
Citation: Grilli, M.; Di Castro, C.;

Mirarchi, G.; Seibold, G.; Caprara, S.

Dissipative Quantum Criticality as a

Source of Strange Metal Behavior.

Symmetry 2023, 15, 569. https://

doi.org/10.3390/sym15030569

Academic Editor: Ignatios

Antoniadis

Received: 17 January 2023

Revised: 9 February 2023

Accepted: 17 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Dissipative Quantum Criticality as a Source of Strange
Metal Behavior
Marco Grilli 1,2, Carlo Di Castro 1, Giovanni Mirarchi 1, Götz Seibold 3 and Sergio Caprara 1,2,*

1 Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma, Italy
2 ISC-CNR, Unità di Roma Sapienza, Via dei Taurini 19, I-00185 Roma, Italy
3 Institut für Physik, BTU Cottbus-Senftenberg-PBox 101344, D-03013 Cottbus, Germany
* Correspondence: sergio.caprara@uniroma1.it; Tel.: +39-06-49914294

Abstract: The strange metal behavior, usually characterized by a linear-in-temperature (T) resis-
tivity, is a still unsolved mystery in solid-state physics. It is often associated with the proximity
to a quantum critical point (a second order transition at temperature T = 0, leading to a broken
symmetry phase) focusing on the related divergent order parameter correlation length. Here, we
propose a paradigmatic shift, focusing on a divergent characteristic time scale due to a divergent
dissipation acting on the fluctuating critical modes while their correlation length stays finite. To
achieve a divergent dissipation, we propose a mechanism based on the coupling between a local order
parameter fluctuation and electron density diffusive modes that accounts both for the linear-in-T
resistivity and for the logarithmic specific heat versus temperature ratio CV/T ∼ log(1/T), down to
low temperatures.

Keywords: strange metal behavior; cuprates; charge density fluctuations; diffusive modes

1. Introduction

Although the metallic state is usually well described by Landau’s Fermi Liquid (FL)
theory, there are many systems in which the metallic properties are anomalous, with
extended regions of their phase diagram displaying a strange metal behavior [1–4]. The
most well-known examples occur in heavy fermion systems in the proximity of quantum
critical points (QCPs), i.e., near zero-temperature second-order phase transitions, where
the uniform metallic state is unstable towards some ordered state for some critical value
xc of a tuning parameter x, or in high-temperature superconducting cuprates above the
optimal superconducting critical temperature (see, e.g., Refs. [5,6], and references therein).
More recent examples are found in iron-based superconductors [7] and twisted bilayer
graphene [8]. The most prominent feature of the strange metal behavior is a linear-in-T
resistivity without any saturation, as a function of the temperature T, up to the highest
temperatures. This behavior often starts in the vicinity of a QCP and when the order
parameter fluctuations (OPFs) have a two-dimensional (2D) character and the dynamical
index is z = 2 also a logarithmic CV/T ratio (CV being the specific heat) [9,10] is observed,
while other power-laws occur when fluctuations are three-dimensional (3D) [2]. In this
work, we will focus on quasi-2D systems like cuprates or pnictides and discuss the role of
dimensionality in the concluding remarks, Section 5.

Although some theories for the violation of the FL behavior do not rely on an underly-
ing criticality [11–15], the most common interpretations of the strange metal behavior rest
on the idea that abundant OPFs in the quantum critical region x ≈ xc may be sufficient
to mediate strong effective interactions that spoil the Landau quasiparticle stability and
create the non-FL state [16]. This scenario can be realized in different ways, depending on
the nature of the ordered phase, which can be antiferromagnetic [17–19], charge density
wave [20], nematic [19,21], loop-current [22], or can have a local character [23–25].
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We rely on the frustrated phase separation theory for charge density waves in
cuprates [20,26–28], where charge density waves are the result of the competition between
short- and long-range electron-electron interactions in a strongly correlated electron sys-
tem, making the FL unstable when the doping-tuned carrier density is reduced below a
(temperature-dependent) critical value. The critical line in the temperature T vs. doping
p phase diagram ends, at T = 0, into a QCP. Due to the strongly anisotropic character of
cuprates, the related OPFs in the disordered (FL metallic) phase mostly have a 2D character,
and the crossover to a 3D behavior is only achieved at sufficiently low temperatures [26],
allowing for the occurrence of a 3D charge-density-wave ordered state that establishes
underneath a dome-shaped curve (see, e.g., Ref. [27] and references therein) below a critical
doping pc, which was observed to be pc ≈ 0.16 in YBa2Cu3Oy [29]. This value is lower than
the doping p∗ ≈ 0.19 where the T-linear resistivity extends down to the lowest tempera-
tures when superconductivity is suppressed by strong magnetic fields [5]. Recent resonant
inelastic X-ray scattering experiment [30], besides the expected fluctuating nearly-critical
charge density waves, associated with the 3D ordered phase, also showed the presence of
much shorter-ranged charge density fluctuations (CDFs). These may be the remnant of
OPFs of a missed 2D criticality [31], coexisting with nearly-critical fluctuations related to
the nearby ordered state.

In a previous work [32], we showed that the observed CDFs in cuprates have a low
enough characteristic energy E to be semiclassical in character (i.e., the Bose function
ruling their statistics can be approximated by T/E) and are local enough (i.e., they in-
volve a sufficiently broad range of momenta) to account for nearly isotropic scattering
as phenomenologically required by the Marginal Fermi Liquid theory [33]. These two
ingredients are enough to account for the linear-in-T resistivity observed slightly above
optimal doping. We point out that the low energy (smaller than T) and abundance of OPFs
in the proximity of a QCP are brought about by the electron-electron interactions driving
the FL unstable and by the low dimensionality of the system. We shift our focus from a
diverging correlation length to an increasing dissipation that renders the OPFs slower and
slower, thereby extending strange metallicity down to lower and lower temperatures. The
paradigmatic shift we propose faces a theoretical difficulty of non-FL theories based on
the proximity to a QCP characterized by OPFs with a finite characteristic wave vector Qc.
In such theories, the scattering is extremely anisotropic on the Fermi surface, and the FL
character of the quasiparticles is spoiled only at isolated points, the so-called hot spots,
while scattering at all other points of the Fermi surface is FL-like at sufficiently low-energy,
short-circuiting the non-FL behavior at the hot spots [34]. Our proposal was shown to lead
to isotropic marginal-FL behavior [32] and the effect that the scattering stays isotropic at
the Fermi surface while the scatterer acquires sufficiently low energy to give rise to an
extended linear-in-T resistivity.

In subsequent work [35,36], we found that a large dissipation of the OPFs may extend
the regime of their semiclassical behavior, thereby accounting for a linear-in-T resistivity
down to the lowest temperatures and for the logarithmic divergence of the CV/T ratio,
as it is observed in cuprates at p ∼ p∗ > pc, when superconductivity is suppressed by
high magnetic fields [5]. Nevertheless, the relevant question remained open about the
microscopic mechanisms inducing the required dissipation increase.

The motivation of the present work is precisely to provide a possible solution to this
last question. Our idea is that the results of this work can somehow fill the gap that was
left open in our previous works [35,36], namely the origin of the strong increase in the
characteristic relaxation time of OPFs. The explanation we are going to propose gives
a central role to the coupling between the OPFs and the diffusion modes of electrons in
two dimensions. The present result strongly supports our previous phenomenological
assumption of a logarithmic increase in dissipation.

The structure of the paper is the following. In Section 2, we introduce a model for the
coupling of OPFs and electron density diffusive modes that are simple enough to be exactly
solvable and yet include all the main physical ingredients leading to an enhancement of
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damping of the OPFs due to the coupling to other degrees of freedom. In Sections 3 and 4,
respectively, we discuss the specific heat and resistivity of cuprates from the point of view
of our scenario. Our concluding remarks are found in Section 5.

2. The Order Parameter Fluctuations-Diffusive Modes Model

Taking the CDFs observed in cuprates [30] as a paradigmatic example in which the
forthcoming assumptions follow from a description of the experimental data, we consider
a regime in which the OPFs have a rather short correlation length, ξ/λ ∼ 1− 2 (λ is their
characteristic wavelength), by requiring that the system is at a finite distance from the
QCP on the disordered side, i.e., at a doping p sufficiently larger than the critical value pc.
In this regime, the fluctuations are largely independent of each other and have a nearly-
local character so that they can be represented by a local field at the origin, Φ(R = 0).
Accordingly, the propagator of these fluctuations has the typical form of an overdamped
oscillator

D0(ωn) = (M + γ|ωn|)−1, (1)

where ωn is the boson Matsubara frequency, γ is a dimensionless parameter measuring
the damping strength due to the decay of the OPFs into particle-hole (p–h) pairs (Landau
damping), the energy scale M = νξ−2 stays finite, and ν is an electron energy scale (we
adopt units such that the Planck constant h̄ and the Boltzmann constant kB are set equal
to 1, so that angular frequencies, energies, and temperatures have the same units). By
analytically continuing to real frequencies, iωn → ω + i0+, one can obtain the spectral
density of the OPFs, which is broad and peaked at ω ≈ M/γ, as depicted in Figure 1a.

Figure 1. (a) Spectral density of the OPF propagator [for the frequency units M/γ see Equation (1)]
and a sketch of the coupling (b–d) between the OPFs (wavy lines) and the p–h diffusive modes
(zigzag lines). The solid dots represent their effective coupling g entering Equation (3). (b) The
high-energy regime in which the OPF decays into a ballistic p–h pair; (c) low-energy regime in which
the OPF decays into a diffusive p–h pair. The blue rectangle represents the ladder resummation of
elastic scattering on quenched impurities represented by dotted lines in (d); (e) self-energy diagram
for the exact solution of the model.

Depending on the typical energy M/γ of the decaying fluctuation, the particle, and
the hole can propagate as ballistic particles when their energy (of order M/γ) is larger than
1/τ, the elastic scattering rate of the charge carriers on quenched impurities [Figure 1b].
On the other hand, when the fluctuation has lower energy, M/γ < 1/τ, a new decay
channel opens, with electrons having a diffusive character, as long as T < 1/τ (for T > 1/τ
the electrons and the holes are in a quasi-ballistic regime, but the OPFs may remain in a
classical regime). For M/γ < 1/τ, the nearly-local OPF may decay into a p–h diffusive
mode [Figure 1c]. We show that this diffusive decay channel of the OPFs triggers the
growth of γ and the strange metal behavior is extended down to the lowest temperatures
alongside a low-temperature logarithmic growth of the specific heat ratio CV/T is achieved.
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In the standard theory of disordered electron systems [37], a diffusive collective mode
is obtained by a ladder resummation of impurity scattering events [the dotted lines in
Figure 1d], so that the density–density response function takes the form of a diffusive pole

χ(q, ωn) = 〈ρ(q, ωn)ρ(−q, ωn)〉 =
N0Dq2

Dq2 + |ωn|
, (2)

where q is the wave vector, q ≡ |q|, D is the diffusion constant, and N0 the quasiparticle
density of states at the Fermi level. These density fluctuations keep their singular diffusive
form as long as Dq2 is smaller than the elastic scattering rate on quenched impurities 1/τ.

It is worth noticing that the diffusive character of the low-energy electronic modes is
not a property of strongly disordered systems: any standard Drude metal with (even small)
amount of impurities has a finite conductance due to impurity scattering, and the electrons
(or quasiparticles) at energy smaller than 1/τ diffuse rather than propagate ballistically.
Moreover, many strongly correlated systems, with their (strange) metallic character, always
display a non-negligible elastic impurity scattering. Cuprates, for instance, have impurity
scattering rates of the order of a few tens of meV, such that T < 1/τ essentially over the
whole phase diagram.

To describe an equilibrium situation, where an OPF decays into diffusing p–h pairs,
which in turn form back an OPF, we introduce a phenomenological coupling g between an
OPF (centered at R = 0) and the diffusive density fluctuation

Scoupl = gT ∑
n

Φ(R = 0, ωn)∑
q

ρ(q, ωn). (3)

This simplified model has the advantage of being exactly solvable while keeping all the main
ingredients to access the physical scenario of an increasing dissipation of the OPFs, due to
the coupling to other degrees of freedom. The coupling between OPFs and diffusive modes
dresses the OPF propagator, Equation (1), with the self-energy graphically represented in
Figure 1e,

Σ(ωn) = g2N0

ˆ Qmax

Qmin

d2q
4π2

Dq2

Dq2 + |ωn|

=
g2N0

4πD

ˆ Λmax

Λmin

d(Dq2)

(
1− |ωn|

Dq2 + |ωn|

)
= δM− |ωn|δγ. (4)

As usual, the upper momentum cutoff in the diffusion processes is given by the inverse
mean free path Qmax = `−1, which can then be translated into an energy cutoff for the
diffusive modes Λmax ≡ DQ2

max = 1/τ. For the lower cutoff, Λmin, we will consider
two possibilities: (i) either it is provided by the temperature T, as long as T < 1/τ, i.e.,
Λmin ≡ min (T, Λmax), (ii) or we set Λmin = 0, given that the logarithmic divergence
in Equation (4) is anyway cutoff by the term |ωn| in the denominator. The first term
in Equation (4) is a finite correction to the energy scale M, which is immaterial in the
forthcoming discussion. Hereafter, we will examine the two possibilities, (i) and (ii), for the
lower cutoff, showing that the resulting scenario is essentially the same.

In case (i), expanding to first order in |ωn| the last term in Equation (4), one obtains a
correction to the dissipation coefficient γ,

δγ = γ− γ0 = A log max [(τT)−1, 1], (5)

where γ0 is the damping coefficient in the absence of coupling to diffusive modes and
A ≡ g2N0/(4πD) is a dimensionless effective coupling constant. Therefore, the diffusive
channel induces a logarithmic increase in the dissipation parameter γ when T decreases.
As it was previously shown [35,36], a logarithmically divergent γ leads to a logarithmic
divergence of CV/T with a finite correlation length ξ.
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In case (ii), one gets a similar result, but now

δγ = A log
[
1 + (|ωn|τ)−1

]
(6)

depends on the frequency and diverges logarithmically as |ωn| → 0. As we shall show in
Appendix A, this also leads to a logarithmic divergence of CV/T.

The above results raise the issue of the role of the nearby QCP. In particular, one
can notice that Equations (5) and (6) do not explicitly involve the parameter x tuning the
proximity to the QCP (in cuprates, this is the doping level p), nor the correlation length
characterizing the OPFs. We, therefore, need to equip our microscopic model with the
range in x where the above diffusive decay channel becomes effective. First of all, we
consider the condition that, when the OPF has a characteristic energy M/γ0 > 1/τ, it can
only decay in ballistic p–h pairs and, therefore, g = 0. Since the short-range fluctuations are
the 2D precursors of the nearby QCP, the correlation length will increase for x approaching
xc and the decay in diffusive p–h pairs sets in when the tuning parameter of criticality x is
such that νξ−2 ≈ M0(x− xc) < γ0/τ, i.e., x < xDMD ≡ xc + γ0/(τM0) (DMD stands for
diffusive mode decoupling). This sets the maximum distance from the QCP above, which
γ ≈ γ0. On the other hand, our arguments (nearly-independent OPFs, short correlation
length ξ) fail when one approaches the QCP, where the physics is ruled by a diverging
correlation length ξ and the standard Hertz–Millis picture [38,39] is recovered. Therefore,
we are led to assume that the diffusive modes decouple from the OPFs for (xc <) x < xQCR
(QCR stands for the quantum critical regime), giving rise to a negligible g ≈ 0. Then,
Equation (3) only holds in range xQCR < x < xDMD.

We point out that the crossover from this regime to the standard Hertz–Millis criticality
is not captured by our simplified description. It definitely requires the inclusion of the self-
interaction of OPFs. Furthermore, one can conceive a scenario where the short-ranged OPFs
described within our approach coexist with nearly-critical (à la Hertz–Millis) fluctuations,
and the short-ranged OPFs never become long-ranged. This seems exactly to be what is
observed in cuprates, where resonant inelastic X-ray scattering experiment [30] highlighted
the coexistence of fluctuating charge density waves and much shorter ranged CDFs that
can be interpreted as the remnant of a (missed) 2D criticality [31].

3. The Cuprates: Specific Heat

In the case of cuprates, where a charge density wave QCP occurs near optimal doping,
at a critical doping pc hidden under the superconducting dome [20,26,29], we implement
the constraint that g 6= 0 only for pQCR < p < pDMD, phenomenologically imposing in
Equation (5) a doping dependence

A(p) ≈ α

[
(p− pQCR)(pDMD − p)

pQCR pDMD

]2

, (7)

for pQCR < p < pDMD, and A(p) = 0, otherwise, where α is a suitable dimensionless
prefactor. In the above interval of p, for T < TDMD ≡ M/γ0 ≡ νξ−2/γ0 ≤ 1/τ the
additional diffusive channel is open and γ increases, thus lowering M/γ and extending
to lower temperatures the strange metal behavior. Figure 2 describes the behavior of γ(p)
for various temperatures T = 10 K, 2 K, and 0.5 K. While the shape arises from the choice
of the doping dependence of A(p) in Equation (7), the temperature dependence follows
Equation (5), reproducing the logarithmic behavior observed for CV/T in Refs. [10,40,41]
and phenomenologically discussed in Refs. [35,36]. Notice that this logarithmic temperature
dependence is, therefore, due to δγ rather than the logarithmic dependence of the specific
heat from the correlation length. Reasonable values of the limiting control parameters, of
the coefficient A, of the disorder 1/τ and the temperatures are simply chosen for an easier
comparison between δγ and CV/T to which it is proportional [35]. It is worth emphasizing
that the CV/T variation is not unique among the cuprates: while it seems to diverge at
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a specific doping (or in a quite narrow doping range) in Eu-LSCO and Nd-LSCO [10], it
displays a broad maximum in LSCO and Bi-2201 instead [40,41]. This variety of behavior is
not limited to specific heat data but corresponds to the possible occurrence of strange metal
behavior either in narrow or broad intervals of the tuning parameter [2,42–44].
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Figure 2. (left y-axis) The green rectangles or circles report the electron-specific heat experimentally
measured in La2−xSrxCuO4 [40] and Zn-doped La2−xSrxCuO4 [41]; (right y-axis) Dissipative pa-
rameter correction δγ, Equation (5), for α = 18.6, 1

τ = 500 K, pQCR = 0.11, and pDMD = 0.32. These
values have been chosen for a closer comparison of the δγ shape with the specific heat anomaly.

Within the present scenario the doping interval pQCR < p < pDMD is non universal
and it can be comparatively broader or narrower in different cuprates, while the relevant
non-trivial result is the logarithmic temperature dependence of CV/T.

4. The Cuprates: Resistivity

Regarding the transport properties, we showed in Ref. [32] that CDFs account for the
linear-in-T resistivity in optimally and slightly overdoped YBCO and NBCO samples down
to the superconducting critical temperature or slightly above it. The question remained
about the linear-in-T resistivity observed for p ≈ p∗ in strong magnetic fields suppressing
superconductivity, which extends down to a few K. Our scenario is summarized in Figure 3.
In Figure 3a, we schematically report with red dashed lines the behavior of the CDF
characteristic energy at different temperatures T1 < T2 < T3 < 1/τ, both in the ballistic
and in the diffusive regimes of their decay. This latter regime occurs when M/γ0 < 1/τ,
which defines the doping pDMD. At T = 0, within our model, the characteristic energy
drops to zero below pDMD due to the logarithmic divergent γ(T). For p < pQCR, the value
of γ is also influenced by the pseudogap, possibly leading to γ < 1 due to reduced phase
space for damping processes. In any case, how M/γ connects to the standard Hertz–Millis
QCP is an open issue and, therefore, corresponds to terra incognita in Figure 3a. Since typical
values for the scattering rates in cuprates are 1/τ ∼ 30–50 meV, one can notice that the
customarily reported phase diagrams of cuprates are usually in the regime where T < 1/τ.
Under this condition, we report in Figure 3b a sketch of a cuprate phase diagram, where the
red dashed line indicates the crossover temperature from the semiclassical to the quantum
regime of CDFs, determined from A log[1/(τT)] = M/T. It shows a significant drop below
the doping pDMD [again due to the logarithmic γ(T) behavior; in Appendix B, we show that
a similar behavior for the resistivity is also obtained when γ diverges logarithmically with
the frequency, case (ii) in Section 2] and for the parameters given in Figure 3, approaches
a small but finite value M/γ . 1 K in the doping range between pseudogap and FL
region. In the resistivity and doping p & pQCR this reflects in the crossover from linear to
quadratic behavior as shown in Figure 3c, see also Refs. [32,35,36]. In the pseudogap region,
additional scattering mechanisms influence on ρ(T), inducing a decrease from linearity
below T∗ and an eventual increase at lower temperatures [45–47]. All these further sources
of electron scattering, as well as paraconductive fluctuations above the superconducting
critical temperature Tc [48,49] are not included within our descriptions, that focus on the
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CDF contribution only, under experimental conditions that suppress the other scattering
channels. One may argue that the energy scales related to other scattering mechanisms
(e.g., T∗ or Tc) would eventually appear as low-energy cutoffs in Equation (4), instead
of T, preventing γ from diverging. For instance, since superconductivity removes low-
energy fermion quasiparticles, the damping γ is expected to decrease when entering the
superconducting phase (see Section 5).
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Figure 3. (a) Schematic representation of the energy scales and their evolution with doping and
temperature. The green shaded area corresponds to the Fermi liquid region of the phase diagram [see
panel (b)], the blue region is where the pseudogap is present, while in the reddish region, the strange
metal occurs. The dark blue dashed lines separate the standard renormalized classical, quantum
critical, and quantum disordered regions around the true CDW-QCP. The red dashed line mark the
doping and temperature evolution of the characteristic energy scale of CDF, M/γ, which decreases
substantially when M/γ becomes smaller than 1/τ (dotted black line). In the present scenario, the
unknown connection between the large-γ region and the standard Hertz–Millis QCP is represented
by a question mark in a cloud. (b) Schematic phase diagram of cuprates as a function of doping p
reporting the pseudogap crossover temperature T∗ (blue short-dashed line), the hidden transition
line TCDW(p) for charge density wave formation, ending at T = 0 into a CDW-QCP at pCDW is
represented by a dark-blue long-dashed line. Below the green dashed line, the Fermi-liquid regime
takes place. The red dashed line marks the crossover M/γ = T between the semiclassical region of
CDF (above it) and the quantum regime (below it). The yellow, red, and blue vertical lines correspond
to the resistivity vs. temperature curves reported in (c). (c) Schematic behavior of the resistivity as a
function of T at the doping values corresponding to the regions of the yellow, red , and blue vertical
lines of the panel (b).

5. Discussion

In this work, we investigated the dynamics of OPF in the disordered region not far from
a QCP. Although the quantum OPFs are intrinsically dynamical even at finite temperatures,
our results show that a divergent dissipation destroys this quantum character leading to
fluctuations that are semiclassical down to T = 0. This effect is similar to that found in
Ref. [50], where dissipation quenches the instantons describing the quantum tunneling
between local free energy minima of a disordered system. The classical statistics induced
here by the increase in dissipation is then directly reflected in the linear-in-T resistivity,
owing to the almost homogeneous scattering mediated among the Fermi quasiparticles all
over the Fermi surface [32,35,36].

A few remarks are now in order. First of all, the ingredients of quenched impurities
and 2D short-ranged OPFs are so generic that a similar mechanism can easily be at work
in other (maybe all) systems where the strange metal behavior is observed in the form of
a linear-in-T resistivity and a logarithmic CV/T. The heavy fermion systems CeCu6−xXx
(X=Au, Ag) are just possible examples out of many others [2,9,24]. As evident from
Equation (4), the logarithmic divergence of term δγ is a consequence of the fact that we
are dealing with a 2D system. Strictly speaking, the possible divergence of δγ, as well as
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the low-temperature trend, depends crucially on this assumption. The extension to 3D
(anisotropic) systems would, in principle, introduce a temperature scale Θ3D below which
the 3D behavior is recovered and the logarithmic divergence of γ stops. The question
that remains open is whether the scale Θ3D can be effectively suppressed along with the
increase of the relaxation time of the OPFs, which seems to be a necessary condition to
observe the strange metal behavior down to low temperatures in 3D systems.

The proximity to a QCP (charge density waves for cuprates, antiferromagnetic for
heavy fermions) easily accounts for the observation of scaling properties. Our guess, within
our scenario, is that scaling, being based on a large, diverging ξ, is truly observed at the
QCP [24], while the true strange metal behavior (with linear-in-T resistivity) should occur
away from it, where M/γ is small or vanishing but ξ is finite and still rather short. This
mismatch between the precise tuning of x = xc to observe scaling properties and bona-
fide criticality at the QCP and the (possibly extended) range of strange metal behavior at
xQCR < x < xDMD (with xQCR > xc) is a definite testable prediction of our scenario, which
calls for more precise experimental scrutiny (actually, this is the case in the YBa2Cu3Oy
cuprates, where pc = pCDW = 0.16, while strange metal properties are observed around
p∗ ≈ 0.19 [29]). Concerning cuprates, another intriguing, so far unsolved, issue concerns
the effect of pseudogap and superconductivity on the dissipation parameter γ. Since this
latter is naturally related to the density of states of particles near the Fermi surface (both in
the ballistic and the diffusive regimes), we argue that pseudogap and superconductivity
should induce a decrease of γ, thereby opposing the strange metal behavior, as indeed
observed below T∗.

Another prediction of our scenario is related to the M/γ = 1/τ condition setting the
doping regime where diffusion leads to an increasing γ. Thus far, in the paper, the condition
is governed by varying M (i.e., ξ) when approaching xc at a fixed 1/τ. We suggest that
an increase in disorder (e.g., by ion irradiation) might increase the elastic scattering rate
1/τ extending the range in T and p where strange metal properties are observed. On the
other hand, for quasi-2D systems characterized by a relatively small scattering rate 1/τ,
the interval of doping where the strange metal behavior is observed down to very low
temperature, according to our scenario, should become very narrow. Therefore, another
possible test for our theory could be to examine particularly clean 2D systems.

A final remark is that the divergence of γ at T = 0 marks a complete slowing down of
the OPFs, which acquires a vanishing characteristic energy. Considering an ensemble of
OPFs that freeze when γ→ ∞, one might speculate that some kind of glassy state of frozen
short-ranged OPFs might occur at T = 0 over an extended range of x slightly above a 2D
QCP. This is another intriguing testable consequence of our scenario.
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Appendix A. Specific Heat in the Presence of a Damping That Is Logarithmically
Divergent in |ωn|

If the damping acquires a logarithmic divergence in the Matsubara frequency, case (ii)
and Equation (6) in Section 2, the propagator of the collective mode is

D(ω, q) =
1

Mq − i
(

γ0 + A log

√
1 +

Λ2
max

ω2

)
ω + A ω arctan

(Λmax

ω

)
− ω2

Ω

,

where Mq = M + ν(q − qc)2, M ∝ ξ−2 measures the distance from criticality and Ω is
a high-frequency cutoff. Following the calculations of Refs. [35,36], one obtains for the
specific heat CV the following relation:

CV
T

=
k2

B
2

ˆ ∞

−∞
βeβω

(
βω

eβω − 1

)2

ρb(ω)dω, (A1)

where we kept the explicit dependence on the Boltzmann constant kB, so that β = (kBT)−1,

ρb(ω) =
1

π2ν

[
k1 log

√
(A+ πν)2 + B2

A2 + B2 + k2

(
arctan

(A+ πν

B

)
− arctan

(A
B

))]
' 1

π2ν

(
γ0 + A log

Λmax

ω

)
log
(

1 +
πν

M

)
, when ω→ 0

is an effective density of states, which takes into account the self-energy corrections to the
propagator of the collective mode, and

A ≡ M + A ω arctan
(Λmax

ω

)
− ω2

Ω
, B ≡

(
γ0 + A log

√
1 +

Λ2
max

ω2

)
ω,

k1 ≡ γ0 + A log

√
1 +

Λ2
max

ω2 − A
Λ2

max
Λ2

max + ω2 ,

k2 ≡
2ω

Ω
− A arctan

(Λmax

ω

)
+ A

ωΛmax

Λ2
max + ω2 .

Notice that k1 is logarithmically divergent in the limit ω→0, unless we set Λmax and/or
A is identically equal to zero. All other terms are regular in this limit. The asymptotic
expression for Equation (A1) is, therefore,

CV
T
'

k2
B

3ν

(
γ0 + A log

Λmax

kBT

)
log
(

1 +
πν

M

)
.

The behavior of this expression is shown in Figure A1, together with the experimental data
for La1.36Nd0.4Sr0.24CuO4, taken from Ref. [10].
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Figure A1. Plot of the specific heat ratio CV/T as a function of temperature (solid line). Param-
eter values are M = 15 meV, ν = 1.3 eV/(r.l.u.)2, Ω = 30 meV, A = 6.5, γ = 5.5, g = 245 meV,
Σ0 = 16 meV, and qc = 1.95 r.l.u. The symbols (squares) represent the experimental values for
La1.36Nd0.4Sr0.24CuO4, taken from Ref. [10]. Similarly to Refs. [35,36], the theoretical specific heat
overestimates the experimental data by a constant factor, here equal to 43, presumably due to to the
fact that CDFs occupy a fraction of the system and define a sparser effective lattice of their own.

Appendix B. Resistivity in the Presence of a Damping That Is Logarithmically
Divergent in |ωn|

The imaginary part of the electron self-energy for our system (within the Fock approx-
imation) is given by [51]

Im Σel(ω, k) =
g̃2

N ∑
p

ImD(ω− ξk−p, p)
[

f (ξk−p) + b(ξk−p −ω)
]
, (A2)

where g̃ is the coupling between electrons and CDFs, ξk is the band dispersion law of the
electrons with respect to the chemical potential, f (z) = [eβz + 1]−1 is the Fermi function,
and b(z) = [eβz − 1]−1 is the Bose function. The real part of Σ is obtained by Kramers–
Kronig transformation and the electron Green function is G = (ω − ξk − Σel)

−1. Notice
that the coupling constant g̃ which appears in this expression is not the coupling constant
g which describes the coupling of the CDFs with diffusive modes. In principle, the self-
energy is momentum-dependent, nevertheless, it is a good approximation to consider
Σel(ω, k)'Σel(ω) [32]. The reason is that CDFs are very broad in momentum space, so they
mediate an essentially isotropic interaction. To mimic scattering mediated by quenched
impurities, we will always apply the following substitution:

|Im Σel(ω)| → |Im Σel(ω)|+ Γ0, (A3)

where Γ0 is a positive constant term that has the dimension of energy. It is linked to the
average scattering time τ due to quenched impurities by the relation 2τ = 1/Γ0.

We compute the resistivity using Kubo formula [32] and find

ρ =

[
e2
ˆ +∞

−∞

[
1
N ∑

k,σ

1
2
|vk|2Im G(ω, ξk)

2
](
−∂ f (ω)

∂ω

)
dω

π

]−1

,

where vk = ∂kξk is the group velocity of an electron. The sum over k, which appears in the
expression of ρ, can be performed using the Allen approximation [52]

ρ =

[
2e2Ñ(0)

ˆ +∞

−∞

[ˆ +∞

−∞
Im G(ω, ξ)2 dξ

π

](
−∂ f (ω)

∂ω

)
dω

]−1

,

Ñ(ξ) ≡ 1
N ∑

k

1
2
|vk|2δ(ξ − ξk) =

1
N ∑

k

∂2ξk
∂k2

x
θ(ξ − ξk).

(A4)
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Notice that the overall factor 2 is due to the spin multiplicity of the electrons. The integral
in dξ can now be solved analytically. The resulting expression for the resistivity is

ρ =

[
e2Ñ(0)

ˆ +∞

−∞

1
|Im Σel(ω, T)|

(
−∂ f (ω)

∂ω

)
dω

]−1

,

which, in the T→0 limit, reduces to

ρ =
Γ0

e2Ñ(0)
,

namely, the reciprocal of the product between Ñ(0) (which encodes all the information
about the currents, except for the spin) and twice the zero temperature scattering time τ.
The behavior of this expression is shown in Figure A2, together with the experimental data
for La1.36Nd0.4Sr0.24CuO4, taken from Ref. [10].
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Figure A2. Plot of the resistivity as a function of temperature (solid line). Parameter values are
M =15 meV, ν = 1.3 eV/(r.l.u.)2, Ω = 30 meV, A = 6.5, γ = 5.5, g = 245 meV, Γ0 = 16 meV and
qC = 1.95 r.l.u. The symbols (triangles) represent the experimental values for La1.36Nd0.4Sr0.24CuO4,
taken from Ref. [10]. We use the notation ρ0 = h̄a/e2.
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