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Abstract: Driven by the need for impact resistance and vibration reduction for mechanical devices
in extreme environments, an all-metal vibration isolator with 6-degree-of-freedom (6-DOF) motion
that is horizontally symmetrical was developed. Its stiffness and damping ability are provided by
oblique springs in symmetrical arrangement and a metal–rubber elasto-porous damper. The spring is
symmetrically distributed in the center axis of the support load surface. It is necessary to investigate
the kinematics and the singularity before conducting multi-body dynamics analysis of the vibration
isolator. Based on the theory of dual quaternions, the forward kinematics equations of the isolator
were successively derived for theoretical kinematics modeling. In addition, an enhanced Broyden
numerical iterative algorithm was developed and applied to the numerical solution of the forward
kinematics equations of the vibration isolator. Compared with the traditional rotation-matrix method
and Newton–Raphson method, the computational efficiency of the enhanced Broyden numerical
iterative algorithm was increased by 680% and 290%, respectively. This was due to the enhanced
algorithm without the calculations of any inverse matrix and forward kinematics equations. Finally,
according to the forward kinematics Jacobian matrix, the position-singularity trajectory at a given
orientation and the orientation-singularity space at a given position are calculated, which provides a
basis for the algorithm of the 6-DOF vibration isolator to avoid singular positions and orientations.

Keywords: all-metal vibration isolator; numerical iterative algorithm; dual quaternion; kinematics
modeling; singularity

1. Introduction

A multi-axis vibration isolation system is an appropriate approach to high-precision
space systems for attenuating vibrations on precise instruments. All-metal vibration
isolators have recently received much attention due to their excellent mechanical resistance
and environmental adaptation [1,2]. Particularly, six-axis vibration isolation isolators,
sometimes called Stewart platform, have been extensively investigated regarding multi-
body dynamics and singularity avoidance algorithms [3–5]. However, these research issues
rely on the kinematics model and draw the singular trajectory established during the
pre-processing step.

The Stewart platform, as a parallel manipulator, was first introduced in 1965 [6].
Since then, forward kinematics and inverse kinematics in parallel mechanisms have been
emphasized. The forward kinematics solution is more complex than the inverse kinematics
solution because of the coupling effects between the branch chains. The forward kinematics
methods of the 6-SPS (S represents spherical joint and P represents prismatic joint) or 6-
UPS (U represents universal joint) parallel mechanism are summarized as adding sensors,
polynomials, and numerical iterations. Some researchers attempted to use sensors to assist in
calculating the forward kinematics [7–12]. The weakness under the assisted sensors includes
the unavoidable measurement error and inconvenient usage. Polynomial methods can solve
nonlinear equations by using special geometric properties [13–15], Grobner bases [16,17],
interval analysis [18–21], algebraic elimination [22], and other methods. The algebraic
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equations of 20, 17, 13, and 16 degrees with 1 variable have been successfully obtained by
these methods, as well as the corresponding potential solutions. In addition, kinematic
calibration methods based on advanced iterative step planning have become a favorite topic
for improvement of the precision in terms of the individual model [23–25]. However, the
previous reported methods are generally complex, with a significant computational cost.

Recently, the numerical iterative algorithm has been attracted interest in improving
the computational efficiency and solution precision. For example, Geng et al. [26] used the
quaternion algorithm to obtain a fast numerical solution of forward kinematics, eliminating
the mathematical singularity of the orientation matrix. Yang et al. [27] proposed a novel dual
quaternion method to obtain a fast numerical solution and simulated the motion control
of the Stewart mechanism, verifying the algorithm’s effectiveness in real-time conditions.
However, solving the inverse matrix of the Jacobian matrix is still necessary. Undoubtedly,
this leads to increase the computational difficulty. Yang et al. [28] described the rigid-body
motion as an exponential twist, and then proposed a step-by-step derivation algorithm.
Their results demonstrated that the algorithm could terminate within four iterations, con-
verging with near-quadratic speed. Masory et al. [29] developed the kinematic equation of
each branch chain using the Denavit–Hartenberg (DH) Matrix. The algorithm considered
manufacturing errors of spherical joints and driving joints and implemented them into a
numerical model. The actual forward kinematics of the Stewart platform were calculated
via numerical iteration, but this process was time-consuming (on the order of hours).

Singular configuration seriously affects the motion and force transmission performance
of parallel mechanisms, which leads to uncontrollability and even damage. Therefore, it
is necessary to fully analyze the occurrence law of singular configuration and then obtain
the specific distribution. Yang et al. [30] pointed out that constraint singularities lead to
instantaneous degrees of freedom or bifurcation of the finite motion of the mechanism.
Moreover, the internal differences between the conditions under which constraint singu-
larities of parallel mechanisms occur have been analyzed by using differential manifolds.
Yang et al. [31] developed the Jacobian matrix of the mechanism in the form of a dual
quaternion and considered the singularity. On this basis, they proposed an algorithm
to determine the singularity-free joint space and workspace. Su et al. [32] proposed a
new singularity analysis method using a genetic algorithm (GA). The effectiveness of this
new genetic singularity analysis method was validated by the singularity analysis of a
six-DOF fine-tuning Stewart platform. Jonathan et al. [33] derived the singularity locus for
zero-torsion orientations (tilted rotations only). The determinant of type II singularities
was assessed using the linear expansion of the Jacobian matrix. Schappler et al. [34] proved
that avoiding and exiting parallel robot singularities of type II should be possible with the
null space of all joints.

The goal of this work is to identify ways to improve the traditional forward kinematics
algorithm and improve the computational efficiency. In addition, the forward kinematics
Jacobian matrix is used to calculate the position-singularity and the orientation-singularity
trajectories. Firstly, the structure design of a 6-DOF all-metal vibration isolator is introduced
in Section 2. The development of an enhanced Broyden numerical iterative algorithm is
described in Section 3 to determine the solution of forward kinematics. Taking the vibration
isolation as an example, the correctness and efficiency of the developed algorithm are
verified in Section 4. In Section 5, the construction of the general symbolic expression
of the position-singular trajectory and the orientation-singular trajectory, respectively,
is described.

2. Structural Design of a 6-DOF All-Metal Vibration Isolator
2.1. Structural Design

At the high speed of sound, the isolator in the aircraft has to experience high vacuum,
an environment where high and low temperatures alternate. Since traditional rubber isola-
tors cannot be used in high- or low-temperature environments, many scholars suggested
all-metal isolators, e.g., a wire rope isolator, a metal bellows isolator, or a metal rubber
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isolator. The application of metal rubber as damping and shock-resistant material has
been the most successful, but it is difficult to achieve significant deformation when using
only metal rubber as the vibration isolation element. In addition, in order to obtain high-
precision performance, the vibration of the vibration-sensitive parts of the three orthogonal
axes, as well as the angular displacement, must be suppressed. Most of the metal rubber
isolators are only used in single-axis vibration isolation systems, and there is little research
on multi-degree-of-freedom metal rubber isolators.

Aiming at the above problems and combining the characteristics of the Stewart platform,
a 6-DOF all-metal vibration isolator, as shown in Figure 1, was designed in which the platform
and the damping-reducing outrigger that is symmetrically distributed along the center axis
are connected by spherical joints. It is a multi-free parallel vibration isolation system with
the advantages of significant deformation, high temperature resistance, and shock resistance.
Figure 2 illustrates the internal structure of the damping-reducing outrigger.
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Figure 2. Internal structure diagram of the damping-reducing outrigger.
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2.2. Structural Simplification

Figure 3 is the simplified structure diagram of the proposed 6-DOF all-metal vibra-
tion isolator. The moving and static coordinate systems (O′ − X′Y′Z′ and O− XYZ) are
established on the moving and static platforms. u and d represent the distance between
the coordinate centers and boundaries for moving and static platforms, respectively. h
is the height of the 6-DOF vibration isolator, respectively. s is the distance between the
platform and the center of spherical joint, respectively. θ and li (i = 1, 2, · · · , 6) stand
for the angle and the initial length of the damping-reducing outrigger. Therefore, all li
(i = 1, 2, · · · , 6) can be expressed by h/ cos θ− 2s. The coordinate values of all spherical
joints in the moving and static coordinate systems are, respectively:

a1 = [0,−(u + s cos θ),−s sin θ]T

a2 = [
√

3
2 (u + s cos θ),− 1

2 (u + s cos θ),−s sin θ]
T

a3 = [
√

3
2 (u + s cos θ), 1

2 (u + s cos θ),−s sin θ]
T

a4 = [0, u + s cos θ,−s sin θ]T

a5 = [−
√

3
2 (u + s cos θ), 1

2 (u + s cos θ),−s sin θ]
T

a6 = [−
√

3
2 (u + s cos θ),− 1

2 (u + s cos θ),−s sin θ]
T

,



b1 = [0,−(d− s cos θ), s sin θ]T

b2 = [
√

3
2 (d− s cos θ),− 1

2 (d− s cos θ), s sin θ]
T

b3 = [
√

3
2 (d− s cos θ), 1

2 (d− s cos θ), s sin θ]
T

b4 = [0, d− s cos θ, s sin θ]T

b5 = [−
√

3
2 (d− s cos θ), 1

2 (d− s cos θ), s sin θ]
T

b6 = [−
√

3
2 (d− s cos θ),− 1

2 (d− s cos θ), s sin θ]
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Figure 3. Simplified structure diagram of the proposed 6-DOF all-metal vibration isolator.

3. Forward Kinematic Algorithm of 6-DOF All-Metal Vibration Isolator
3.1. Quaternion and Dual Quaternion

Hamilton quaternion H is expressed as q = q1i + q2 j + q3k + q0 or q = (q, q0), with the
special rule that q = Jm(q), q0 = Re(q), q1, q2, q3, q0 ∈ R, i2 = j2 = k2= −1, ij = −ji = k,
jk = −kj = i and ki = −ik = j. The multiplication of two quaternions is still a quaternion,
as:

(q, p)→ qp = {q0 p + p0q + q× p, q0 p0 − q · p} (1)

where p = p1i + p2 j + p3k + p0, p ∈ H.
Similarly, the addition and subtraction of two quaternions result in quaternions, as:

(q, q0)± (p, p0) = (q± p, q0 ± p0) (2)
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In addition, a quaternion has the following properties:

q∗ = (−q, q0), ‖q‖ =
√

q1
2 + q22 + q32 + q02, and q−1 =

q∗

‖q‖2 (3)

‖q‖ =
√

q1
2 + q22 + q32 + q02 = 1 is defined as a unit quaternion, which has the

following properties:
qq∗ = q∗q = 1, and q−1 = q∗ (4)

Clifford dual quaternion H⊗D is expressed as û = qr + qdε or û = [qr, qd], û ∈ H⊗D,
qr ∈ H, qd ∈ H where qr and qd are the original part and dual part, respectively. ε is the
dual calculation symbol, and ε2 = 0.

The multiplication of two dual quaternions is still a dual quaternion, as:

û1û2 = [qr1, qd1][qr2, qd2] = [qr1qr2, qr1qd2 + qd1qr2], qr1 ∈ H, qd1 ∈ H, qr2 ∈ H, qd2 ∈ H (5)

Similarly, the addition and subtraction of two dual quaternions result in dual quater-
nions, as:

û1 ± û2 = [qr1, qd1]± [qr2, qd2] = [qr1 ± qr2, qd1 ± qd2] (6)

The dual quaternion û = [qr,−qd] is called the conjugate of dual, which is based on the
definition of the dual conjugate. The dual quaternion û∗ = [qr

∗, qd
∗] is called the conjugate

of the dual quaternion, which is based on the definition of the dual quaternion conjugate.
Combining the above two conjugate definitions, the compound conjugate definition of dual
quaternion is expressed as:

û∗ = û∗ = [qr
∗,−qd

∗] (7)

In addition, the conjugate of the dual quaternion has the following properties:

(û1û2)
∗ = û2

∗û1
∗, (û1û2) = û1û2 (8)

Unlike quaternions, the norm of dual quaternions is even:

‖û‖ = [‖qr‖,
qdqr

∗ + qrqd
∗

2‖qr‖
] (9)

Similarly to quaternions, the inverse and norm multiplication of dual quaternions
have the following properties:

û−1 =
û∗

‖û‖2 , ‖û1û2‖ = ‖û1‖‖û2‖ (10)

‖û‖ = 1 is defined as a unit dual quaternion, which has the following properties:

‖qr‖ = 1, qdqr
∗ + qrqd

∗ = 0 (11)

Further, the inverse of the unit dual quaternion is equal to the conjugate:

û−1 = û∗ (12)

The dual quaternion ûq = [q, 0] and the quaternion v0 = [xr, yr, zr, 0] are extended
by unit quaternion q and rotation vector (xr, yr, zr). Further, v0 is expanded into a dual
quaternion v̂ = [1, v0]. The rotation can be expressed as:

v̂′ = ûqv̂û∗q = [q, 0][1, v0][q∗, 0] = [q, 0][1, v0][q, 0]∗ = [1, v′0] (13)

From Equation (13), the unit dual quaternion ûq represents a pure rotation.
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Similarly, the quaternion t = [xd, yd, zd, 0] and the dual quaternion ût = [1, 0.5t] are
extended by displacement vector (xd, yd, zd). The displacement can be expressed as:

v̂8 = ûtv̂û∗t = [1, 0.5t][1, v0][1, 0.5t] = [1, 0.5t][1, v0][1, 0.5t]∗ = [1, v0 + t] (14)

From Equation (14), the unit dual quaternion ût represent a pure displacement.
Next, the rotation plus displacement can then be expressed as:

‘v̂′ = ût

(
ûqv̂û∗q

)
û∗t = (ûtûq)v̂(û

∗
q û∗t ) = (ûtûq)v̂(ûtûq)

∗ (15)

ûtq = ûtûq = [1, 0.5t][q, 0] = [q, 0.5tq] is defined; thus, û∗tq = [q, 0.5tq]∗ = [q∗,−0.5(tq)∗].
Then, ‘v̂′ = (ûtq)v̂(ûtq)

∗
= [q, 0.5tq][1, v0][q∗,−0, 5(tq)∗] = [1, t + qv0q∗].

Under the properties of the dual quaternion norm, ‖ûtq‖ = ‖ût‖‖ûq‖ = 1 is still a unit
dual quaternion, which means that any unit dual quaternion can represent rotation plus
displacement.

3.2. Rigid Body Pose Calculation through Unit Dual Quaternion

Many methods have been used to describe the pose of a rigid body, and the most
popular one is a 4 × 4 homogeneous transformation matrix, as given below.

T =

[
R P
0 1

]
, P =

Px
Py
Pz

 (16)

R = Euler(α, β, γ) =

cos β cos γ sin α sin β cos γ− cos α sin γ cos α sin β cos γ + sin α sin γ
cos β sin γ cos α cos γ + sin α sin β sin γ − sin α cos γ + cos α sin β sin γ
− sin β sin α cos β cos α cos β

 (17)

where P stands for the absolute position and R for the orientation of the moving coordinate
system.

Figure 4 shows Euler angle conversion between moving and static coordinates: (O′ −
X′Y′Z′ and O− XYZ), where the intersection of the XY-plane and the X′Y′-plane is the
line of intersection, represented by the letter N. α is the angle between the X-axis and
the intersecting line; β is the angle between the Z-axis and the Z′-axis; and γ is the angle
between the intersecting line and the X′-axis. and O− XYZ).
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For forward kinematics, the length of the outrigger is given li (i = 1, 2, · · · , 6), and
the position and orientation parameters (P and R) of the moving platform are solved. The
forward kinematics equation of the 6-DOF vibration isolator is shown:

E(li) = P + Rai, (i = 1, 2, · · · , 6) (18)

where ai represents the position vector of each branch chain in the moving coordinate
system.

Unit quaternions q often represent the rotation of a rigid body instead of the rotation
matrix R, and satisfy the following equation:

E(li) = P + Rai = P + qaiq∗, (i = 1, 2, · · · , 6) (19)

The relationship between the dual quaternion and the homogeneous transfer matrix
can be expressed as follows:

R =

2q0
2 + 2q1

2 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q0

2 + 2q2
2 − 1 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q0
2 + 2q3

2 − 1

 (20)

In Equation (19), the unit quaternion only represents rotation, not displacement.
Through the deduction of Equation (14), the unit dual quaternion û = [qr, qd] represents
the position vector of each branch link connection point in the static coordinate system
(O− XYZ in Figure 3). First, ai = (aix, aiy, aiz), (i = 1, 2, · · · , 6) is extended to quaternion
form aqi = [ai, 0], and then to dual quaternion [1, aqi]. In the same way, E(li) is extended to
quaternion Eq(li) = [E(li), 0] and dual quaternion [1, Eq(li)]. Therefore, Equation (19) can
be expressed as:

[1, Eq(li)] = û[1, aqi]û
∗
= [qr, qd][1, aqi][qr

∗,−qd
∗] = [1, 2Jm(qdqr

∗) + qraqiqr
∗] (21)

3.3. Forward Kinematics Equations

Based on Equation (21), the rotation and movement of the moving platform are trans-
formed into quaternions by dual quaternion transformation. The closed-loop relationship
between the outrigger vectors is shown in Figure 5.

Further, the close-loop kinematic equations are established as:

liei + bi = P + Rai, (i = 1, 2, · · · , 6) (22)

where bi = (bix, biy, biz) represents the position vector of each branch chain in the static
coordinate system and li represents the length of each damping-reducing outrigger. Further,
the closed-loop equation is extended to quaternion form, and the closed-loop equation for
all quaternions can be obtained by combining Equations (21) and (22):

li[ei, 0] = [2Jm(qdqr
∗), 0] + qr[ai, 0]qr

∗ − [bi, 0], (i = 1, 2, · · · , 6) (23)

The unit dual quaternion property, ‖û‖ = 1, drew the following conclusion:{
‖qr‖ = 1
qdqr

∗ + qrqd
∗ = Re(qdqr

∗) = 0
(24)

Further, the kinematic closed-loop equation is simplified as:

li[ei, 0] = 2[qdqr
∗ − Re(qdqr

∗)] + qr[ai, 0]qr
∗ − [bi, 0] = 2qdqr

∗ + qr[ai, 0]qr
∗ − [bi, 0] (25)

Through the above transformation, the problem of solving the position and orientation
is converted into the problem of solving quaternions qd and qr. To reduce the power of qr
and reduce the difficulty of the solution, qr is multiplied on both sides of Equation (25). The
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inner product of Equation (25) is further solved, and then the damping-reducing outrigger
length equation can be obtained as:

‖li‖2 = 4‖qd‖
2 + ‖ai‖2 + ‖bi‖2 + 4qd × qr[ai, 0]− 4qd × [bi, 0]qr − 2qr[ai, 0]× [bi, 0]qr

(i = 1, 2, · · ·, 6)
(26)

In Equation (26), the highest power of qd and qr is not more than two, so it can be
written in the quadratic form by x:

fi(x) =
1
2

xTQix + Ci = 0, (i = 1, 2, · · · , 6) (27)

where Ci = ‖ai‖2 + ‖bi‖2 − ‖li‖2, x = (qr1, qr2, qr3, qr0, qd1, qd2, qd3, qd0)
T.

Qi can be expressed in the form of a component block matrix, as:

Qi =

[
Qi11 Qi12
Qi21 Qi22

]
(28)

where Qi11 = 8E4×4, Qi12 = Qi21
T. Qi12 and Qi21 are antisymmetric matrices. Qi22 is a

symmetric matrix, and each block matrix is listed as follows:

Qi12 = QT
i21 =


0 4Aiz −4Aiy 4Bix

−4Aiz 0 4Aix 4Biy
4Aiy −4Aix 0 4Biz
−4Bix −4Biy −4Biz 0

 (29)

Qi22 =


4ai · bi − 8aixbix −4(aiybix + abixiy) −4(aizbix + aixbiz) 4(aizbiy − aiybiz)
−4(aiybix + abixiy) 4ai · bi − 8aiybiy −4(aizbiy − aiybiz) 4(aixbiz − aizbix)
−4(aizbix + aixbiz) −4(aizbiy − aiybiz) 4ai · bi − 8aizbiz 4(aiybix − aixbiy)
4(aizbiy − aiybiz) 4(aixbiz − aizbix) 4(aiybix − aixbiy) −4ai · bi

 (30)

where Ai = ai + bi and Bi = ai − bi.
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Similarly, Equation (24) is also converted into quadratic form, as:{
f7(x) = 1

2 xTQ7x + C7 = 0
f8(x) = 1

2 xTQ8x + C8 = 0
, Q7 =

[
2I4×4 0

0 04×4

]
, Q8 =

[
04×4 I

I 04×4

]
, C7 = −1, C8 = 0 (31)

3.4. Construction of an Iterative Sequence

Equations (27) and (31) are expressed in the form of nonlinear equations, as:

f(x) =
1
2

xTQx + C (32)

where f(x) = ( f1(x), f2(x), · · · , f8(x))
T, Q = (Q1, Q2, · · · , Q8)

T, and C = (C1, C2, · · · , C8)
T.

The f(x) is decomposed by the Taylor formula, and the higher-order term is ignored.
Thus, the Newton–Raphson numerical iteration sequence can be obtained as:

xk+1 = xk − Jq
x
−1f(xk), k = 0, 1, 2 · · · (33)

The greatest advantage of the Newton–Raphson method is fast convergence speed, but
it is difficult to realize. The Newton–Raphson method is required to calculate the inverse
matrix of the Jacobian matrix Jq

x in each iteration, which increases the calculation amount.
The Broyden iterative method is introduced to reduce the amount of calculation.

Replacing Jq
x with matrix Ak in a sense of approximation is essential for the Broyden

iterative method. Ak is nonsingular and easier to calculate than Jq
x. The general form of this

iterative scheme is expressed as: Ak = Ak−1 +
(yk−Ak−1sk)sT

k
sT

k sk

xk+1 = xk −Ak
−1f(xk), k = 1, 2, 3 · · ·

(34)

where yk = f(xk)− f(xk−1), sk = xk − xk−1.
The relationship between the nonlinear equation group and the Jacobian matrix are

obtained:

Jq
x =

∂f(xk)

∂xk
= xk

TQ (35)

f(xk) =
1
2

xT
k Qxk + C =

1
2

Jkxk + C (36)

Further, Equation (36) is substituted into Equation (34). Since Ak ≈ Jq
x is approximated

in the Broyden iteration sequence, Equation (34) can be expressed as:{
Ak = Ak−1 + 2Ak−1sksT

k U−1

xk+1 = 1
2 xk −A−1

k C, k = 1, 2, 3 · · · (37)

where U = −2sT
k skE8×8 + xksT

k .
In Equation (37), the inverse matrix Ak

−1 needs to be solved during each iteration.
Therefore, the matrix inversion formula of Sherman and Morrison is introduced:

(A + xyT)
−1

= A−1 − A−1xyTA−1

1 + yTA−1x
(38)

where ‖A‖ 6= 0, yTA−1x 6= −1 and, thus, x and y are vectors.
Then, the A = Ak−1, x = Ak−1sk, yT = sT

k U−1 is substituted into Equation (38). There-
fore, the iteration sequence is expressed as: A−1

k = A−1
k−1 −

sksT
k U−1A−1

k−1
1+sT

k U−1sk

xk+1 = 1
2 xk −A−1

k C, k = 1, 2, 3 · · ·
(39)
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After A−1
0 =

[
f′(x0)

]−1 is solved, then A−1
k can be calculated by the recursive formula

for each iteration step. However, the inverse matrix U still exists in Equation (39). Therefore,
Equation (38) is further applied to improve U. Then,A = −2sT

k skEn×n, x = xk,yT = sT
k is

substituted into Equation (38). Finally, the enhanced Broyden numerical iterative algorithm
is obtained as: 

U−1 = − 1
2sT

k sk
(E8×8 +

xksT
k

sT
k (xk−2xk−1)

)

A−1
k = A−1

k−1 −
sksT

k U−1A−1
k−1

1+sT
k U−1sk

xk+1 = 1
2 xk −A−1

k C, k = 1, 2, 3 · · ·

(40)

The enhanced Broyden numerical iterative algorithm is no longer necessary to update
the function value of f(x) and calculate any inverse matrix, which can greatly reduce the
calculation difficulty. After the iteration converges, a unique set of variables (qr1, qr2, qr3,
qr0, qd1, qd2, qd3, qd0) can be calculated, then the position vector and orientation matrix can
be solved by Equations (20) and (24).

4. Numerical Solution
4.1. Determination of Dimension Parameters

Because of the particular structure of the vibration isolator, establishing the analytical
model is very complicated. Thus, the linear assumption is adopted to guide the calculation
of the approximate stiffness, and then the relevant parameters of the vibration isolator are
determined. In addition, the load is assumed to be distributed symmetrically in the vertical
direction of the isolator.

Based on the relationship between the load components, the stiffness of the vibration
isolator in the vertical Z direction can be approximated as:

kz = 6kn sin θ (41)

The horizontal X-direction and Y-direction stiffness can be approximated as:

kx = 4kn cos θ sin 60◦ = 2
√

3kn cos θ
ky = 2kn cos θ+ 4kn cos θ cos 60◦ = 4kn cos θ

(42)

The ratio of the horizontal stiffness to the vertical are obtained:

rk1 =
kx

kz
=

√
3

3
cot θ, rk2 =

ky

kz
=

2
3

cot θ (43)

Figure 6 shows the approximate relationship curve between the ratio of vertical
stiffness and the spatial inclination angle. It can be seen that the smaller the space angle
between the damping-reducing outrigger and the horizontal plane, the greater the lateral
stiffness, but the stiffness in the Z direction also decreases at this time. Since the magnitude
of vibration from the horizontal direction is almost the same as that in the Z direction
during operation, the three-dimensional stiffness should satisfy the following relationship:

kz = max(kx, ky) (44)

Therefore, when rk2 = 1, the space angle is θ ≈ 34◦ between the damping-reducing
outrigger and the horizontal plane.
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Figure 6. The theoretical stiffness ratio curve for a three-dimensional vibration isolator.

The installation dimension requirements of the vibration isolator are: h = 100, u = 77,
and d = 225. In addition, for the model of the spherical joint, s = 9. Therefore, the initial
length li = h/ cos θ− 2s ≈ 160, (i = 1, 2, · · · , 6), and the coordinate values of the upper
spherical joint and the lower spherical joint can be obtained as follows:

a1 = [0,−84.5,−5]T

a2 = [73.2,−42.2,−5]T

a3 = [73.2, 42.2,−5]T

a4 = [0, 84.5,−5]T

a5 = [−73.2, 42.2,−5]T

a6 = [−73.2,−42.2,−5]T

,



b1 = [0,−217.5, 5]T

b2 = [188.4,−108.8, 5]T

b3 = [188.4, 108.8, 5]T

b4 = [0, 217.5, 5]T

b5 = [−188.4, 108.8, 5]T

b6 = [−188.4,−108.8, 5]T

The damping-reducing outrigger stiffness is calculated as follows:

1
kd

=
1
ks

+ 2
1

km
(45)

where kd represents the damping-reducing outrigger stiffness; ks = 337 N/mm represents
the oblique-springs stiffness; and km = 84 N/mm represents the annular-shaped metal
rubber stiffness. Based on Equations (45) and (42), the stiffness of the vibration isolator is
280 N/mm. Under the use requirements of the vibration isolator, the vibration isolator’s
rated load is 2000 N. Therefore, the maximum static deformation is ±7.2 mm. According
to the angle relationship, li ≈ 147.1 ∼ 172.9mm, (i = 1, 2, · · · , 6). The load is fixedly
connected with the vibration isolator through the moving platform (Figure 1). The load on
the outrigger is greater than it is in the equilibrium state, when the load is torsional. Thus,
the deformation range is estimated to be the minimum.
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4.2. Simulation Methodology

Mathematica is an extremely powerful piece of software that not only provides a
mathematical model of all the normal functions, but also performs deep calculations. Thus,
the forward kinematics model of the 6-DOF isolator was solved iteratively by Mathematica,
and its forward kinematics simulation method is shown in Figure 7.
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4.3. Correctness Verification

The correctness verification of the algorithm includes the following two steps: first, the
position and orientation of the 6-DOF isolator are given, and the length of each damping-
reducing outrigger is calculated by using the calculation method of inverse kinematics.
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Further, taking the length of each damping-reducing outrigger as a condition, the for-
ward kinematics algorithm is used to calculate the position and orientation. Finally, the
calculation results are compared with the initial conditions.

The position vector P = (5, 15, 100) and the orientation α = 8◦, β = −5◦, γ = 10◦ in
the preset state are assumed. Then, the orientation matrix R is shaped as follows:

R =

−0.23926011 −0.87431183 −0.42229541
−0.15685629 −0.39440993 0.90544845
−0.9582018 0.2828774 −0.04277475


Based on Equation (18), the relationship between the Euler angle and the damping-

reducing outrigger length can be obtained as follows:

‖li‖2 = (P + Rai − bi) · (P + Rai − bi), (i = 1, 2, · · · , 6) (46)

Then, the length of the damping-reducing outrigger is calculated as:

l1 = 171.418 mm, l2 = 167.8412 mm, l3 = 161.807 mm, l4 = 157.3133 mm
l5 = 158.8102 mm, l6 = 166.9887 mm

Figure 8 shows a schematic of the position and orientation of a 6-DOF all-metal
vibration isolator. Based on Equations (20) and (24), the position and orientation of the
moving platform are converted into parameters as:

qr = (0.07454,−0.03229, 0.1004, 0.99141)
qd = (4.61503, 10.89008, 48.36737,−4.9837)
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In addition, the length of each damping-reducing outrigger is within the range pro-
posed above. Thus, the correctness of P and R is determined. The structural parameters
and damping-reducing outrigger length are substituted into Equation (27) as:
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C = [25112.4, 26350.4, 28339.6, 29749, 29300.4, 26635.9,−1, 0]T

Q112 = QT
121 =


0 0 1208 0
0 0 0 532

−1208 0 0 −40
0 −532 40 0

, Q122 =


73415 0 0 6040

0 −73615 −2660 0
0 −2660 73615 0

6040 0 0 −73415


Q212 = QT

221 =


0 0 604 −460.8
0 0 1046.4 266.4
−604 −1046.4 0 −40
460.8 −266.4 40 0

, Q222 =


−36898.1 63658.6 2304 3020
63658.6 36698.1 −1332 5232

2304 −1332 73629 54.8
3020 5232 54.8 −73429


Q312 = QT

321 =


0 0 −604 −460.8
0 0 1046.4 −266.4

604 −1046.4 0 −40
460.8 266.4 40 0

, Q322 =


−36898.1 −63658.6 2304 −3020
−63658.6 36698.1 1332 5232

2304 1332 73629 −54.8
−3020 5232 −54.8 −73429


Q412 = QT

421 =


0 0 −1208 0
0 0 0 −532

1208 0 0 −40
0 532 40 0

, Q422 =


73415 0 0 −6040

0 −73615 2660 0
0 2660 73615 0

−6040 0 0 −73415


Q512 = QT

521 =


0 0 −604 460.8
0 0 −1046.4 −266.4

604 1046.4 0 −40
−460.8 266.4 40 0

, Q522 =


−36898.1 63658.6 −2304 −3020
63658.6 36698.1 1332 −5232
−2304 1332 73629 54.8
−3020 −5232 54.8 −73429


Q612 = QT

621 =


0 0 604 460.8
0 0 −1046.4 266.4
−604 1046.4 0 −40
−460.8 −266.4 40 0

, Q622 =


−36898 −63658.6 −2304 3020
−63658.6 36698.1 −1332 −5232
−2304 −1332 73629 −54.8
3020 −5232 −54.8 −73429


The initial posture P0 = (9, 4, 90), α0 = 11.5◦, β0 = 17◦, γ0 = −11.5◦ is supposed and then
converted into quaternion form as:

qr0 = (0.11218, 0.1373,−0.12702, 0.97591)
qd0 = (−0.94362,−6.171, 33.87096,−5.38583)

Given the accuracy esp = 0.0001, the iterative process is shown in Figure 9. After
fifteen iterations, the result is completely consistent with the inverse solution; then, the
correctness of the algorithm is proven. In addition, the iteration time is 0.004 ms, and there
are 19 iterative steps.

4.4. Efficiency Verification

Using the same computer software, the efficiency is proven by comparing the results
with those of the Newton–Raphson method described previously, using the traditional
Euler angle and the dual quaternion. Figures 10 and 11 show the iterative calculation
results. There are 7 and 10 iterative steps, and the iterative times are 0.0312 ms and 0.0156.
Compared with the traditional rotation-matrix method and the Newton–Raphson method,
the computational efficiency of the enhanced Broyden numerical iterative algorithm is thus
increased by 680% and 290%, respectively.
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Figure 10. Iterative process of the traditional Euler angle method.
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4.5. Discussion

The efficiency of the enhanced Broyden numerical iterative algorithm is very obvious,
as can be seen from the results in Section 4.4. The main reason for this is that the enhanced
Broyden numerical iterative algorithm does not need to calculate any inverse matrix and
forward kinematics equations in the iterative process, which is untrue for the algorithms
shown in Figures 10 and 11. In addition, it can be seen that the calculation efficiency of the
algorithm shown in Figure 10 is lower than that in Figure 11. The main reason is that the
inverse matrix to be calculated in the algorithm shown in Figure 10 is an 8-order matrix,
while that in Figure 11 is a 6-order matrix. The algorithms in Figures 10 and 11 are based
on the Newton–Raphson method, which has the property of square convergence. Thus,
they use fewer iterative steps than the enhanced Broyden numerical iterative algorithm
does, but the calculation time for each step is longer.

5. Singularity Analysis
5.1. Establishment of Kinematic Jacobian Matrix

The input–output kinematic equations of the vibration isolator based on the Jacobian
matrix can be obtained by taking the derivative of Equation (18), which was concerned
with time, as:

Jq
x

.
x = Jq

l

.
l (47)

where

Jq
x = (xTQ1, xTQ2, · · · , xTQ8),

.
x = (

.
qr1,

.
qr2,

.
qr3,

.
qr0,

.
qd1,

.
qd2,

.
qd3,

.
qd0),

Jq
l = 2diag(l1, l2, l3, l4, l5, l6, 0, 0),

.
l = (

.
l1,

.
l2,

.
l3,

.
l4,

.
l5,

.
l6, 0, 0)

where Jq
x is the forward kinematics Jacobian matrix and Jq

l is the inverse kinematics Ja-
cobian matrix. Obviously, det(Jq

l ) 6= 0; when det(Jq
x) = 0, the vibration isolator has

forward kinematics singularity. Based on the forward kinematics algorithm, the singular
trajectory of the isolator in the configuration space is a hypersurface distributed in the
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eight-dimensional parameter space. Therefore, to obtain the distribution law of singular
trajectory conveniently, it is divided into two forms: position-singular configuration and
orientation-singular configuration.

5.2. Position-Singularity Analysis

The position-singular configuration is located on R ∈ SO(4) when the orientation
parameter qr is given. Since qd is not a unit quaternion, each element of qd has no value
range. In addition, the imaginary part of 2qdqr

∗ represents the displacement, so conversion
of qd into the expression of the spatial position parameter is necessary.

qd0 = (qr1Px + qr2Py + qr3Pz)/2
qd1 = (−qr0Px − qr3Py + qr2Pz)/2
qd2 = (qr3Px − qr0Py − qr1Pz)/2
qd3 = (−qr2Px + qr1Py − qr0Pz)/2

(48)

where Px, Py, and Pz are the position parameters of the moving platform.
Therefore, when the orientation parameters qr are given, the position-singular trajec-

tory expression of the vibration isolator can be obtained as:

det(Jq
x) = f r

1 Px
6 + f r

2 Py
6 + f r

3 Pz
6 + f r

4 Px
5Py + f r

5 PxPy
5 + f r

6 PxPz
6 + Λ+

f r
77PxPy + f r

78PxPz + f r
79PyPz + f r

80Px + f r
81Py + f r

82Pz + f r
83 = 0

(49)

where fr
i , (i = 1, 2, · · · , 83) is the display expression of the orientation parameters qr and the

vibration isolator size parameters. Based on Equation (49), the position-singular trajectory
equation is a sixth-degree polynomial concerned with the position parameters (Px, Py, Pz)
of the moving platform.

Figure 12 shows the singular trajectory of the isolator’s three-dimensional position
with different orientation parameters. In Figure 12a, the singular trajectory is a continuous
surface with larger curvature and more regular shape when the moving platform is not
twisted. Figure 12b,c are position-singular trajectories for the orientation parameters given
in Section 4.2. When the orientation angle is small, the curvature and range of the position-
singular surface is small, so it is easy to avoid. Figure 12d shows the position of the singular
trajectory surface when the orientation parameter is large, and the surface is large and
complex. Thus, when the orientation parameters of the moving platform are small, it can
be seen that the singular deformation does not easily occur.

5.3. Orientation-Singularity Analysis

The orientation-singularity trajectory is R ∈ SO(4) when the positioning parameters
Px, Py, Pz are given. Therefore, the expression of the position-singularity trajectory of the
vibration isolator is expressed as:

det(Jq
x) = f d

1 qr0
8 + f d

2 qr1
8 + f d

3 qr2
8 + f d

4 qr3
8 + f d

5 qr0qr1
7 + f d

6 qr1qr2
7 + Λ+

f d
160qr0

5qr1qr2qr3 + f d
161qr0qr1

5qr2qr3 + f d
162qr0qr1qr2

5qr3 + f d
163qr0qr1qr2qr3

5 + f d
164 = 0

(50)

where fd
i , (i = 1, 2, · · · , 164) is the display expression of position parameters Px, Py, and Pz

and the vibration isolator size parameters.
Figure 13 shows the orientation-singular trajectory when the isolator is located at

different positions. The blue area of the surface is the orientation-singular trajectory, which
is more complex and discontinuous than the position-singular trajectory. Under different
position parameters, the singular trajectory curves of 6-DOF isolators have no obvious
geometric properties. However, the rule that the singular trajectory will not pass through
the orientation origin at any given position is satisfied. Thus, in theory, there must be a
non-singular orientation space near the orientation origin.
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5.4. Discussion

The kinematics and dynamics performance decrease sharply when the 6-DOF isolator
is located in a singular configuration. Thus, the 6-DOF isolator should be far away from
the singular configuration work. In a mechanical structure, the closest explanation of
singularity concerns the dead point of the structure. The position-singularity does not
easily occur when the orientation parameters of the moving platform are small, as can
be seen from the results in Section 5.2. Firstly, the difference in the length of each leg
increases when the orientation angle increases. It is easy to make the moving platform
and the outrigger collinear when the moving platform moves. Thus, the structure appears
at the dead point and the singularity phenomenon occurs. Similarly, the conclusion of
Section 5.3 can be well understood using this point of view. In the case of a given non-
singular position, there must be a non-singular orientation space near the orientation’s
origin. Further research can judge the orientation capability of the structure by calculating
the size of the orientation space.
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6. Conclusions

Given the extreme reduction in environment vibration and the isolation of some aircraft
equipment, a 6-DOF all-metal vibration isolator with rectangular spring and annular metal
rubber in symmetrical arrangement was designed and developed. Under the installation
and stiffness requirements, the platform size and the operating range of a single damping-
reducing outrigger were determined, and its kinematics and singularity were analyzed.
The main conclusions are as follows:

(1) Under the representation of dual quaternions, the forward kinematics model of the
6-DOF isolator can be rewritten in quadratic form.

(2) Compared with the traditional rotation-matrix and Newton–Raphson methods, the
computational efficiency of the enhanced Broyden numerical iterative algorithm
increased by 680% and 290%, respectively.

(3) The position-singularity does not easily occur when the orientation parameters of the
moving platform are small. The orientation-singularity does not pass through the
orientation origin. In addition, in theory, there must be a non-singular orientation
space near the orientation origin.



Symmetry 2023, 15, 562 20 of 21

Author Contributions: C.Z.: methodology, formal analysis, writing—original draft. L.Z.: validation.
Z.Z.: Writing—review and editing. X.X.: methodology, investigation, writing—editing and reviewing,
supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China: 12272094,
52175162; Key Project of National Defence Innovation Zone of Science and Technology, Commission
of CMC: XXX-033-01; Natural Science Foundation of Fujian province of China: 2022J01541.

Data Availability Statement: The data used to support the findings of this study are included within
the article.

Acknowledgments: This research was funded by the National Natural Science Foundation of China
(No. 12272094, No. 52175162), and the Key Project of National Defence Innovation Zone of Science
and Technology Commission of CMC (XXX-033-01) and the Natural Science Foundation of Fujian
province of China (No. 2022J01541) are gratefully appreciated.

Conflicts of Interest: The authors declare no potential conflict of interest with respect to the research,
authorship, and/or publication of this article.

References
1. Zou, L.; Zheng, C.; Zheng, Z.; Hu, F.; Shao, Y.; Xue, X. Comparison of Dynamic Performance of an All-Metallic Vibration Isolator

by Elliptic Method and Frequency Sweeping Method. Symmetry 2022, 14, 2017. [CrossRef]
2. Yang, P.; Bai, H.; Xue, X.; Xiao, K.; Zhao, X. Vibration reliability characterization and damping capability of annular periodic

metal rubber in the non-molding direction. Mech. Syst. Signal Process. 2019, 132, 622–639. [CrossRef]
3. Gexue, R.; Qiuhai, L.; Ning, H.; Rendong, N.; Bo, P. On vibration control with Stewart parallel mechanism. Mechatronics 2004, 14,

1–13. [CrossRef]
4. He, Z.; Feng, X.; Zhu, Y.; Yu, Z.; Li, Z.; Zhang, Y.; Wang, Y.; Wang, P.; Zhao, L. Progress of Stewart Vibration Platform in Aerospace

Micro–Vibration Control. Aerospace 2022, 9, 324. [CrossRef]
5. Hu, F.; Jing, X. A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs. Nonlinear Dyn. 2018, 91,

157–185. [CrossRef]
6. Stewart, D. A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 1965, 180, 371–378. [CrossRef]
7. Zhou, W.; Chen, W.; Liu, H.; Li, X. A new forward kinematic algorithm for a general Stewart platform. Mech. Mach. Theory 2015,

87, 177–190. [CrossRef]
8. Jang, T.K.; Lim, B.S.; Kim, M.K. The canonical stewart platform as a six DOF pose sensor for automotive applications. J. Mech. Sci.

Technol. 2018, 32, 5553–5561. [CrossRef]
9. Allred, C.J.; Jolly, M.R.; Buckner, G.D. Real-time estimation of helicopter blade kinematics using integrated linear displacement

sensors. Aerosp. Sci. Technol. 2015, 42, 274–286. [CrossRef]
10. Cheng, S.; Liu, Y.; Wu, H. A new approach for the forward kinematics of nearly general Stewart platform with an extra sensor.

J. Adv. Mech. Des. Syst. Manuf. 2017, 11, JAMDSM0032. [CrossRef]
11. Liu, Y.; Cheng, S.; Jiang, S.; Yang, X.; Li, Y.; Wu, H. Forward kinematics of 6-UPS parallel manipulators with one displacement

sensor. J. Mech. Eng. 2018, 54, 1–7. [CrossRef]
12. Boutchouang, A.H.B.; Melingui, A.; Ahanda, J.J.B.M.; Lakhal, O.; Motto, F.B.; Merzouki, R. Forward Kinematic Modeling of

Conical-Shaped Continuum Manipulators. Robotica 2021, 39, 1760–1778. [CrossRef]
13. Ma, J.; Chen, Q.; Yao, H.; Chai, X.; Li, Q. Singularity analysis of the 3/6 Stewart parallel manipulator using geometric algebra.

Math. Methods Appl. Sci. 2018, 41, 2494–2506. [CrossRef]
14. Wang, M.; Chen, Q.; Liu, H.; Huang, T.; Feng, H.; Tian, W. Evaluation of the Kinematic Performance of a 3-RRS Parallel Mechanism.

Robotica 2021, 39, 606–617. [CrossRef]
15. Zhu, G.; Wei, S.; Zhang, Y.; Liao, Q. A Novel Geometric Modeling and Calculation Method for Forward Displacement Analysis of

6-3 Stewart Platforms. Mathematics 2021, 9, 442. [CrossRef]
16. Cheng, S.L.; Wang, C.Q.; Tao, Y.; Shu, J.Y. Analytical method for the forward kinematics analysis of the general 6-SPS parallel

mechanisms. China Mech. Eng. 2010, 21, 1261–1264.
17. Zhang, Y.; Liu, X.; Wei, S.; Wang, Y.; Zhang, X.; Zhang, P.; Liang, C. A Geometric Modeling and Computing Method for Direct

Kinematic Analysis of 6-4 Stewart Platforms. Math. Probl. Eng. 2018, 2018, 6245341. [CrossRef]
18. Merlet, J.P. Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis. Int. J. Robot. Res. 2004,

23, 221–235. [CrossRef]
19. Yao, R.; Zhu, W.; Huang, P. Accuracy analysis of Stewart platform based on interval analysis method. Chin. J. Mech. Eng. 2013, 26,

29–34. [CrossRef]
20. Zhou, X.; Xian, Y.; Chen, Y.; Chen, T.; Yang, L.; Chen, S.; Huang, J. An improved inverse kinematics solution for 6-DOF robot

manipulators with offset wrists. Robotica 2022, 40, 2275–2294. [CrossRef]
21. Song, G.; Su, S.; Li, Y.; Zhao, X.; Du, H.; Han, J.; Zhao, Y. A Closed-Loop Framework for the Inverse Kinematics of the 7 Degrees

of Freedom Manipulator. Robotica 2021, 39, 572–581. [CrossRef]

http://doi.org/10.3390/sym14102017
http://doi.org/10.1016/j.ymssp.2019.07.020
http://doi.org/10.1016/S0957-4158(02)00092-2
http://doi.org/10.3390/aerospace9060324
http://doi.org/10.1007/s11071-017-3862-x
http://doi.org/10.1243/PIME_PROC_1965_180_029_02
http://doi.org/10.1016/j.mechmachtheory.2015.01.002
http://doi.org/10.1007/s12206-018-1101-0
http://doi.org/10.1016/j.ast.2014.11.012
http://doi.org/10.1299/jamdsm.2017jamdsm0032
http://doi.org/10.3901/JME.2018.05.001
http://doi.org/10.1017/S0263574720001484
http://doi.org/10.1002/mma.4754
http://doi.org/10.1017/S0263574720000612
http://doi.org/10.3390/math9040442
http://doi.org/10.1155/2018/6245341
http://doi.org/10.1177/0278364904039806
http://doi.org/10.3901/CJME.2013.01.029
http://doi.org/10.1017/S0263574721001648
http://doi.org/10.1017/S0263574720000582


Symmetry 2023, 15, 562 21 of 21

22. Guo, D.; Li, A.; Cai, J.; Feng, Q.; Shi, Y. Inverse kinematics of redundant manipulators with guaranteed performance. Robotica
2022, 40, 170–190. [CrossRef]

23. Luo, R.; Gao, W.; Huang, Q.; Zhang, Y. An improved minimal error model for the robotic kinematic calibration based on the POE
formula. Robotica 2022, 40, 1607–1626. [CrossRef]

24. Yin, F.; Wang, L.; Tian, W.; Zhang, X. Kinematic calibration of a 5-DOF hybrid machining robot using an extended Kalman filter
method. Precis. Eng. 2023, 79, 86–93. [CrossRef]

25. Luo, Y.; Gao, J.; Zhang, L.; Chen, D.; Chen, X. Kinematic calibration of a symmetric parallel kinematic machine using sensitivity-
based iterative planning. Precis. Eng. 2022, 77, 164–178. [CrossRef]

26. Geng, M.; Zhao, T.; Wang, C. Direct position analysis of parallel mechanism based on quasi-Newtonmethod. J. Mech. Eng. 2015,
51, 28–36. [CrossRef]

27. Yang, X.L.; Wu, H.T.; Chen, B.; Zhu, L.C.; Xun, J.X. Fast Numerical solution to forward kinematics of general Stewart mechanism
using quaternion. Trans. Nanjing Univ. Aeronaut. Astronaut. 2014, 31, 377–385.

28. Yang, F.; Tan, X.; Wang, Z.; Lu, Z.; He, T. A Geometric Approach for Real-Time Forward Kinematics of the General Stewart
Platform. Sensors 2022, 22, 4829. [CrossRef]

29. Masory, O.; Wang, J.; Zhuang, H. On the accuracy of a Stewart platform—Part 2: Kinematic calibration and compensation.
In Proceedings of the 1993 IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993;
pp. 725–731.

30. Yang, S.; Li, Y. Classification and analysis of constraint singularities for parallel mechanisms using differential manifolds. Appl.
Math. Model. 2020, 77, 469–477. [CrossRef]

31. Yang, X.; Wu, H.; Chen, B.; Li, Y.; Jiang, S. A dual quaternion approach to efficient determination of the maximal singularity-free
joint space and workspace of six-DOF parallel mechanisms. Mech. Mach. Theory 2018, 129, 279–292. [CrossRef]

32. Su, Y.; Duan, B.; Peng, B.; Nan, R. Singularity analysis of fine-tuning Stewart platform for large radio telescope using genetic
algorithm. Mechatronics 2003, 13, 413–425. [CrossRef]

33. Lacombe, L.; Gosselin, G. Singularity analysis of a kinematically redundant (6+2)-DOF parallel mechanism for zero-torsion
configurations. Mech. Mach. Theory 2022, 170, 104682. [CrossRef]

34. Schappler, M.; Ortmaier, T. Singularity avoidance of task-redundant robots in pointing tasks: On null space projection and cardan
angles as orientation coordinates. In Proceedings of the 18th International Conference on Informatics in Control, Automation and
Robotics (ICINCO 2021), Online Streaming. 6–8 July 2021; SciTePress: Setúbal, Portugal, 2021; pp. 338–349.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1017/S026357472100045X
http://doi.org/10.1017/S0263574721001284
http://doi.org/10.1016/j.precisioneng.2022.09.007
http://doi.org/10.1016/j.precisioneng.2022.05.007
http://doi.org/10.3901/JME.2015.09.028
http://doi.org/10.3390/s22134829
http://doi.org/10.1016/j.apm.2019.07.040
http://doi.org/10.1016/j.mechmachtheory.2018.08.002
http://doi.org/10.1016/S0957-4158(01)00051-4
http://doi.org/10.1016/j.mechmachtheory.2021.104682

	Introduction 
	Structural Design of a 6-DOF All-Metal Vibration Isolator 
	Structural Design 
	Structural Simplification 

	Forward Kinematic Algorithm of 6-DOF All-Metal Vibration Isolator 
	Quaternion and Dual Quaternion 
	Rigid Body Pose Calculation through Unit Dual Quaternion 
	Forward Kinematics Equations 
	Construction of an Iterative Sequence 

	Numerical Solution 
	Determination of Dimension Parameters 
	Simulation Methodology 
	Correctness Verification 
	Efficiency Verification 
	Discussion 

	Singularity Analysis 
	Establishment of Kinematic Jacobian Matrix 
	Position-Singularity Analysis 
	Orientation-Singularity Analysis 
	Discussion 

	Conclusions 
	References

