finally, the paper ended with concluding remarks.

2. The Construction of The Suggested Model

In this section, we create a new flexible statistical model defined as the Kavya–
Manoharan transformation Kumaraswamy (KMKu) model by introducing (1) into (3)
to obtain

FCDFF(y; θ, µ) =
e

e− 1

(
1− e−1e(1−yθ)

µ)
; 0 < y < 1, θ, µ > 0, (5)

and the corresponding pdf is

f (y; θ, µ) =
1

e− 1
θµyθ−1

(
1− yθ

)µ−1
e(1−yθ)

µ

; 0 < y < 1, θ, µ > 0. (6)

The survival function, hrf and reversed hrf for the KMKu model are

R(y; θ, µ) = 1− F(y; θ, µ) = 1− e
e− 1

(
1− e−1e(1−yθ)

µ)
; 0 < y < 1, θ, µ > 0,

h(y; θ, µ) =
f (y; θ, µ)

R(y; θ, µ)
=

θµyθ−1(1− yθ
)µ−1

1− e−(1−yθ)
µ ,

and

τ(y; θ, µ) =
f (y; θ, µ)

F(y; θ, µ)
=

θµyθ−1(1− yθ
)µ−1

e1−(1−yθ)
µ

− 1
.

The cumulative hrf is provided via

H(y; θ, µ) = − ln
[

1− e
e− 1

(
1− e−1e(1−yθ)

µ)]
.

The inverse of the cdf was used to generate random samples from the newly suggested
model, and it has the next equation

yu =

(
1−

(
1 + ln

(
1− u

(
1− e−1

))) 1
µ

) 1
θ

. (7)

Figure 1 shows the forms of the KMKu pdf (6) utilizing distinct parameter combina-
tions. According to the values of the parameter, the pdf of the KMKu model is asymmetric,
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and it has one of these forms: (i) bathtub when θ, µ < 1, (ii) decreasing when θ 6 1, µ > 1,
(iii) increasing when θ > 1, µ < 1, (iv) unimodal when θ > 1, µ > 1.
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Figure 1. Plots of pdf for the KMKu model.

Figure 2 demonstrates a graphical representation of the hrf of the KMKu model
utilizing distinct parameter combinations. According to the values of the parameter, the
hrf of the KMKu model can be bathtub, U-shaped and increasing.
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Figure 2. Plots of hrf for the KMKu model.

3. Useful Expansions

In this section, the expansions of the f (y; θ, µ), [ f (y; θ, µ)]λ and [F(y; θ, µ)]h for the
KMKu model are derived to make the computation of the statistical features easy because
we can write the pdf and cdf of the KMKu model as a linear combination of the Ku model.
First, we can rewrite Equation (6) as

f (y; θ, µ) =
θµe

e− 1
yθ−1

(
1− yθ

)µ−1
e−
[
1−(1−yθ)

µ
]

, (8)

Using the exponential expansion e−βy =
∞
∑

i=0

(−1)i βiyi

i! to Equation (8), we obtain,

f (y; θ, µ) =
θµe

e− 1
yθ−1

∞

∑
i=0

(−1)i

i!

(
1− yθ

)µ−1[
1−

(
1− yθ

)]i
. (9)

Using the binomial expansion

(1− y)β−1 =
∞

∑
j=0

(−1)j
(

β− 1
j

)
yj, |y| < 1, (10)

by inserting Equation (10) in Equation (9), we obtain

f (y; θ, µ) = yθ−1
∞

∑
i,j=0

ςi,j

(
1− yθ

)µ+j−1
, (11)

where ςi,j =
θµe
e−1

(−1)i+j

i!

(
i
j

)
.

To obtain the expansion of [ f (y; θ, µ)]λ, then

[ f (y; θ, µ)]λ =

(
θµe

e− 1

)λ

yλ(θ−1)
(

1− yθ
)λ(µ−1)

e−λ
[
1−(1−yθ)

µ
]

,

by applying the exponential expansion to the above equation, we obtain,

[ f (y; θ, µ)]λ =

(
θµe

e− 1

)λ

yλ(θ−1)
∞

∑
i=0

(−1)iλi

i

(
1− yθ

)λ(µ−1)[
1−

(
1− yθ

)µ]i
, (12)

by applying the binomial expansion (10) in Equation (12), we obtain

[ f (y; θ, µ)]λ = yλ(θ−1)
∞

∑
i,j=0

vi,j

(
1− yθ

)λ(µ−1)+j
, (13)

where vi,j =
(

θµe
e−1

)λ (−1)i+jλi

i

(
i
j

)
. To obtain the expansion of [F(y; θ, µ)]h, then
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[F(y; θ, µ)]h =

(
e

e− 1

)h(
1− e−

[
1−(1−yθ)

µ
])h

,

by employing the binomial expansion (1− y)β−1 = ∑
β−1
k=0 (−1)k

(
β− 1

k

)
yk, to the above

equation, we obtain

[F(y; θ, µ)]h =

(
e

e− 1

)h h

∑
k=0

(−1)k
(

h
k

)
e−k

[
1−(1−yθ)

µ
]

,

again by employing the exponential expansion to the above equation, we obtain

[F(y; θ, µ)]h =

(
e

e− 1

)h h

∑
k=0

∞

∑
m=0

(−1)k+mkm

m!

(
h
k

)[
1−

(
1− yθ

)µ]m
,

again by using the binomial expansion (10) to the above equation, we obtain

[F(y; θ, µ)]h =
h

∑
k=0

∞

∑
m,s=0

Ωk,m,s

(
1− yθ

)µs
, (14)

where Ωk,m,s =
( e

e−1
)h (−1)k+m+skm

m!

(
h
k

)(
m
s

)
.

4. General Statistical Properties

The section discusses various essential characteristics of the KMku model, such as the
quantile function (qf), raw and incomplete moments, probability-weighted moments, and
order statistics.

4.1. Quantile Function

Quantile function (qf) is an important measure and is used to generate a random
variate. Let Y ∼ KMKu(θ, µ) for Y > 0 and θ, µ > 0, then its qf, say Q(u), is given by in
Equation (15)

Q(u) =
(

1−
(

1 + ln
(

1− u
(

1− e−1
))) 1

µ

) 1
θ

, (15)

where u is a uniform distribution. The median (M) of the KMKu model may be calculated
by entering u = 0.5 in Equation (15) as

M =

(
1−

(
1 + ln

(
1− 0.5

(
1− e−1

))) 1
µ

) 1
θ

.

4.2. Moments and Incomplete Moments

The wth moment of Y can be computed by using the next formula

µ′w =
∫ 1

0
yw f (y; θ, µ)dy. (16)

We acquire Equation (11) by entering it into Equation (16)

µ′w =
∞

∑
i,j=0

ςi,j

∫ 1

0
yw+θ−1

(
1− yθ

)µ+j−1
dy,
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Let v = yθ , then we can write the previous equation as

µ′w =
1
θ

∞

∑
i,j=0

ςi,j

∫ 1

0
v

w
θ (1− v)µ+j−1dv,

then, the wth moment of the KMKu model is provided via

µ′w =
1
θ

∞

∑
i,j=0

ςi,jB
(w

θ
+ 1, µ + j

)
, (17)

where B(., .) is the B function. By putting w = 1, 2, 3, 4 in (17), we obtain the first four
moments for Y as

µ′1 =
1
θ

∞

∑
i,j=0

ςi,jB
(

1
θ
+ 1, µ + j

)
, (18)

µ′2 =
1
θ

∞

∑
i,j=0

ςi,jB
(w

θ
+ 1, µ + j

)
, (19)

µ′3 =
1
θ

∞

∑
i,j=0

ςi,jB
(

3
θ
+ 1, µ + j

)
, (20)

and

µ′4 =
1
θ

∞

∑
i,j=0

1
i!

B
(

4
θ
+ 1, µ + j

)
. (21)

The mean and variance (var) of the KMKu model are computed as

mean =
1
θ

∞

∑
i,j=0

ςi,jB
(

1
θ
+ 1, µ + j

)
,

and

Var(y) =
1
θ

∞

∑
i,j=0

ςi,jB
(

2
θ
+ 1, µ(i + 1)

)
−
(

1
θ

∞

∑
i,j=0

ςi,jB
(

1
θ
+ 1, µ + j

))2

.

The skewness (γ1), kurtosis (γ2) are γ1 =
µ2

3
µ3

2
and γ2 = µ4

µ2
2

where µ2 = µ′2−
(
µ′1
)2, µ3 =

µ′3 − 3µ′1µ′2 + 2
(
µ′1
)3 and µ4 = µ′4 − 4µ′3µ′1 + 6µ′2

(
µ′1
)2 − 3

(
µ′1
)4.

By using Equation (12), Table 1 shows some numerical values of the first four moments
µ′1, µ′2, µ′3, µ′4, the var, γ1, γ2 and coefficient of variation (CV =

√
var
µ ).

The pth incomplete moments for the KMKu model can be computed as

ηp(t) =
∞

∑
i,j=0

ςi,j

∫ t

0
yp+θ−1

(
1− yθ

)µ+j−1
dy.

Let v = yθ , then the pth incomplete moments for the KMKu model are

ηp(t) =
1
θ

∞

∑
i,j=0

ςi,jBtθ

( p
θ
+ 1, µ + j

)
,

where By(., .) is the incomplete B function.
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Table 1. Some numerical values of moments for different values of µ and θ.

µ θ µ′
1 µ′

2 µ′
3 µ′

4 var γ1 γ2 CV

0.6

0.6 0.4230 0.2870 0.2240 0.1870 0.1080 0.3180 1.7130 0.7760

0.8 0.3480 0.2140 0.1560 0.1240 0.0920 0.6210 2.1050 0.8730

1.0 0.2930 0.1640 0.1130 0.0860 0.0780 0.8650 2.5950 0.9540

1.2 0.2510 0.1290 0.0840 0.0610 0.0660 1.0720 3.1370 1.0220

1.4 0.2180 0.1030 0.0630 0.0440 0.0560 1.2520 3.7110 1.0810

1.6 0.1920 0.0840 0.0490 0.0330 0.0470 1.4140 4.3040 1.1330

1.8 0.1700 0.0690 0.0380 0.0240 0.0400 1.5600 4.9080 1.1790

2.0 0.1520 0.0580 0.0300 0.0190 0.0350 1.6930 5.5200 1.2210

0.8

0.6 0.4880 0.3400 0.2680 0.2240 0.1020 0.0830 1.6660 0.6540

0.8 0.4160 0.2640 0.1960 0.1560 0.0910 0.3530 1.8630 0.7270

1.0 0.3610 0.2110 0.1470 0.1130 0.0810 0.5630 2.1490 0.7860

1.2 0.3190 0.1720 0.1140 0.0840 0.0710 0.7350 2.4730 0.8350

1.4 0.2840 0.1430 0.0900 0.0630 0.0620 0.8820 2.8140 0.8770

1.6 0.2570 0.1210 0.0720 0.0490 0.0550 1.0090 3.1620 0.9130

1.8 0.2330 0.1030 0.0590 0.0380 0.0480 1.1210 3.5100 0.9440

2.0 0.2130 0.0890 0.0480 0.0300 0.0430 1.2210 3.8550 0.9710

1

0.6 0.5390 0.3840 0.3060 0.2570 0.0940 −0.0960 1.7240 0.5680

0.8 0.4710 0.3090 0.2310 0.1860 0.0870 0.1550 1.7990 0.6270

1.0 0.4180 0.2540 0.1800 0.1390 0.0790 0.3450 1.9650 0.6740

1.2 0.3760 0.2130 0.1440 0.1060 0.0720 0.4970 2.1700 0.7120

1.4 0.3420 0.1820 0.1170 0.0830 0.0650 0.6240 2.3910 0.7430

1.6 0.3140 0.1570 0.0960 0.0660 0.0580 0.7320 2.6170 0.7700

1.8 0.2900 0.1370 0.0800 0.0530 0.0530 0.8260 2.8430 0.7930

2.0 0.2690 0.1200 0.0680 0.0430 0.0480 0.9090 3.0640 0.8140

1.2

0.6 0.5810 0.4230 0.3400 0.2870 0.0860 −0.2390 1.8310 0.5040

0.8 0.5160 0.3480 0.2640 0.2140 0.0820 −0.0012 1.8190 0.5530

1.0 0.4660 0.2930 0.2110 0.1640 0.0760 0.1760 1.9060 0.5920

1.2 0.4250 0.2510 0.1720 0.1290 0.0700 0.3150 2.0360 0.6230

1.4 0.3920 0.2180 0.1430 0.1030 0.0650 0.4300 2.1840 0.6480

1.6 0.3640 0.1920 0.1210 0.0840 0.0590 0.5260 2.3390 0.6690

1.8 0.3400 0.1700 0.1030 0.0690 0.0550 0.6090 2.4940 0.6880

2.0 0.3190 0.1520 0.0890 0.0580 0.0500 0.6810 2.6470 0.7030

1.4

0.6 0.6160 0.4580 0.3700 0.3150 0.0780 −0.3590 1.9640 0.4540

0.8 0.5550 0.3840 0.2940 0.2400 0.0760 −0.1290 1.8840 0.4960

1.0 0.5070 0.3290 0.2400 0.1880 0.0720 0.0390 1.9140 0.5290

1.2 0.4680 0.2860 0.2000 0.1510 0.0670 0.1700 1.9910 0.5550

1.4 0.4350 0.2520 0.1690 0.1230 0.0630 0.2760 2.0900 0.5760

1.6 0.4080 0.2250 0.1450 0.1020 0.0590 0.3640 2.1980 0.5940

1.8 0.3840 0.2020 0.1260 0.0860 0.0550 0.4390 2.3080 0.6090

2.0 0.3640 0.1830 0.1100 0.0730 0.0510 0.5040 2.4180 0.6220
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4.3. Probability Weighted Moments

The (n, h)th probability weighted moments (PWMs) of Y following the KMKu model,
symbolized as τn,h, are formally computed from the next formula

τn,h =
∫ 1

0
yn f (y; θ, µ) F(y; θ, µ)hdy. (22)

By inserting the two Equations (11) and (14) into (22), then we obtain

τn,h =
∞

∑
i,j=0

h

∑
k=0

∞

∑
m,s=0

Ωk,m,sςi,j

∫ 1

0
yn+θ−1

(
1− yθ

)µ(s+1)+j−1
dy.

Let v = yθ , then the PWMs of the KMKu model are

τn,h =
1
θ

∞

∑
i,j=0

h

∑
k=0

∞

∑
m,s=0

Ωk,m,sςi,jB
(n

θ
+ 1, µ(s + 1) + j

)
. (23)

4.4. Order Statistics

A sample of size n is taken from the KMKu model and, by the following definition,
yielded the pdf of ith order statistics for the KMKu model

fi:n(y; θ, µ) =
1

B(i, n− i + 1)
f (y; θ, µ)

n−i

∑
l=0

(−1)l
(

n− i
l

)
F(y; θ, µ)i+l−1. (24)

By employing (11) and (14) into (24) and replacing h with i + l − 1, then

fi:n(y; θ, µ) =
n−i

∑
l=0

∞

∑
i,j=0

i+l−1

∑
k=0

∞

∑
m,s=0

Ωl,i,j,k,m,syθ−1
(

1− yθ
)µ(s+1)+j−1

,

where Ωl,i,j,k,m,s =
(−1)l

B(i,n−i+1)

(
n− i

l

)
Ωk,m,sςi,j. For more information see [20,21].

5. Different Types of Entropy

Entropy measurements are significant in investigations of dependability and risk. It
has been employed in a variety of biological, medicinal, and physical applications.

5.1. Rényi Entropy

The essential shape of the distribution is measured using Rényi entropy (RE) [22], and
it is provided by

Rλ =
1

1− λ
log
[∫ 1

0
( f (y; θ, µ))λ dy

]
, λ > 0, λ 6= 1. (25)

By employing (13) into (25), then

Rλ =
1

1− λ
log

[
∞

∑
i,j=0

vi,j

∫ 1

0
yλ(θ−1)

(
1− yθ

)λ(µ−1)+j
dy

]
.

Let v = yθ , then

Rλ =
1

1− λ
log

[
1
θ

∞

∑
i,j=0

vi,j

∫ 1

0
vλ− λ+1

θ −1(1− v)λ(µ−1)+jdv

]
.
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The RE of the KMKu model is

Rλ =
1

1− λ
log

[
1
θ

∞

∑
i,j=0

vi,jB
(

λ− λ + 1
θ

, λ(µ− 1) + j + 1
)]

.

5.2. Havrda and Charvat Entropy

The Havrda and Charvat entropy (HCE) [23] measure is provided via

HCλ =
1

21−λ − 1

[(∫ 1

0
( f (y; θ, µ))λ dy

) 1
λ

− 1

]
, λ > 0, λ 6= 1. (26)

By employing (13) into (26), then

HCλ =
1

21−λ − 1

(1
θ

∞

∑
i,j=0

vi,j

∫ 1

0
yλ(θ−1)

(
1− yθ

)λ(µ−1)+j
dy

) 1
λ

− 1

.

After some computational, then the HCE of the KMKu model is

HCλ =
1

21−λ − 1

[
1
θ

∞

∑
i,j=0

vi,jB
(

λ− λ + 1
θ

, λ(µ− 1) + j + 1
)]

.

5.3. Tsallis Entropy

The Tsallis entropy (TE) [24] measure is provided by

Tλ =
1

λ− 1

[
1−

∫ 1

0
( f (y; θ, µ))λ dy

]
, λ > 0, λ 6= 1. (27)

By employing (13) into (27), then

Tλ =
1

λ− 1

1− 1
θ

∞

∑
i,j=0

vi,j

1∫
0

yλ(θ−1)
(

1− yθ
)λ(µ−1)+j

dy

.

After some computational, then the TE of the KMKu model is

Tλ =
1

λ− 1

[
1− 1

θ

∞

∑
i,j=0

vi,jB
(

λ− λ + 1
θ

, λ(µ− 1) + j + 1
)]

.

5.4. Arimoto Entropy

The Arimoto entropy (AE) [25] measure is provided by

Aλ =
λ

1− λ

[(∫ 1

0
( f (y; θ, µ))λ dy

) 1
λ

− 1

]
, λ > 0, λ 6= 1. (28)

By employing (13) into (28), then

Aλ =
λ

1− λ

(1
θ

∞

∑
i,j=0

vi,j

∫ 1

0
yλ(θ−1)

(
1− yθ

)λ(µ−1)+j
dy

) 1
λ

− 1

.

After some computational, then the AE of the KMKu model is
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Aλ =
λ

1− λ

(1
θ

∞

∑
i,j=0

vi,jB
(

λ− λ + 1
θ

, λ(µ− 1) + j + 1
)) 1

λ

− 1

.

Table 2 shows some numerical values of the different types of entropy.

Table 2. Some numerical values of entropy at λ = 0.5 and λ = 0.8.

µ θ
λ = 0.5 λ = 0.8

RE HCE TE AE RE HCE TE AE

0.6

0.6 −0.0260 −0.1400 −0.0590 −0.0580 −0.0470 −0.1780 −0.1060 −0.1060

0.8 −0.0420 −0.2240 −0.0950 −0.0930 −0.0760 −0.2870 −0.1720 −0.1710

1.0 −0.0690 −0.3540 −0.1530 −0.1470 −0.1210 −0.4510 −0.2700 −0.2680

1.2 −0.1000 −0.4960 −0.2170 −0.2050 −0.1700 −0.6290 −0.3780 −0.3740

1.4 −0.1330 −0.6350 −0.2830 −0.2630 −0.2210 −0.8030 −0.4840 −0.4780

1.6 −0.1660 −0.7650 −0.3470 −0.3170 −0.2700 −0.9690 −0.5850 −0.5770

1.8 −0.1980 −0.8850 −0.4080 −0.3670 −0.3180 −1.1250 −0.6810 −0.6690

2.0 −0.2310 −0.9950 −0.4660 −0.4120 −0.3630 −1.2700 −0.7710 −0.7550

0.8

0.6 −0.0091 −0.0500 −0.0210 −0.0210 −0.0160 −0.0620 −0.0370 −0.0370

0.8 −0.0130 −0.0690 −0.0290 −0.0290 −0.0210 −0.0810 −0.0480 −0.0480

1.0 −0.0270 −0.1480 −0.0620 −0.0610 −0.0450 −0.1730 −0.1030 −0.1030

1.2 −0.0470 −0.2500 −0.1060 −0.1040 −0.0760 −0.2890 −0.1730 −0.1720

1.4 −0.0700 −0.3590 −0.1550 −0.1490 −0.1100 −0.4130 −0.2470 −0.2450

1.6 −0.0930 −0.4670 −0.2040 −0.1930 −0.1440 −0.5350 −0.3210 −0.3180

1.8 −0.1170 −0.5710 −0.2520 −0.2360 −0.1770 −0.6520 −0.3920 −0.3880

2.0 −0.1410 −0.6680 −0.2990 −0.2770 −0.2100 −0.7640 −0.4600 −0.4550

1

0.6 −0.0071 −0.0390 −0.0160 −0.0160 −0.0130 −0.0500 −0.0300 −0.0300

0.8 −0.0020 −0.0110 −0.0045 −0.0045 −0.0032 −0.0120 −0.0073 −0.0073

1.0 −0.0089 −0.0490 −0.0200 −0.0200 −0.0140 −0.0550 −0.0330 −0.0330

1.2 −0.0220 −0.1180 −0.0490 −0.0490 −0.0340 −0.1290 −0.0770 −0.0770

1.4 −0.0370 −0.1990 −0.0840 −0.0830 −0.0570 −0.2160 −0.1290 −0.1290

1.6 −0.0550 −0.2850 −0.1220 −0.1180 −0.0810 −0.3070 −0.1830 −0.1830

1.8 −0.0720 −0.3710 −0.1600 −0.1530 −0.1060 −0.3970 −0.2380 −0.2360

2.0 −0.0900 −0.4530 −0.1980 −0.1880 −0.1300 −0.4850 −0.2900 −0.2880

1.2

0.6 −0.0130 −0.0710 −0.0300 −0.0290 −0.0220 −0.0860 −0.0520 −0.0510

0.8 −0.0016 −0.0087 −0.0036 −0.0036 −0.0025 −0.0097 −0.0058 −0.0058

1.0 −0.0029 −0.0160 −0.0066 −0.0066 −0.0045 −0.0180 −0.0100 −0.0100

1.2 −0.0100 −0.0580 −0.0240 −0.0240 −0.0160 −0.0620 −0.0370 −0.0370

1.4 −0.0210 −0.1160 −0.0490 −0.0480 −0.0320 −0.1230 −0.0730 −0.0730

1.6 −0.0340 −0.1820 −0.0770 −0.0750 −0.0500 −0.1900 −0.1140 −0.1130

1.8 −0.0480 −0.2510 −0.1070 −0.1040 −0.0680 −0.2600 −0.1550 −0.1550

2.0 −0.0620 −0.3200 −0.1370 −0.1320 −0.0870 −0.3290 −0.1970 −0.1960
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Table 2. Cont.

µ θ
λ = 0.5 λ = 0.8

RE HCE TE AE RE HCE TE AE

1.4

0.6 −0.0230 −0.1250 −0.0530 −0.0520 −0.0380 −0.1460 −0.0870 −0.0870

0.8 −0.0071 −0.0390 −0.0160 −0.0160 −0.0110 −0.0410 −0.0250 −0.0250

1.0 −0.0041 −0.0230 −0.0095 −0.0094 −0.0062 −0.0240 −0.0140 −0.0140

1.2 −0.0078 −0.0430 −0.0180 −0.0180 −0.0120 −0.0460 −0.0270 −0.0270

1.4 −0.0150 −0.0830 −0.0350 −0.0340 −0.0230 −0.0870 −0.0520 −0.0520

1.6 −0.0250 −0.1330 −0.0560 −0.0550 −0.0360 −0.1370 −0.0820 −0.0820

1.8 −0.0350 −0.1870 −0.0790 −0.0770 −0.0500 −0.1910 −0.1140 −0.1140

2.0 −0.0460 −0.2430 −0.1030 −0.1010 −0.0650 −0.2460 −0.1470 −0.1460

6. Sampling Techniques

The most popular sampling methods are simple random sampling (SRS) and ranked
set sampling (RSS). SRS is the most common method of data collection. In many applica-
tions (such as fisheries and medical research), where actual measurement of the variable
of interest would be either time-consuming or expensive, ranking a number of sampling
units without actually measuring them can be performed reasonably simply and affordably.
To obtain more representative samples from the underlying population and boost the
effectiveness of the statistical inference under these circumstances, rank-based sampling
strategies may be used. McIntyre’s initial suggestion of RSS is cited in references [26,27].
Numerous studies have shown that RSS-based statistical procedures are superior to their
SRS scheme analogs, either numerically or theoretically. The initial ranking of n samples of
size n for the one-cycle RSS looks like this:

1. Y1(1:n)sY1(2:n)s . . . , Y1(n:n)s → Z1s = Y1(1:n)s

2. Y2(1:n)sY2(2:n)s . . . Y2(n:n)s → Z2s = Y2(2:n)s
...

. . .
...

n. Yn(1:n)sYn(2:n)s . . . Yn(n:n)s → Zns = Yn(n : n)s

where s cycles to produce a sample of size N = ns, and Yj(i:n)s denotes the ith order statistic
from the jth SRS of size N. The resulting sample is called a one-cycle RSS and has the size
n = N. It is represented by the symbol Z = (Z11, Z21, . . . , Zn1). Zi1. Under the premise of
perfect judgement ranking, Zi1 has the same distribution as Yi(i:n)s, the ith order statistic in
a set of size n generated from the ith sample with pdf, see [28].

g(i)(z) =
n!

(i− 1)!(n− i)!
[F(z)]i−1[1− F(z)]n−i f (z),−∞ < z < ∞. (29)

The cycle can be repeated s times until N = sn units are quantified.
Following that, several extensions to the original RSS were proposed. Assessing the

performance of some ranked set of sampling designs using a hybrid approach has been
discussed by [29]; RSS with the application of modified Kies exponential distribution has
been obtained by [30]; some properties and estimations under RSS of the generalized Bi-
lal distribution has been introduced by [31]; an estimation of the exponential parameters
of the Pareto distribution under ranked- and double-RSS designs has been obtained [32];
and Bayesian estimation using an MCMC method of system reliability for inverted Topp–
Leone distribution based on RSS has been introduced by [33]. Contrarily, median RSS and
MRSS [34] only consider the units that rank as the median for each set. While paired RSS [35]
is a less expensive alternative that ranks fewer units, double RSS [36] is a more effective but
also more expensive version of RSS that rates a higher number of sets in two ordering stages.
For other probability distributions, see the recently proposed sampling technique in [37–44].
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7. Maximum Likelihood Estimation

In this section, we obtain the parameter estimator of θ and µ based on SRS and RSS.

7.1. MLE Based on SRS

Here, using SRS, we first need to obtain the MLE of θ and µ. Let Yi, i = (1, . . . , N) be
an independent SRS drawn from Y ∼ KMKu(θ, µ). The likelihood function based on SRS is:

L(θ, µ) =
N

∏
i=1

fY(yi)

=

(
1

e− 1

)N
θNµNe∑N

i=1 (1−yθ
i )

µ N

∏
i=1

yθ−1
i

(
1− yθ

i

)µ−1
. (30)

The ln-likelihood function of the observed samples is

`(θ, µ) = N
[

ln
(

1
e− 1

)
+ ln(θ) + ln(µ)

]
+

N

∑
i=1

(
1− yθ

i

)µ
+ (θ − 1)

N

∑
i=1

ln(yi) + (µ− 1)
N

∑
i=1

ln
(

1− yθ
i

)
. (31)

The partial derivatives of (31) with respect to θ and µ to obtain the ln-likelihood
equations are

∂`(θ, µ)

∂θ
=

N
θ
− µ

N

∑
i=1

yθ
i ln(yi)

(
1− yθ

i

)µ−1
+

N

∑
i=1

ln(yi)− (µ− 1)
N

∑
i=1

yθ
i ln(yi)

1− yθ
i

, (32)

∂`(θ, µ)

∂µ
=

N
µ

+
N

∑
i=1

(
1− yθ

i

)µ
ln
(

1− yθ
i

)
+

N

∑
i=1

ln(1− yθ
i ). (33)

Two non-linear systems of equations that are differentiating (32) and (33) with respect
to θ and µ, respectively, and equating each solution to zero must be solved concurrently
in order to create MLE for SRS. One can use the R statistical programming language
software to compute the desired MLEs θ and µ for any given data set by utilizing the
“optim” function of the “stats” package, which employs the Nelder–Mead (NM) approach
of maximization in the maximum likelihood computations.

7.2. MLE Based on RSS

Let Yi(i:ns), i = 1, . . . , ns, s = 1, . . . , p be an s-cycle of RSS from the KMKu(θ, µ).
We denote Yi(i:n)s by Yis to simplify the notation. The function based on RSS by using
Equation (29) is:

gi:ns(zis; θ, µ) = Ci:ns F(zis; θ, µ)i−1[1− F(zis; θ, µ)]ns−i f (zis; θ, µ), (34)

where Ci:ns =
ns !

(i−1)!(ns−i)! . In view of (29), the likelihood function can be written as

L(θ, λ; zis) =
p

∏
s=1

ns

∏
i=1

gi(zis; θ, µ)

=
p

∏
s=1

ns

∏
i=1

Ci:ns

(
e

e− 1

)i−1(
1− e−1e(1−zθ

is)
µ)i−1

{
1− e

e− 1

(
1− e−1e(1−zθ

is)
µ)}ns−i

×
p

∏
s=1

ns

∏
i=1

1
e− 1

θµzθ−1
is

(
1− zθ

is

)µ−1
e(1−zθ

is)
µ

. (35)

where N = ∑
p
s=1 ns In this setting, the log-likelihood function of the KMKu distribution is

given by
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`(θ, µ; zis) =
p

∑
s=1

ns

∑
i=1

ln(Ci:ns) +
p

∑
s=1

ns

∑
i=1

(i− 1) ln
(

e
e− 1

)
+

p

∑
s=1

ns

∑
i=1

(i− 1) ln
(

1− e−1e(1−zθ
is)

µ)
+

p

∑
s=1

ns

∑
i=1

(ns − i) ln
{

1− e
e− 1

(
1− e−1e(1−zθ

is)
µ)}

+ N
[

ln
(

1
e− 1

)
+ log(θ) + ln(µ)

]

+ (θ − 1)
p

∑
s=1

ns

∑
i=1

ln(zis) + (µ− 1)
p

∑
s=1

ns

∑
i=1

ln
(

1− zθ
is

)
+

p

∑
s=1

ns

∑
i=1

(
1− zθ

is

)µ
(36)

The partial derivatives of `(θ, µ; zis) associated with unknown parameters can be
expressed as

∂`(θ, µ; zis)

∂θ
=µ

p

∑
s=1

ns

∑
i=1

(i− 1)
ln(zis)zθ

is
(
1− zθ

is
)µ−1e−1e(1−zθ

is)
µ

1− e−1e(1−zθ
is)

µ +
N
θ
+

p

∑
s=1

ns

∑
i=1

ln(zis)

− e
e− 1

µ
p

∑
s=1

ns

∑
i=1

(ns − i)
ln(zis)zθ

is
(
1− zθ

is
)µ−1e−1e(1−zθ

is)
µ

1− e
e−1

(
1− e−1e(1−zθ

is)
µ)

− (µ− 1)
p

∑
s=1

ns

∑
i=1

ln(zis)zθ
is

1− zθ
is
− µ

p

∑
s=1

ns

∑
i=1

ln(zis)zθ
is

(
1− zθ

is

)µ−1
(37)

and

∂l(θ, µ; x(ii)j)

∂µ
=− e−1

p

∑
s=1

ns

∑
i=1

(i− 1)
ln
(
1− zθ

is
)(

1− zθ
is
)µe(1−zθ

is)
µ

1− e−1e(1−zθ
is)

µ +
N
µ

+
p

∑
s=1

ns

∑
i=1

ln
(

1− zθ
is

)
+

1
e− 1

p

∑
s=1

ns

∑
i=1

(ns − i)
ln
(
1− zθ

is
)(

1− zθ
is
)µe(1−zθ

is)
µ

1− e
e−1

(
1− e−1e(1−zθ

is)
µ)

+
p

∑
s=1

ns

∑
i=1

ln
(

1− zθ
is

)(
1− zθ

is

)µ
. (38)

By numerically solving the nonlinear equations ∂`(θ,µ;zis)
∂θ = 0 and ∂`(θ,µ;zis)

∂µ = 0 with
respect to θ and µ, the MLEs can be obtained.

7.3. Asymptotic Confidence Interval

The Hessian matrix by the “optim” function yields the Fisher information matrix I of
parameters θ and µ, which are the negative expectation of the last-second derivative of the
log-likelihood function and θ and µ, respectively. The inverse Fisher information matrix
describes the variance-covariance matrix. The asymptotic distribution of the MLE (θ̂, µ̂) is
also given as n→ increases:(

θ̂
µ̂

)
∼ N

[(
θ
µ

)
,
(

V̂11 V̂12
V̂21 V̂22

)]
.

By inverting the Hessian matrix, the estimates θ̂ and µ̂ of theasymptotic variance-
covariance matrix V are produced. The following equations provide two-sided 100(1− α)%
confidence intervals (CI) for θ and µ:

Lower(θ) = θ̂ − Z α
2

√
V̂11, Upper(θ) = θ̂ + Z α

2

√
V̂11,

and
Lower(µ) = µ̂− Z α

2

√
V̂22, Upper(µ) = µ̂ + Z α

2

√
V̂22,

respectively, where Z α
2

is the α
2 percentile of the standard normal distribution.
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8. Simulation

Some calculations are made in accordance with Monte Carlo simulation experiments
using R packages with various combinations of sample sizes n and cycle size s as part of
our rigorous effort to assess the effectiveness of the inference methods suggested in this
paper. We generate a KMKu sample with the parameters (θ, µ): (0.2, 0.75), (0.2, 1.5), (0.2, 3),
(0.5, 0.75), (0.5, 1.5), and (0.5, 3). It has been determined how well the resulting θ, and µ
estimators perform in terms of their bias, corresponding mean squared error (MSE), relative
efficiencies (REs) and coverage probability (CP) as follows:

Bias(θ) =
1

NI

NI

∑
i=1

(
θ̂ − θ

)
, MSE(µ) =

1
NI

NI

∑
i=1

(µ̂− µ),

MSE(θ) =
1

NI

NI

∑
i=1

(
θ̂ − θ

)2
, MSE(µ) =

1
NI

NI

∑
i=1

(µ̂− µ)2,

RE1(θ) =
MSESRS(θ)

MSERSS s=1(θ)
, RE2(θ) =

MSESRS(θ)

MSERSS s=3(θ)
, RE3(θ) =

MSERSS s=1(θ)

MSERSS s=3(θ)
,

RE1(µ) =
MSESRS(µ)

MSERSS s=1(µ)
, RE2(µ) =

MSESRS(µ)

MSERSS s=3(µ)
, RE3(µ) =

MSERSS s=1(µ)

MSERSS s=3(µ)
.

CP(µ) = Mean

{
1 if Lower(µ) ≤ µ̂ ≤ Upper(µ)

0 otherwise
,

and

CP(θ) = Mean

{
1 if Lower(θ) ≤ θ̂ ≤ Upper(θ)

0 otherwise
.

Using a Monte Carlo simulation in R software (we used function “optim” in R-package
“stats”) with N =10,000 repeats for various set sizes, the number of cycles, and chosen
parameter values, the performance of the estimations is compared. To generate a sample of
RSS, we used function “rss” in R-package “RSSampling”, which the “rss” function samples
from a target population by using a ranked set sampling method.

Tables 3 and 4 present the results of the simulation investigation. As sample size
increases, bias and MSE decrease. We see that bias and MSE values based on RSS are
always less than those based on SRS. Additionally, as sample sizes are increased for all
parameters, the MSE values based on the SRS and RSS techniques become lower. Figure 3
shows the MSE values of parameters based on SRS with different sample sizes and different
parameter values, and this indicates that the MSE decreases when sample size increases.
Figure 4 shows the heat map for MSE values of parameters based on RSS with different
fixed values of sample sizes and parameters, and µ increases, the MSE for θ decreases,
while the MSE for µ increases. In Figure 4, the X label is MSE for different methods of
each parameter: CIP1SRS is MSE of SRS for θ when θ = 0.2, CIP2SRS is MSE of SRS for
µ when θ = 0.2, etc., while the Y label is MSE with different sample sizes, where C1n7 is
MSE when µ = 0.75 and n = 7, C2n7 is MSE when µ = 1.5 and n = 7, etc. The results of
the simulation show that the RSS scheme performs better than the SRS method. We can
also infer that the RSS technique is more effective than the SRS scheme for estimating the
unknown parameters of the KMKu distribution. The results of RSS in simulation tables
show that the RSS with a greater cycle, s = 3, is superior to the RSS with a single cycle.
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Table 3. Bias, MSE and REs for parameters of KMKu with different cycles: θ = 0.2 and 0.5.

SRS RSS r = 1 RSS r = 3

θ, µ m Bias MSE Bias MSE Bias MSE RE1 RE2 RE3

0.2, 0.75

4
θ 0.1651 0.1474 0.0890 0.0346 0.0813 0.0296 426% 499% 117%

µ 0.9047 3.1293 0.5787 1.3401 0.4815 1.0431 234% 300% 128%

7
θ 0.0717 0.0349 0.0366 0.0087 0.0309 0.0084 403% 416% 103%

µ 0.4008 0.8798 0.2021 0.2457 0.1974 0.2407 358% 366% 102%

10
θ 0.0519 0.0147 0.0190 0.0036 0.0172 0.0033 408% 445% 109%

µ 0.2775 0.3929 0.1120 0.0847 0.0962 0.0743 464% 529% 114%

15
θ 0.0386 0.0093 0.0078 0.0015 0.0076 0.0013 634% 686% 108%

µ 0.2331 0.3179 0.0512 0.0339 0.0511 0.0316 938% 1005% 107%

0.2, 1.5

4
θ 0.0712 0.0328 0.0340 0.0084 0.0305 0.0076 391% 432% 110%

µ 0.8320 3.7420 0.6290 7.1765 0.3595 0.7037 52% 532% 1020%

7
θ 0.0318 0.0093 0.0095 0.0023 0.0055 0.0021 408% 442% 109%

µ 0.3885 0.8633 0.0996 0.1745 0.0900 0.1672 495% 516% 104%

10
θ 0.0273 0.0060 0.0061 0.0013 0.0058 0.0011 474% 527% 111%

µ 0.3359 0.6755 0.1135 0.1803 0.0940 0.1531 375% 441% 118%

15
θ 0.0188 0.0040 0.0003 0.0004 0.0002 0.0003 1071% 1148% 107%

µ 0.2567 0.4604 0.0175 0.0289 0.0131 0.0241 1595% 1910% 120%

0.2, 3

4
θ 0.0221 0.0077 0.0072 0.0022 0.0068 0.0020 354% 380% 107%

µ 0.2639 0.8307 0.2024 0.8127 0.0940 0.3292 102% 252% 247%

7
θ 0.0102 0.0028 0.0030 0.0006 0.0010 0.0006 469% 466% 99%

µ 0.2096 1.3086 0.0326 0.0649 0.0269 0.0505 2016% 2591% 129%

10
θ 0.0081 0.0019 0.0016 0.0005 0.0039 0.0005 393% 387% 99%

µ 0.0895 0.4816 0.0851 0.4519 0.0818 0.3829 107% 126% 118%

15
θ 0.0060 0.0014 −0.0003 0.0001 −0.0002 0.0001 1051% 1227% 117%

µ 0.1332 0.5084 0.0139 0.0326 0.0077 0.0291 1558% 1746% 112%

0.5, 0.75

4
θ 0.4500 0.9750 0.2569 0.2633 0.2410 0.2403 370% 406% 110%

µ 1.3133 6.3410 0.8140 2.7293 0.7887 2.6856 232% 236% 102%

7
θ 0.1936 0.2332 0.0982 0.0600 0.0845 0.0587 389% 397% 102%

µ 0.5368 1.7774 0.2345 0.3502 0.2327 0.3494 507% 509% 100%

10
θ 0.1380 0.0989 0.0533 0.0264 0.0576 0.0261 375% 379% 101%

µ 0.3433 0.7597 0.1324 0.1237 0.1111 0.0991 614% 767% 125%

15
θ 0.0996 0.0604 0.0199 0.0094 0.0215 0.0090 644% 668% 104%

µ 0.2526 0.3891 0.0527 0.0364 0.0523 0.0328 1067% 1185% 111%

0.5, 1.5

4
θ 0.2394 0.2725 0.1415 0.0892 0.1333 0.0847 306% 322% 105%

µ 1.6074 7.5157 1.1325 4.4234 0.9699 3.9644 170% 190% 112%

7
θ 0.1170 0.0834 0.0564 0.0261 0.0440 0.0244 319% 341% 107%

µ 0.8210 2.8512 0.3655 0.7510 0.3359 0.6951 380% 410% 108%

10
θ 0.0980 0.0532 0.0356 0.0145 0.0341 0.0142 367% 375% 102%

µ 0.6881 2.4032 0.2709 0.4835 0.2478 0.4554 497% 528% 106%

15
θ 0.0733 0.0360 0.0114 0.0056 0.0119 0.0056 643% 642% 100%

µ 0.5825 3.0070 0.0978 0.1478 0.0937 0.1348 2034% 2231% 110%



Symmetry 2023, 15, 587 17 of 26

Table 3. Cont.

SRS RSS r = 1 RSS r = 3

θ, µ m Bias MSE Bias MSE Bias MSE RE1 RE2 RE3

0.5, 3

4
θ 0.0923 0.0755 0.0420 0.0231 0.0424 0.0224 327% 337% 103%

µ 1.1344 5.2244 0.7868 4.8975 0.6287 2.6572 107% 197% 184%

7
θ 0.0478 0.0290 0.0101 0.0069 0.0034 0.0067 419% 432% 103%

µ 0.7166 2.9233 0.1408 0.5447 0.1252 0.5316 537% 550% 102%

10
θ 0.0461 0.0216 0.0108 0.0051 0.0106 0.0051 422% 425% 101%

µ 0.7557 3.3001 0.2461 0.8321 0.2375 0.7869 877% 928% 106%

15
θ 0.0255 0.0142 −0.0067 0.0013 0.0010 0.0012 1102% 1153% 105%

µ 0.5203 2.6514 0.0383 0.1276 0.0345 0.1237 11482% 11847% 103%

Table 4. Confidence intervals and CP: θ = 0.2 and 0.5.

SRS RSS r = 1 RSS r = 3

θ, µ m Lower Upper CV Lower Upper CV Lower Upper CV

0.2, 0.75

4
θ 0.002 0.772 97.0% 0.026 0.487 96.3% 0.014 0.504 95.0%

µ 0.106 3.388 93.3% 0.191 2.388 94.7% 0.233 2.626 94.3%

7
θ 0.012 0.568 95.0% 0.077 0.396 96.0% 0.058 0.389 96.0%

µ 0.165 3.126 97.0% 0.029 1.920 97.0% 3.029 1.870 95.3%

10
θ 0.030 0.474 95.7% 0.108 0.334 93.3% 0.113 0.327 97.3%

µ 0.030 2.093 95.3% 0.362 1.375 94.3% 0.350 1.372 95.0%

15
θ 0.082 0.392 96.7% 0.134 0.286 96.0% 0.135 0.279 95.7%

µ 0.126 1.768 96.3% 0.468 1.144 95.7% 0.472 1.119 94.7%

0.2, 1.5

4
θ 0.028 0.557 96.0% 0.070 0.397 96.0% 0.066 0.395 94.0%

µ 0.339 4.062 95.3% 0.377 4.050 98.3% 0.305 3.203 96.3%

7
θ 0.045 0.450 95.7% 0.114 0.316 94.7% 0.097 0.316 95.0%

µ 0.002 3.387 97.7% 0.483 2.248 96.7% 0.469 2.131 96.7%

10
θ 0.067 0.407 96.0% 0.128 0.296 93.7% 0.133 0.288 95.7%

µ 0.046 3.159 94.7% 0.639 2.039 95.7% 0.659 1.983 97.0%

15
θ 0.099 0.356 96.3% 0.151 0.257 95.7% 0.150 0.254 95.3%

µ 0.338 2.623 94.7% 0.867 1.619 95.3% 0.835 1.636 96.0%

0.2, 3

4
θ 0.084 0.344 95.7% 0.127 0.282 94.7% 0.124 0.281 95.0%

µ 1.613 4.815 95.0% 1.632 4.560 95.7% 1.718 3.399 99.0%

7
θ 0.112 0.312 95.3% 0.158 0.246 94.7% 0.153 0.248 95.7%

µ 1.395 4.209 95.7% 2.581 3.477 95.3% 2.486 3.508 96.0%

10
θ 0.127 0.289 96.3% 0.162 0.240 95.0% 0.162 0.244 96.7%

µ 1.768 4.049 94.3% 2.408 3.470 94.7% 2.106 3.122 95.3%

15
θ 0.137 0.277 95.0% 0.173 0.228 96.7% 0.174 0.227 96.7%

µ 2.232 3.964 95.0% 2.553 3.250 97.0% 2.552 3.053 96.0%
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Table 4. Cont.

SRS RSS r = 1 RSS r = 3

θ, µ m Lower Upper CV Lower Upper CV Lower Upper CV

0.5, 0.75

4
θ 0.0395 1.9725 0.9399 0.0310 1.2898 0.9533 0.0219 1.3072 0.9400

µ 0.2752 4.4734 0.9333 0.1702 3.1423 0.9500 0.2963 3.1355 0.9433

7
θ 0.0520 1.4757 0.9500 0.1898 1.0052 0.9600 0.1261 1.0117 0.9600

µ 0.2907 3.9506 0.9567 0.0536 2.0574 0.9633 0.3216 2.2705 0.9700

10
θ 0.0681 1.2080 0.9467 0.2446 0.8759 0.9400 0.2751 0.8347 0.9600

µ 0.0534 2.5092 0.9667 0.2412 1.5481 0.9567 0.2790 1.4747 0.9567

15
θ 0.2056 0.9832 0.9633 0.3339 0.7175 0.9600 0.3365 0.6988 0.9567

µ 0.1256 1.7818 0.9567 0.4521 1.1662 0.9633 0.4691 1.1243 0.9467

0.5, 1.5

4
θ 0.0105 1.3514 0.9600 0.1852 1.0026 0.9600 0.1675 1.0249 0.9567

µ 0.3629 6.5529 0.9600 0.4315 4.9020 0.9400 0.2164 5.2904 0.9500

7
θ 0.1532 1.1011 0.9500 0.2781 0.8357 0.9533 0.2407 0.8216 0.9667

µ 0.3760 5.2429 0.9567 0.2514 3.5801 0.9667 0.2006 3.3864 0.9533

10
θ 0.1800 1.0181 0.9600 0.3095 0.7711 0.9367 0.3212 0.7557 0.9633

µ 0.4251 4.8780 0.9400 0.5150 3.0744 0.9400 0.5552 2.9837 0.9633

15
θ 0.2595 0.8825 0.9667 0.3661 0.6651 0.9500 0.3695 0.6479 0.9567

µ 0.1953 3.7385 0.9533 0.8980 2.3224 0.9567 0.9243 2.2329 0.9633

0.5, 3

4
θ 0.1642 0.9694 0.9500 0.2860 0.7555 0.9433 0.2767 0.7550 0.9367

µ 0.6024 8.7044 0.9733 1.1364 5.5158 0.9600 0.7555 5.8615 0.9867

7
θ 0.2484 0.8595 0.9567 0.3547 0.6613 0.9467 0.3280 0.6623 0.9433

µ 0.7034 7.0543 0.9733 1.6482 4.6778 0.9500 1.4562 4.6331 0.9600

10
θ 0.2761 0.8144 0.9600 0.3773 0.6553 0.9567 0.3776 0.6505 0.9500

µ 1.2968 6.0141 0.9900 1.6491 4.0989 0.9400 1.6483 4.8747 0.9467

15
θ 0.3068 0.7480 0.9533 0.4253 0.5784 0.9533 0.4256 0.5736 0.9467

µ 0.6290 5.1354 0.9867 2.3825 3.7132 0.9600 2.3523 3.7115 0.9633
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Figure 3. MSE of parameters based on SRS with different sample sizes.
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Figure 4. Heat-map of MSE for parameters based on RSS with different sample sizes.

9. Application

This section compares the KMKu distribution with well-known unit distributions in
the literature by analyzing three data sets, one of which is connected to coronavirus data
and the others to burr measurements on iron sheets. These models for comparison are
(together with their pdfs for (0 ≤ y ≤ 1)): unit Weibull (UW), which was discussed by [45],
Ku, B; Marshall–Olkin Ku (MOKu), which introduced by [8]; unit-Gompertz (UG), which
was obtained by [46]; Marshall–Olkin-extended Topp–Leone (MOTL), which was discussed
by [47]; and unit-exponentiated half logistic (UEHL), which was introduced by [48].

For all statistical models, we also calculate the goodness-of-fit statistics for the estimated
different measures such as “Akaike Information Criteria (AIC), corrected AIC (CAIC), Bayesian
information criterion (BIC), Hannan–Quinn information criterion (HQIC), Kolmogorov–Smirnov
distance (KSS), p-value (PVKS), Cramer-von-Mises (WS), and Anderson–Darling (AS)”. The
model with the smaller AIC, CAIC, BIC, HQIC, KSS, WS, and AS statistics and the higher PVKS
of the goodness-of-fit statistics is typically considered to be the best one. It should be noted that
the MLE approach was used to achieve all results.

We used SRS and RSS techniques with various set sizes and cycle counts to observe
random samples of various sizes for analysis. We then computed MLEs of the parameters
for the observed SRS and RSS with various cycle counts, and we compared the performance
of the estimates.

Firstly: The COVID-19 data in question are mortality rates from the United Kingdom
and span 82 days, from May 1 to July 16, 2021, as follows: 0.0023, 0.0023, 0.0023, 0.0046,
0.0065, 0.0067, 0.0069, 0.0069, 0.0091, 0.0093, 0.0093, 0.0093, 0.0111, 0.0115, 0.0116, 0.0116,
0.0119, 0.0133, 0.0136, 0.0138, 0.0138, 0.0159, 0.0161, 0.0162, 0.0162, 0.0162, 0.0163, 0.0180,
0.0187, 0.0202, 0.0207, 0.0208, 0.0225, 0.0230, 0.0230, 0.0239, 0.0245, 0.0251, 0.0255, 0.0255,
0.0271, 0.0275, 0.0295, 0.0297, 0.0300, 0.0302, 0.0312, 0.0314, 0.0326, 0.0346, 0.0349, 0.0350,
0.0355, 0.0379, 0.0384, 0.0394, 0.0394, 0.0412, 0.0419, 0.0425, 0.0461, 0.0464, 0.0468, 0.0471,
0.0495, 0.0501, 0.0521, 0.0571, 0.0588, 0.0597, 0.0628, 0.0679, 0.0685, 0.0715, 0.0766, 0.0780,
0.0942, 0.0960, 0.0988, 0.1223, 0.1343, 0.1781. This data have been cited in https://covid19.
who.int/ (accesse on 1 February 2023). Table 5 discusses the MLE for different models with
different measures of goodness-of-fit for COVID-19 data of the United Kingdom. Figure 5
shows estimated cdf with empirical cdf, estimated pdf with histogram probability of
COVID-19 data of the United Kingdom and a P-P plot for KMKu. Figure 6 was obtained to
check whether the estimators are maximum or not for parameters of the KMKu distribution
based on COVID-19 data of the United Kingdom.

https://covid19.who.int/
https://covid19.who.int/


Symmetry 2023, 15, 587 20 of 26

Table 5. MLE with different measures of goodness-of-fit: COVID-19 data of the United Kingdom.

Models Estimates SE KSS PVKS AIC BIC CAIC HQIC WS AS

KMKu
θ 1.3680 0.1123

0.0531 0.9749 −386.4656 −381.6522 −386.3137 −384.5331 0.0385 0.2875
µ 62.0471 22.1058

UW
α 0.0024 0.0003

0.0737 0.7639 −381.6038 −376.7903 −381.4519 −379.6713 0.0988 0.7080
θ 4.3158 0.1099

Ku
α 1.2399 0.1055

0.0597 0.9322 −384.6698 −379.8564 −384.5179 −382.7373 0.0601 0.4228
θ 55.7476 18.3042

UG
α 0.0181 0.0071

0.1082 0.2924 −363.6988 −358.8853 −363.5469 −361.7662 0.2941 1.9827
θ 0.9759 0.0803

UEHL
α 1.2515 0.1030

0.0574 0.9496 −385.0542 −380.2408 −384.9023 −383.1217 0.0555 0.3931
θ 29.3838 9.3197
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Figure 5. Estimated cdf, pdf and P-P plot for KMKu: COVID-19 data of the United Kingdom.
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Figure 6. Profile MLE for KMKu parameters: COVID-19 data of the United Kingdom.

In the first set of data, we obtained the RSS data for when N = 50 with one cycle, as
shown in Table 6, and we obtained the RSS data for when the size was n = 5, and the cycle
was s = 10, as shown in Table 7. According to these data, the MLE based on SRS and RSS
with the different cycles for COVID-19 data of the United Kingdom when n = 50 is shown
in Table 8.
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Table 6. RSS data with one cycle: three data sets.

Data Observation

1

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
0.0023 0.0065 0.0069 0.0067 0.0069 0.0093 0.0162 0.0093 0.0116 0.0116
i = 11 i = 12 i = 13 i = 14 i = 15 i = 16 i = 17 i = 18 i = 19 i = 20
0.0159 0.0162 0.0161 0.0115 0.0162 0.0161 0.0187 0.0162 0.0239 0.023
i = 21 i = 22 i = 23 i = 24 i = 25 i = 26 i = 27 i = 28 i = 29 i = 30
0.0207 0.0138 0.0312 0.03 0.03 0.0255 0.023 0.0346 0.0297 0.0314
i = 31 i = 32 i = 33 i = 34 i = 35 i = 36 i = 37 i = 38 i = 39 i = 40
0.0346 0.0312 0.0394 0.0379 0.0588 0.0468 0.0468 0.0419 0.0379 0.0521
i = 41 i = 42 i = 43 i = 44 i = 45 i = 46 i = 47 i = 48 i = 49 i = 50
0.0425 0.0471 0.0588 0.0715 0.0679 0.0942 0.0628 0.0766 0.1343 0.1343

2

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
0.01133 0.01796 0.02288 0.04829 0.02288 0.0385 0.0439 0.0507 0.0605 0.0605
i = 11 i = 12 i = 13 i = 14 i = 15
0.0955 0.0818 0.1476 0.1099 0.1476

3

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
0.032 0.023 0.032 0.188 0.169 0.105 0.216 0.361 0.361 0.463
i = 11 i = 12 i = 13 i = 14 i = 15
0.642 0.674 0.823 0.823 0.926

Table 7. RSS data with different cycles: three data sets.

Data Cycle
Observation

1

i = 1 i = 2 i = 3 i = 4 i = 5

s = 1 0.0093 0.0093 0.0464 0.0384 0.096

s = 2 0.0065 0.0202 0.0225 0.0715 0.1223

s = 2 0.0093 0.0093 0.0355 0.0255 0.096

s = 3 0.0115 0.0187 0.0116 0.0464 0.1781

s = 3 0.0115 0.0384 0.0187 0.0715 0.0942

s = 4 0.0116 0.0115 0.0255 0.0314 0.1781

s = 4 0.0115 0.0314 0.0202 0.0501 0.0942

s = 5 0.0093 0.0161 0.0255 0.0384 0.0715

s = 5 0.0161 0.0355 0.0255 0.0115 0.0501

s = 6 0.0065 0.0115 0.0255 0.0501 0.1223

2

i = 1 i = 2 i = 3 i = 4 i = 5

s = 1 0.0180 0.0385 0.0095 0.0231 0.1099

s = 2 0.0074 0.0180 0.0180 0.0515 0.1099

s = 3 0.0074 0.0212 0.0212 0.0385 0.1388

3

i = 1 i = 2 i = 3 i = 4 i = 5

s = 1 0.032 0.105 0.463 0.169 0.752

s = 2 0.023 0.395 0.169 0.311 0.823

s = 3 0.023 0.032 0.127 0.255 0.823

Table 8. SRS and RSS with different cycles for COVID-19 data of the United Kingdom when n = 50.

Estimates SE Lower Upper

SRS
θ 1.3751 0.0201 1.3357 1.4146

µ 56.2365 27.5437 2.2509 110.2221

RSS s = 1
θ 1.4676 0.0029 1.4619 1.4733

µ 91.3018 13.2753 65.2823 117.3213

RSS s = 10
θ 1.2903 0.0100 1.2706 1.3100

µ 43.7122 9.5155 25.0618 62.3627
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The second data set relates to the newly discovered coronavirus epidemic in Turkey.
This dataset has been cited in https://covid19.who.int/ (accesse on 1 February 2023). A
total of 25 observations make up this data set, which covers the period from 27 March
to 20 April and was calculated as the daily ratio of recoveries to confirm cases in Turkey.
This indicates the daily proportion of people making a full recovery in all circumstances.
The information was provided in data set II as follows: 0.0074 0.0095 0.0113 0.0150 0.0180
0.0212 0.0229 0.0231 0.0328 0.0385 0.0439 0.0464 0.0483 0.0507 0.0515 0.0568 0.0605 0.0648
0.0737 0.0818 0.0955 0.1099 0.1270 0.1388 0.1476. Table 9 presents the MLE for differ-
ent models with different measures of goodness-of-fit for the COVID-19 data of Turkey.
Figure 7 shows the estimated cdf with empirical cdf, the estimated pdf with histogram
probability of COVID-19 data of Turkey, and the P–P plot for KMKu. Figure 8 was pro-
duced to check whether the estimators are maximums or not for the parameters of KMKu
distribution based on COVID-19 data of Turkey.

Table 9. MLE with different measures of goodness of fit: COVID-19 data of Turkey.

Models Estimates SE KSS PVKS AIC BIC CAIC HQIC WS AS

θ 1.5517 0.2452
KMKu

µ 55.3232 37.2191 0.1025 0.9315 −94.8552 −92.4174 −94.3097 −94.1791 0.0261 0.1989

α 0.0054 0.0031
UW

θ 4.1597 0.4182 0.1362 0.6923 −93.1603 −90.7226 −92.6149 −92.4842 0.0652 0.3860

α 1.4164 0.2303
Ku

θ 50.9406 31.3225 0.1022 0.9329 −94.6877 −92.2499 −94.1422 −94.0115 0.0278 0.2151

α 1.7485 0.4553
B

β 29.5605 8.8186 0.1031 0.9284 −94.8924 −92.4547 −94.3470 −94.2163 0.0258 0.1944

α 0.4536 0.6246

β 1.6814 0.4880MOKu
θ 66.1138 51.4394

0.1047 0.9205 −92.9571 −89.3005 −91.8143 −91.9429 0.0262 0.1994

α 0.0167 0.0125
UG

β 1.1446 0.1796 0.1601 0.4936 −89.1731 −86.7354 −88.6277 −88.4970 0.1241 0.7255

α 0.0062 0.0046
MOETL

β 2.0660 0.2976 0.1058 0.9147 −92.2698 −89.8320 −91.7243 −91.5936 0.0559 0.3477

α 1.4306 0.2250
UEHL

β 26.8822 15.9639 0.1026 0.9311 −94.6713 −92.2336 −94.1259 −93.9952 0.0274 0.2127
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Figure 7. Estimated cdf, pdf and P-P plot for KMKu: COVID-19 data of Turkey.
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Figure 8. Profile MLE for KMKu parameters: COVID-19 data of Turkey.

In the second data set, we obtained the RSS data for when N = 15 with one cycle, as
shown in Table 6, and we obtained the RSS data for when the size is n = 5 and the cycle is
s = 3, as shown in Table 7. According to these data, the MLE based on SRS and RSS with
the different cycles for COVID-19 data of Turkey when n = 15 is shown in Table 10.

Table 10. SRS and RSS with different cycles for COVID-19 data of Turkey.

Estimates SE Lower Upper

SRS
θ 1.6497 0.1006 1.4525 1.8468

µ 111.3630 47.0753 19.0954 203.6306

RSS s = 1
θ 1.6652 0.0322 1.6022 1.7282

µ 59.8835 21.3712 17.9959 101.7711

RSS s = 3
θ 1.2537 0.0313 1.1898 1.3176

µ 39.7230 19.7096 1.0922 78.3539

The third data set included 30 measurements of polyester fibers’ tensile strength,
which has been discussed by [46]. The information is provided in data set III as follows:
“0.023, 0.032, 0.054, 0.069, 0.081, 0.094, 0.105, 0.127, 0.148, 0.169, 0.188, 0.216, 0.255, 0.277,
0.311, 0.361, 0.376, 0.395, 0.432, 0.463, 0.481, 0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823,
0.887, 0.926”. Table 11 discusses MLE for different models with different measures of
goodness-of-fit for data on the strength of polyester fibers. Figure 9 shows estimates cdf
with empirical cdf, the pdf with histogram probability of data on the strength of polyester
fibers, and the P–P plot for KMKu. Figure 10 was produced to check whether the estimators
are maximums or not for parameters of KMKu distribution based on data on the strength
of polyester fibers.

Table 11. MLE with different measures of goodness-of-fit: data III.

Models Estimates SE KSS PVKS AIC BIC CAIC HQIC WS AS

KMKu
θ 1.0826 0.2138

0.0569 0.9999 −3.0417 −0.2393 −2.5973 −2.1452 0.0151 0.1215
µ 1.3797 0.3935

Ku
α 0.9627 0.2017 0.0650 0.9987 −2.6221 0.1803 −2.1776 −1.7256 0.0183 0.1551
θ 1.6084 0.4137

B
α 0.9667 0.2238

0.0669 0.9979 −2.6101 0.1923 −2.1657 −1.7136 0.0184 0.1559
β 1.6205 0.4107

MOKu
α 0.4365 0.4732

0.0628 0.9992 −1.2087 2.9949 −0.2856 0.1361 0.0152 0.1224β 1.1872 0.3472

θ 1.2585 0.6458

MOETL
α 1.0929 0.7021

0.0672 0.9978 −1.8272 0.9752 −1.3828 −0.9307 0.0203 0.1710
β 1.0628 0.3883
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Figure 9. Estimated cdf, pdf and P–P plot for KMKu: data III.
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Figure 10. Profile MLE for KMKu parameters: data III.

In the third data set, we obtained the RSS data for when N = 15 with one cycle, as
shown in Table 6, and we obtained the RSS data for when the size is n = 5 and the cycle is
s = 3, as shown in Table 7. By these data, the MLE based on SRS and RSS with the different
cycles for data on the strength of polyester fibers when n = 15 is shown in Table 12.

Table 12. SRS and RSS with different cycles for data set III.

Estimates SE Lower Upper

SRS
θ 0.8111 0.0552 0.7030 0.9192

µ 1.1550 0.2076 0.7481 1.5619

RSS s = 1
θ 1.1444 0.0279 1.0897 1.1992

µ 1.6753 0.1506 1.3801 1.9705

RSS s = 2
θ 0.8179 0.0288 0.7614 0.8744

µ 1.4021 0.1488 1.0333 1.7709

By delivering the lowest AIC, BIC, CAIC, HQIC WS, and AS values in Tables 5, 9 and 11,
the model fitted to KMKu is clearly outperforming other competitive models, such as UW, UG,
Ku, B, UEHL, MOETL, and MOKu. This indicates that KMKu-based models provide more
accurate and fitting information about these three real data sets. Figures 6, 8 and 10 show the
parameters of the KMKu model have a maximum log-likelihood with the other parameters fixed.
Tables 8, 10 and 12 make it evident that the model fitted using the RSS design is outperforming
the other competing models by offering the lowest SE, indicating that RSS-based models are
more accurate at representing the real model utilized in these numerical examples.

10. Concluding Remarks

In this article, we proposed and studied a new extension of the Ku model, which
is called the KMKu model. The shape forms of the pdf for the new KMKu model for
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various values of parameters are is similar to the Ku model in that it is asymmetric. Some
general statistical and computational features of the KMKu model, such as the qf, raw and
incomplete moments, probability-weighted moments, and order statistics, were calculated.
Four different measures of entropy were discussed. The maximum likelihood approach
was employed to estimate the parameters for the KMKu model under simple and ranked
set sampling. A simulation experiment is conducted to show that ranked set sampling is
more efficient than simple random sampling. The KMKu has more flexibility than the Ku
model and other well-known models, such as the UW model, Ku model, B model, MOKu
model, UG model, MOTL model, and UEHL model. The KMKu model gives the best fit for
the three real-world data sets.
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