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Abstract: We obtain a large number of degree and distance-based topological indices, graph and
Laplacian spectra and the corresponding polynomials, entropies and matching polynomials of
n-dimensional hypercubes through the use of Hadamard symmetry and recursive dynamic computa-
tional techniques. Moreover, computations are used to provide independent numerical values for
the topological indices of the 11- and 12-cubes. We invoke symmetry-based recursive Hadamard
transforms to obtain the graph and Laplacian spectra of nD-hypercubes and the computed numerical
results are constructed for up to 23-dimensional hypercubes. The symmetries of these hypercubes
constitute the hyperoctahedral wreath product groups which also pave the way for the symmetry-
based elegant computations. These results are used to independently validate the exact analytical
expressions that we have obtained for the topological indices as well as graph, Laplacian spectra
and their polynomials. We invoke a robust dynamic programming technique to handle the compu-
tationally intensive generation of matching polynomials of hypercubes and compute all matching
polynomials up to the 6-cube. The distance degree sequence vectors have been obtained numerically
for up to 108-dimensional cubes and their frequencies are found to be in binomial distributions akin
to the spectra of n-cubes.

Keywords: hypercubes; topological indices; graph spectra of hypercubes; matching polynomials of
hypercubes; Laplacian spectra of hypercubes; spanning trees of hypercubes; hadamard transform;
symmetries of hypercubes

1. Introduction

Hypercubes are highly symmetric structures that have been the focus of numerous
studies due to their varied applications in many fields such as artificial intelligence, parallel
architectures, recursive structures, the last Fermat’s theorem, Minkowski norm, neural net-
works, big data, genetic regulatory networks, the periodic table of elements, phylogenetic
trees, moonlighting functions of intrinsically disordered proteins, water clusters, and so
forth [1–40]. In the context of molecular science and drug discovery, hypercubes have been
employed to partition big data sets [9,12,27–30] into equivalence classes [12,27–30,38–40], bio-
chemical imaging [13–15], and in the representations of symmetries of nonrigid molecules
and water clusters [23–32]. Water clusters exhibit semi-rigid to nonrigid structures owing
to their potential energy surfaces that contain multiple minima divided by surmountable
potential energy barriers. Consequently, the assignments of the observed spectra, nuclear
spin species, and tunneling splittings in the spectra require symmetries of nonrigid groups
molecules that are represented by the automorphism groups of hypercubes or wreath prod-
uct groups in the nonrigid limit [23–32,34–36]. Moreover, the observed transient chirality
in water clusters is akin to the spontaneous generation of optical activity of molecules
exhibiting rapid internal rotations whose rotation digraphs are finite topologies and Borel
fields [27]. The symmetries of non-rigid molecules and the NMR groups of NMR graphs are
all connected to symmetries of nonrigid molecules and those of hypercubes [23–32,34–37].
The subject matters of hypercubes, polycubes and wreath product groups have been dealt
with by several researchers over the years [1–40], including techniques to obtain topological
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indices [41–50] by cut methods which involve subgraphs of hypercubes [41,42]. Further-
more, graph spectra, matching polynomials, distance degree sequences, topological indices
and other properties of graphs pertinent to chemical applications have been the subject
matter of several studies [51–67].

The recursive hypercube-like structures appear in phylogenetic trees [68] as well as
pandemic trees that have been applied to the analysis of propagation and the dynamics of
the SARS-CoV-2 epidemic [20]. Forster et al. [21] have shown that phylogenetic network
analysis of SARS-CoV-2 genomes can enhance our understanding of the genetic evolution
of the SARS-CoV-2 virus, its variation as a function of geographical regions and its graph-
theoretical connection to the presumed bat origin. Such graph-theoretical networks, cluster
graphs, and Cayley trees have been employed in statistical analysis of networks, fuzzy logic,
contact tracing and Boolean networks [20,21]. The recursive trees of biological interest that
appear in the context of genetic regulatory networks and intrinsically disordered proteins
exhibit hypercube symmetries which are wreath products [12,16–22].

The computations of topological indices [41–50], graph spectra [51,52] and perfect
matchings [53,54] of clusters, graphs and hypercubes can be challenging, and thus the
topic has received some attention over the years. A few topological indices such as the
Wiener, Szeged, Balaban, and Kirchhoff indices of the hypercubes have been obtained
before [46–51]. Likewise, the constant coefficients of the matching polynomials which
generate the numbers of perfect matchings have been considered for a few hypercubes
up to 7-cube [53,54]. The computation of the matching polynomials is one of the most
intensive problems, as described previously. The hypercube graphs are extremely clustered,
and thus offer significant challenges for the computations of matching polynomials of
nD-hypercubes.

The focus of the present study is to explore the topological indices of nD-hypercubes
in an exhaustive manner in that we consider both distance and degree-based indices
including some recently introduced indices based on both distance degrees and vertex
degrees such as the Sombor index, RMS-Sombor index, geometric-mean Szeged index as
well as edge, vertex, vertex-edge and total versions of these indices. We have computed
the topological indices and compiled numerical tables of these indices for up to 12-cubes.
Moreover, we have obtained the exact analytic expressions of these indices for any nD-
hypercube. Likewise, the graph spectra, Laplacian spectra, spectral polynomials and
Laplacian polynomials of hypercubes up to dimension 23 have been numerically computed
without the use of any factorings of characteristic polynomials. A number of properties
including graph energies and the number of spanning trees of nD-hypercubes have been
numerically enumerated. We have employed an elegant recursive Hadamard transform to
compute the spectra of nD-hypercubes which form elegant binomially symmetric patterns
for both Laplacian and graph spectra. Powerful dynamical computer algorithms are
employed to compute the matching polynomials of nD-hypercubes, and explicit tables of
the matching polynomials have been constructed for up to 6-dimensional hypercubes and
prime factors of the constant coefficients are explicitly constructed.

2. Mathematical and Computational Techniques for Topological and Spectral
Properties of Hypercubes

Hypercubes are recursive structures in an n-dimensional space with 2n vertices. As
an illustration, we show three panels in Figure 1 where the first panel is a representation
of a 4-dimensional hypercube with 16 vertices. Figure 1b shows one of the potential
minima of water octamer, while Figure 1c shows an 8-cube octeract representation with
256 vertices that also correspond to 256 potential energy minima of water octamer. At
higher temperatures the hydrogen bonds in Figure 1b are broken and remade, thus lending
a nonrigid character for the water octamer. Likewise, Figure 1a vertices represent the
sixteen potential minima of water tetramer, and thus the automorphism group of the graph
in Figure 1a, the wreath product S4[S2], yields the symmetry group of nonrigid water
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tetramer. Thus, hypercubes play an important role in the representations of symmetry
groups of such nonrigid molecules.
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Following Harary [55], an n-dimensional hypercube denoted by Qn, is recursively
constructed by the Cartesian product:

Qn = Qn−1 × K2 for n ≥ 2 with Q1 = K2,

where K2 is simply a graph of two vertices connected by an edge. This recursive con-
struction can be computationally transcribed into a recursive construction of the adjacency
matrices of hypercubes by invoking the adjacency matrices of hypercubes of lower order.
That is, the adjacency matrix of Qn+1, AQn+1„ is given by:

AQn+1 =

[
AQn I

I AQn

]
where I is simply the identity matrix of order 2n × 2n.

The above recursive construction makes it very tractable to construct adjacency matri-
ces of nD-hypercubes quite rapidly. Note that the number of q-hyperplanes of an n-cube
with 0 ≤ q ≤ n − 1 is given by Cqq, the diagonal elements of the Coxeter configuration
matrix of the n-cube, and it is given by:

Cqq =

(
n
q

)
2n−q

Thus, the no. of vertices (q = 0) of an n-cube is 2n while the number of edges of an n-
cube (q = 1) is n× 2n−1. For example, a 12-cube contains 212 = 4096 vertices and 24,576 edges
and so on. Thus, by the time we reach n = 23, the largest dimension considered in the present
study for computations, the numbers of vertices and edges become 8,388,068 and 94,468,992,
indicating the combinatorial and computational complexity of the n-cube problem.

In order to derive the topological indices that are distance based we need to com-
pute the distance matrices from the adjacency matrices. For the present problem of nD-
hypercubes, we employ the author’s previously developed computational techniques [56,57]
based on Frame’s method for the spectral polynomials. The algorithm is polynomial in
order and converges rapidly within r− 1 iterations where r is the radius of the n-cube which
is simply n. Consequently, the distance matrix of a 12-cube, for example, is constructed
in 11 iterations in our computational algorithm. Once the distance matrix is constructed
together with the adjacency matrix, several of the topological indices such as the Wiener
index, hyper-Wiener index, Balaban’s index, ABC index, Randić index, Harary index, etc.,
are computed. However, the computations of other indices such as the Szeged index,
Padmakar–Ivan index and their edge as well as vertex-edge variants require computa-
tions of additional neighborhood parameters denoted by nu, nv, mu and mv as defined in
Refs. [41,42]. All of these indices are obtained by summing over the edges of the hypercube,
and thus require n × 2n−1 multiplications in the summations. Thus, the computation of
these distance-based edge indices is a computationally more intensive problem, requiring
multiple nested loops over the vertices, although only if there is an edge between vertices u
and v do the arithmetic operations need to be carried out.

Table 1 shows a list of topological indices considered here with their expressions for
computing them. As can be seen from Table 1, we have considered a large number of
topological indices, some of which are vertex-degree based while the others are based
on topological distances. There are a few more indices that we have computed but their
definitions are available in references [41,42]. We note that we have introduced variants of
the recently introduced Sombor indices using the distance degrees or distance status [43] as
derived from the distance matrices of n-cubes (see Table 1, Sombor (DD). The scaled and root-
mean-square versions of these indices are also considered. The entropies can be defined for each
topological index based on information-theoretic expressions of Shannon [41,42]. However, for
n-cubes all the entropies for various topological indices reduce to a single expression.
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Table 1. The topological indices Considered for the n-cubes with u and v defined as vertices and E(G)
as the set of edges and V(G) as the set of vertices of the hypercube graph G = Qn

a.

Index Expression

Wiener Index W(G) = ∑
{u,v}⊂V(G)

d(u, v).

Schultz Index
du = ∑

v⊂V(G)
auv

SI(G) = 1
2 ∑
{u,v}⊂V(G)

(du + dv).d(u, v)

Hyper-Wiener Index WW(G) = 1
2 W(G) + 1

2 ∑
{u,v}⊂V(G)

d(u, v)2

M1(Zagreb) M1 = ∑
uv∈E(G)

(du + dv), du = ∑
v⊂V(G)

auv

M2(Zagreb) M2 = ∑
uv∈E(G)

(dudv)

Harary Index H(G) = ∑
u,v∈V(G)

1
d(u,v)

RMS Distance Index RMS(D) =
√

1
|V(G)] ∑

{u,v}⊂V(G)
d(u, v)2

Randić Index R = ∑
uv∈E(G)

√
1

dudv
, du = ∑

v⊂V(G)
auv

Cubic Vertex Degree Sum CVD = ∑
u∈V(G)

d3
u,

ABC Index
ABC = ∑

uv∈E(G)

√
du+dv−2

du∗dv

du = ∑
v⊂V(G)

auv

Balaban Index
J = m

γ+1 ∑
(uv)∈E(G)

(δuδv)
− 1

2 ,γ = m− n + c, δu = ∑
v3 (uv)∈E(G)

d(u, v),

n =|V(G)|, m =|E(G)| , c = number of connected components

Szeged Index(v)

nu = nu(e|G) = {x ∈ V(G) : d(u, x) < d(v, x)}
nv = nv(e|G) = {x ∈ V(G) : d(v, x) < d(u, x)}
Szv(G) = ∑

uv∈E(G)
nu(e|G) nv(e|G),

Padmakar–Ivan (v) PIv(G) = ∑
uv∈E(G)

(nu(e|G) + nv(e|G)),

Geometric-Mean-Szeged(v) SZGM
v (G) = ∑

uv∈E(G)

√
nu(e|G)nv(e|G)

Szeged Index(e)

e = uv ∈ E(G), mu = mu(e|G) = {x ∈ E(G) : d(u, x) < d(v, x)},
mv = mv(e|G) = {x ∈ E(G) : d(v, x) < d(u, x)}.
Sze(G) = ∑

uv∈E(G)
mu(e|G) mv(e|G),

Padmakar–Ivan (e) PIe(G) = ∑
uv∈E(G)

(mu(e|G) + mv(e|G)),

Geometric Mean-Szeged(e) SZGM
e (G) = ∑

uv∈E(G)

√
mu(e|G)mv(e|G)

Sombor(VD) du = ∑
v⊂V(G)

auv, SO(G) = ∑
uvεE(G)

√
d2

u + d2
v

Scaled-Sombor(VD) SOS(G) = 1
|E(G)| ∑

uvεE(G)

√
d2

u + d2
v

RMS-Sombor(VD) SORMS(G) =
√

1
|E(G)| ∑

uvεE(G)
(d2

u + d2
v)
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Table 1. Cont.

Index Expression

Somor(DD) δu = ∑
v

d(u, v) , SO(G) = ∑
uvεE(G)

√
δ2

u + δ2
v

Scaled-Sombor(DD) SOS(G) = 1
|E(G)| ∑

uvεE(G)

√
δ2

u + δ2
v

RMS-Sombor(DD) SORMS(G) =
√

1
|E(G)| ∑

uvεE(G)
(δ2

u + δ2
v)

Randić Inverse Index RI = ∑
uv∈E(G)

√
dudv, du = ∑

v⊂V(G)
auv

Harmonic Index Harm = ∑
uv∈E(G)

2
du+dv

,

Sum Connectivity Index SC = ∑
uv∈E(G)

√
1

du+dv

Hyper Zagreb HZ = ∑
uv∈E(G)

(du + dv)
2

Geometric-Arithmetic GA = ∑
uv∈E(G)

2
√

dudv
(du+dv)

Symmetric Division Index SDD = ∑
uv∈E(G)

(du
2+dv

2)
dudv

Cubic Vertex deg sum Index(Forgotten) F = ∑
uv∈E(G)

(
du

2 + dv
2)

Graph Energy GE =
m
∑

i=1
|λi|, m = 2n, λi eigenvalue of A

Laplacian Energy GE =
m
∑

i=1

∣∣λi
′∣∣, m = 2n, λi

′ eigenvalue of L = D − A, D = Diagonal vertex degree Matrix

Kirchhoff Index Kf(G) = 1
2 ∑
{i,j}⊂V(G)

Ωij = 2n
m−1
∑

i=1
1/
∣∣λi
′∣∣, with λ′m = 0, m = 2n, Ω = Resistance Matrix

κ: No. of spanning trees κ = (−1)m−1

m cm−1, cm−1 : coefficient of λ′2 in the Laplacian Polynomial.
a Mixed edge-vertex indices, total versions and entropies of indices are defined in ref. [41,42]; Geometric mean
Szeged, Sombor-RMS, Sombor(scaled) and DD versions of these indices were introduced in [43].

There are a few spectral-based indices that we have computed in the present study.
These are graph energies, Laplacian energies, Kirchhoff indices, the number of spanning
trees and the corresponding spectral and Laplacian polynomials. These two polynomials
are computed using author’s codes [56–58] in quadruple precision arithmetic. The corre-
sponding eigenvalues are also computed. As the order of the n-cube adjacency matrices
increases as 2n × 2n, and thus the sizes of the matrices explode rapidly, we need to invoke
some computational techniques for the robust numerical computations of the spectra and
the characteristic polynomials so that we could go up to the 23-cube in this study. We
have employed a fast recursive Hadamard transform method which was considered by the
author in a few studies [59] including in a recent review [22]. Hence, we shall not repeat
the details except stating that the Hadamard matrix transform was used recursively, which
brings robustness to the numerical computations of spectra of the n-cubes. We did not use
any prior mathematically known results or wreath product symmetry simplifications to
factor the secular determinants in these numerical computations of the spectra of n-cubes
up to n = 23. However, the spectra indeed form very nice patterns that can be readily cast
into exact analytic expressions for the spectra of the n-cubes.

The matching polynomials of n-cubes were also computed in this study. As noted
in the previous section, matching polynomials of such highly clustered structures have
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been a topic of intense research as they pose a considerable computational challenge. We
note that although the constant coefficients of the matching polynomials of the smaller
n-cubes can be computed using algorithms that invoke computing the permanents of the
adjacency matrices of hypercubes, the matching polynomial computations are consider-
ably more challenging. We have modified the previously developed codes for matching
polynomials [58,60] by introducing dynamic programming and storage of the computed
characteristic polynomials of the line graphs and matching polynomials of cyclic graphs.
The computed expressions for these polynomials are stored separately in a file and retrieved
to memory as needed. We invoke recursive reduction algorithm to generate the matching
polynomials of n-cubes. However, even with all such robust computational modifications
all coefficients of the matching polynomials of the n-cubes could be computed only up
to n = 6, demonstrating the computational and combinatorial complexity of the match-
ing polynomial of the n-cube problem that seems to require more robust techniques in
conjunction with artificial intelligence.

3. Results and Discussion

a. Topological Indices and Distance Degree Vector Sequences of n-cubes

Hypercube graphs are arc-transitive and symmetric, possessing an automorphism
group that is isomorphic with the wreath product group Sn[S2] for Qn, the n-cube graph.
The order of the automorphism group is n! × 2n. Consequently, their properties tend to be
both interesting and challenging due to the high degree of symmetry and arc-transitivity.
The vertex degrees of Qn are all the same and equal to n. Although this property can be
used for analytical simplifications of various expressions, our numerical computations
did not use these features as the codes are meant to be sufficiently general for any graph,
whether vertex- or edge- or arc-transitive or not. Once the results are numerically obtained,
they provide independent validations of the analytical expressions which are also obtained
here for all topological indices using the degeneracies of vertex and distance degrees.

Table 2 shows the numerical results computed from the TopoChemie-2020 package [58]
that takes the neighborhood information as the input to generate the distance matrices
in r − 1 iterations where r is the radius of the graph. Table 2 lists a number of vertex
degree-based indices and several distance-based indices together the graph entropies for
both the 11-dimensional and 12-dimensional hypercubes. As seen from Table 2, some of
the topological indices such as the Randić index merely reduce to 2n – 1 or the Mersenne
number Mn, where n in this study shall always designate the dimension of the hypercube.
Incidentally, the Mersenne numbers in the context of hypercubes and applications have
been extensively studied by Carbó-Dorca and co-workers [1–5]. On the other hand, the
geometric-arithmetic and the symmetric-division indices are directly related to the number
of edges and twice the number of edges of the hypercube, respectively (Table 2). Some of
the indices exhibit direct proportional relation; for example, the first and second Zagreb
indices have a ratio of (n/2) for all n-cubes. The celebrated Wiener index is given by n22(n−1)

in agreement with the previous results in the literature [46–51].
As seen from Table 2, several topological indices of the n-cube graphs are more

complex compared to the purely vertex-degree-based indices. For example, the hyper-
Wiener, Harary, ABC, Balaban and all distance-based indices such as the Szeged, Padmakar–
Ivan, Sombor (DD and VD)-both vertex and edge versions as well as hyper-Zagreb, and
augmented Zagreb indices exhibit more complex relations. Likewise, the Kirchhoff index
as well as the spectral-based indices exhibit binomial distributions. We shall discuss the
spectral-based indices separately in the next section. We have not shown the results of the
Mostar indices of n-cubes because for such arc-transitive and symmetric graphs the Mostar
indices go to zero, as these indices measure the degree of peripheral imperfections, and
since hypercubes exhibit no such peripheral imperfections. Thus, their vertex and edge
versions of Mostar indices go to zero.
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Table 2. Numerical Results for various distance, degree-based Topological indices and entropies of
11-Cube and 12-Cube.

TI 11-Cube 12-Cube

No. of Edges 11,264 24,576

Wiener Index 11,534,336 50,331,648

Schultz Index 253,755,392 1,207,959,552

Hyper Wiener Index 4.0370176 ×107 1.8874368 ×108

M1 (Zagreb-1) 247,808 589,824

M2 (Zagreb-1) 1,362,944 3,538,944

Harary Index 1.0909090909090909 1.0833333333333333

RMS –Distance Index 183.82600468921692 282.6163477224911

Randić 1024 2048

Cubic Vertex deg sum Index 2,725,888 7,077,888

ABC 4579.467217918758 9605.971476119475

Balaban J index 1.2219570405729212 1.199882823942538

Szeged Index 1.1811160064 ×1010 1.03079215104 ×1011

Padmakar–Ivan Index(v) 23,068,672 100,663,296

Geometric-Mean Szeged 1.1534336 ×107 5.0331648 ×107

Szeged Index (e) 2.952790016 ×1011 3.118146256896 ×1012

Padmakar–Ivan Index (e) 115,343,360 553,648,128

Geometric-Mean Szeged (e) 5.767168 ×107 2.76824064 ×108

Szeged Index (ev) 5.905580032 ×1010 5.66935683072 ×1011

Mostar(ev) 46,137,344 226,492,416

Padmakar–Ivan Index (ev) 69,206,016 327,155,712

Geometric-Mean Szeged (ev) 2.5791559371326845 ×107 1.1803817749849734 ×108

Total Szeged Index 4.25201762304 ×1011 4.355096838144 ×1012

Total Padmakar–Ivan Index 276824064 4.4519388949849737E+8

Total Geometric-Mean Szeged 9.499757537132685 ×107 1.1803817749849734 ×108

Randić Inverse Index 123,904 294,912

Harmonic Index 1024 2048

Sum-Connectivity index 2401.4928690296374 5016.554993219602

Hyper-Zagreb 5,451,776 1.4155776 ×107

Geometric-Arithmetic Index 11264 24,576

Symmetric-division Index 22,528 49,152

Augmented Zagreb 2,494,357.888000517 6,891,767.729528946

Sombor(VD) 175,226.7172323173 417,068.5501066585

Sombor(VD)s 15.556349186107717 16.97056274848057

Sombor(VD)RMS 15.556349186107717 16.97056274847714

Sombor(DD) 1.7943215844589293 ×108 8.541563906184366 ×108

Sombor(DD)s 15,929.701566574302 34,755.71250888821

Sombor(DD)RMS 15,929.701566570542 34,755.71250888118

All S (entropies) 9.3293670784 10.10952563595
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Table 3 shows the exact analytical expressions for all of the topological indices that
are included in the present study. The expressions were obtained in two different ways—
one is through numerical interpolations of the computed results, and the second method is
through the simplification and reduction in analytical expressions for these indices. As seen
from Table 3, the expressions also provide us with how these indices vary with the order n,
and order of the multiplicative powers of 2. These values also provide computational and
combinatorial complexity measures of the various topological indices. A few trends can be
seen from Table 3. For example, the Wiener index and vertex version of the Szeged index
have a similar form except the power factor being 2(n − 1) for the Wiener index, while it is
3(n − 1) for the Szeged index. Consequently, the geometric mean Szeged index introduced
by the author [43] becomes identical to the Wiener index for n-cubes. Likewise, the Gutman
index and the second Zagreb index bear a similar relation to that of the Weiner and Szeged
indices. The edge versions of all indices exhibit more complex relations compared to the
vertex versions of the same indices. The scaled and geometric means of both vertex degree
and distance degree versions become identical to one other (see Table 3). We note that
the mixed edge-vertex versions of all indices are quite different from their vertex or edge
counterparts; a conspicuous case being that of the Mostar index, which is zero for the pure
version but becomes nonzero for the mixed edge-vertex version (see Table 3). Moreover, the
expressions for the Balaban and Harary indices of n-cubes are considerably more complex
(Table 3).

Table 3. Analytical expressions for various distance, degree-based Topological indices and entropies
of nD-hypercube.

TI Expression

Wiener n22(n−1)

Schultz n2 22n−1

Gutman n3 22(n−1)

Hyper-Wiener n(n+3)
4 22(n−1)

M1 (Zagreb-1) n22n

M2 (Zagreb-1) n32n−1

Harary Index 2n−1
n
∑

j=1

(
n
j

)
1
j

Randić 2n−1 = Mn

ABC 2n
√

2n−1
2

Balaban J index J = n.2n

2n−1(n−2)+2

Harmonic Index H = 2(n−1)

Sum-Connectivity index
√

n
2 2n−1

Hyper-Zagreb 4n32(n−1)

Geometric-Arithmetic Index n2(n−1)

Symmetric-division Index n2n

Augmented Zagreb 2n−4n7

(n−1)3

Sombor(VD)
√

2n22(n−1)

Sombor(VD)s √
2n

Sombor(VD)RMS
√

2n

Sombor(DD)
√

2n222(n−1)
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Table 3. Cont.

TI Expression

Sombor(DD)s √
2n2(n−1)

Sombor(DD)RMS √
2n2(n−1)

Cubic Vertex deg sum Index n32n

Padmakar–Ivanv n 22n−1

Szegedv n 23(n−1)

Szegedv
GM n22(n−1)

Padmakar–Ivane

(
n
2

)
22n−1

Szegede n(n− 1)223n−5

Szegede
GM

(
n
2

)
22(n−1)

Padmakar–Ivanev
n(n+1)

2 22(n−1)

Szegedev

(
n
2

)
23(n−1)

MOev n(n−3)22n−3

Aug-Zagreb
n7

(n−1)3 2(n−4)

S (entropies) ln(n) + (n− 1)ln2

Kirchhoff Index 2n
n
∑

j=2

(
n

j− 1

)
1

2(j−1)

Graph Energy

4 ∏n/2
j=1(n−j)

[( n−2
2 )!]

, n even

(n + 1)
∏

j=(n+1)/2
j=0 (n−j+1)

2( n−1
2 )!

, n odd

Characteristic Polynomial
(x+n)(x+n−2)n1(x+n−4)n2 . . . ..(x−n),

nk =
(

n
k

)

Laplacian Polynomial
x(x−2)n1(x−4)n2 . . . ..(x−2n),

nk =
(

n
k

)
No of spanning trees κ 1

2n

n
∏
j=1

(
n
j

)
2j

Laplacian Energy (scaled) 1
2n

n
∑

j=1

(
n
j

)
2j

Analytical expressions for four of the topological indices that we have derived in
Table 3 have been obtained before by a number of authors [46–51]. The most recent work
on the topological indices of n-cubes is that of Kaatz and Bultheel [51]. As noted by these
authors [51], the exact analytical expressions have been obtained previously for the Wiener
index, Szeged index(vertex), Balaban and Kirchhoff indices [46–50]. The expressions that
are listed in Table 2 of ref. [51] match with our results in Table 3 of the current work.
Furthermore, the numerical results for these indices that are listed in Table 3 of ref. [51]
agree with our computed results for these indices. In Table 2 of the present study we
have compiled a more exhaustive set of results for several other indices that have not been
obtained in previous studies for the n-cubes, with the exception of four indices that we
have already mentioned.
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As seen from Table 3, all entropies derived from the various topological indices for the
n-cube reduce to the same expression:

S = ln(n) + (n− 1)ln2

We have validated this entropy behavior with our codes, and we find that all entropies
derived from the topological indices listed in Tables 1 and 2 reduce to the above expression.
This is an interesting feature of n-cubes, and it is a clear and direct consequence of the
arc-transitive nature of hypercubes resulting in degenerate vertex and distance degrees.

Following Quintas and coworkers [61], the Distance Degree Sequence Vector (DDSV) is
defined as a p-tuple vector (di0, di1, di2, . . . , dij, . . . dip) where dij is the number of vertices
at distance j from a vertex vi of the n-cube. Consequently, by computing the number of
vertices at a given distance from the vertex vi, we can associate a DDSV for that vertex of
the n-cube. We compute the DDSVs of vertices of n-cubes using the distance matrix that we
have previously generated for the computations of topological indices, and as described
earlier for the n-cube the algorithm computes the distance matrix in n − 1 iterations using
the TopoChemie-2020 package [58]. As the n-cube is an arc-transitive and symmetric graph,
the DDSVs of all vertices become identical, and moreover the DDSV of each vertex exhibits
a symmetric binomial sequence as illustrated in Figure 2 for a hypercube of dimension
108. As can be seen from Figure 2, the DDSVs of hypercubes exhibit a symmetric binomial
distribution, a result which was not known up to now.
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b. Spectral properties

Next, we consider the spectra of the n-cubes, the corresponding Laplacian spectra as
well as the corresponding spectral polynomials. As the adjacency matrix of the n-cube
is of order 2n × 2n, the sizes of both adjacency and Laplacian matrices grow rapidly; for
example, for a 23-cube the matrix is of order 8,388,608× 8,388,608. Consequently, numerical
computations of all eigenvalues of these matrices can be computationally daunting without
explicitly invoking the hyperoctahedral symmetry group of the hypercubes. Alternatively,
we have shown previously that orthogonal Hadamard matrices can be of significant use
in simplifying the eigenvalue problem of such large matrices [22,59]. Collado [62] has
also made use of the Hadamard transform technique for extracting the eigenvalues of the
adjacency matrices of large carbon nanotubes.
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In the case of n-cube graphs, we have invoked a recursive application of the Hadamard
matrix orthogonal transform for the rapid numerical computations of the spectra of n-
cubes. The techniques facilitate elegant computations of the spectra of up to the 23-cube
numerically without any prior assumption of known factorizations of the characteristic
polynomials of n-cubes. In this method, we orthogonally rotate the adjacency matrix of
the n-cube recursively, resulting in great numerical simplifications. Table 4 shows the
numerical results thus obtained for all hypercubes up to dimension 23. The limitation of
dimension 23 has to do with the DRAM limitations, and larger n-cubes can be handled
on systems equipped with greater DRAMs such as workstations and supercomputers. As
expected, due to the wreath product automorphism group of the n-cubes, the spectral
patterns exhibit a high degree of degeneracy (Table 4). The numbers in parenthesis are
the frequencies of a given eigenvalue that occur in the spectra of hypercubes. Based on
the observation of the numerical results in Table 4 and the use of mathematical induction,
we deduce the binomial distribution of the eigenvalues as displayed in Figure 3 for the
computed spectral distribution of the 23-cube.

Table 4. Computed Spectra of nD-hypercubes (up to n = 23) using Recursive Hadamard Transform a.

n Spectra Graph Energy

8 −8 (1) −6 (8) −4 (28) −2 (56) 0 (70) 2 (56) 4 (28)6 (8) 8 (1) 560

9 −9 (1) −7 (9) −5 (36) −3 (84) −1 (126) 1 (126) 3 (84) 5 (36) 7 (9) 9 (1) 1260

10 −10 (1) −8 (10) −6 (45) −4 (120) −2 (210) 0 (252) 2 (210) 4 (120) 6 (45) 8 (10) 10 (1) 2520

11 −11 (1) −9 (11) −7 (55) −5 (165) −3 (330) −1 (462) 1 (462) 3 (330) 5 (165) 7 (55) 9 (11) 11 (1) 5544

12 −12 (1) −10 (12) −8 (66) −6 (220) −4 (495) −2 (792) 0 (924) 2 (792) 4 (495) 6 (220) 8 (66) 10 (12) 12 (1) 11,088

13 −13 (1) −11 (13) −9 (78) −7 (286) −5 (715) −3 (1287) −1 (1716) 1 (1716) 3 (1287) 5 (715) 7 (286) 9 (78) 11
(13) 13 (1)

24,024

14 −14 (1) −12 (14) −10 (91) −8 (364) −6 (1001) −4 (2002) −2 (3003) 0 (3432) 2 (3003) 4 (2002) 6 (1001) 8
(364) 10 (91) 12 (14) 14 (1)

48,048

15 −15 (1) −13 (15) −11 (105) −9 (455) −7 (1365) −5 (3003) −3 (5005) −1 (6435) 1 (6435) 3 (5005) 5 (3003) 7
(1365) 9 (455) 11 (105) 13 (15) 15 (1)

102,960

16 −16 (1) −14 (16) −12 (120) −10 (560) −8 (1820) −6 (4368) −4 (8008) −2 (11,440) 0 (12,870) 2 (11,440) 4
(8008) 6 (4368) 8 (1820) 10 (560) 12 (120) 14 (16) 16 (1)

205,920

17 −17 (1) −15 (17) −13 (136) −11 (680) −9 (2380) −7 (6188) −5 (12376) −3 (19,448) −1 (24,310) 1 (24,310)
3(19,448) 5 (12,376) 7 (6188) 9 (2380) 11 (680) 13 (136) 15 (17) 17 (1)

437,580

18 −18 (1) −16 (18) −14 (153) −12 (816) −10 (3060) −8 (8568) −6 (18,564) −4 (31,824) −2 (43,758) 0 (48,620)
2(43,758) 4 (31,824) 6 (18,564) 8 (8568) 10 (3060) 12 (816) 14 (153) 16 (18) 18 (1)

875,160

19 −19 (1) −17 (19) −15 (171) −13 (969) −11 (3876) −9 (11,628) −7 (27,132) −5 (50,388) −3 (75,582) −1
(92,378) 1(92,378) 3 (75,582) 5 (50,388) 7 (27,132) 9 (11,628) 11 (3876) 13 (969) 15 (171) 17 (19) 19 (1)

1,847,560

20 −20 (1) −18 (20) −16 (190) −14 (1140) −12 (4845) −10 (15,504) −8 (38,760) −6 (77,520) −4 (125,970) −2
(167,960) 0 (184,756) 2 (167,960) 4 (125,970) 6 (77,520) 8 (38,760) 10 (15,504) 12 (4845) 14 (1140) 16 (190) 18
(20) 20(1)

3,695,120

21 −21 (1) −19 (21) −17 (210) −15 (1330) −13 (5985) −11 (20,349) −9 (54,264) −7 (116,280) −5 (203,490)
-3(293,930) −1 (352,716) 1 (352,716) 3 (293,930) 5 (203,490) 7 (116,280) 9 (54,264) 11 (20,349) 13 (5985) 15
(1330) 17 (210) 19 (21) 21 (1)

7,759,752

22 −22 (1) −20 (22) −18 (231) −16 (1540) −14 (7315) −12 (26,334) −10 (74,613) −8 (170,544) −6 (319,770)
−4 (497,420) −2 (646,646) 0 (705,432) 2 (646,646) 4 (497,420) 6 (319,770) 8 (170,544) 10 (74,613) 12 (26,334)
14 (7315) 16 (1540) 18 (231) 20 (22) 22 (1)

15,519,504

23 −23 (1) −21 (23) −19 (253) −17 (1771) −15 (8855) −13 (33,649) −11 (100,947) −9 (245,157) −7 (490,314)
−5 (817190) −3 (1,144,066) −1 (1,352,078) 1 (1,352,078) 3 (1,144,066) 5 (817,190) 7 (490,314) 9 (245,157) 11
(100,947) 13 (33,649) 15 (8855) 17 (1771) 19 (253) 21 (23) 23 (1)

32,449,872

a - The corresponding Laplacian spectra are obtained by right-shifting the spectra by n. Numbers in parenthesis
are the frequencies of the eigenvalue.
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Both numerical induction and analytical techniques based on factoring the characteris-
tic polynomial of the n-cube result in the spectral pattern and the characteristic polynomial
that are shown in Table 3. The corresponding Laplacian spectra are readily obtained by
right-shifting the adjacency spectra by n for an n-cube, which results in the lowest eigen-
values of the Laplacian matrix being 0, as expected. The graph and Laplacian energies
can be readily obtained from the spectra using the expressions shown in Table 1 for the
graph energy. We note that the topic of graph energies of several clustered graphs in-
cluding hypercubes has received considerable attention, as seen from the latest work of
Diudea et al. [52]. The graph and Laplacian energies of hypercubes are shown in Table 3,
and our computed numerical results for the graph energies as well as the binomial spectral
distribution are fully consistent with the previous works [50–52].

The Laplacian spectra and the Laplacian polynomials of nd-hypercubes facilitate the
computations of the Kirchhoff indices and the number of spanning trees of the hyper-
cubes. The Kirchhoff indices have been the topic of several studies [44,45] owing to their
importance in resistance matrices and resistance distances. The Kirchhoff index, which is
an inverse analog of the Wiener index, was originally defined in terms of the resistance
distances [44,45], but the Kirchhoff index can be computed using the Laplacian spectra with
the expression shown in Table 1. The result thus obtained for the Kirchhoff index is shown
in Table 3. Another important result that can be derived from the Laplacian polynomial
is that the scaled coefficient of λ2 term in the Laplacian polynomial yields the number of
spanning trees (Table 1). The computed numerical results of the number of spanning trees
of the hypercubes are shown in Table 5 together with the log(to the base 10) values of the
number of spanning trees. As seen from Table 5, the numbers of spanning trees of n-cubes
grow in astronomical proportions as a function of n, revealing the combinatorial complexity
of the n-cubes.
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Table 5. Combinatorial Enumeration of spanning trees of nD-hypercube.

n κ log(κ)

3 384 2.584331224368

4 42,467,328 7.628054936494

5 20,776,019,874,734,407,680 19.317562352076

6 1.6575091270477789938706015460369005145 × 1045 45.219455928519

7 1.5385084434981466048710053999438123881 × 10101 101.187099884044

8 1.740475945846247472883023392740201058 × 10220 220.240668025518

9 6.798128703006646365181450760022537757 × 10470 470.832389382441

10 2.100521551103851822257498283042967383 × 10994 994.322327141707

11 5.0754732540292453608181958787281340906 × 102081 2081.705476543537

12 2.583802660235773447053323186483352567 × 104330 4330.412259341040

c. Matching Polynomials

The matching polynomial of an n-cube enumerates the number of ways to place k-
dimers on an n-cube comprising of n × 2n−1 edges such that no two dimers share the same
vertex. Symbolically, it is defined by M(x) for an n-cube as:

M(x) = ∑m
k=0(−1)k Mkx2m−2k, m = 2n−1 for an n− cube

The constant coefficient of the matching polynomial or M2n−1 in the above expression
corresponds to the case when all the vertices are covered by the dimers or the number of
disjoint dimers placed is the Mersenne number, 2n−1, thus resulting in a perfect matching.
Combinatorial enumeration of the perfect matchings of the n-cube has been a long-standing
open-ended problem, and hence it has been a subject of several investigations [53,54] since
the pioneering work of Graham and Harary [53]. Graham and Harary [53] have obtained
the number of perfect matching of hypercubes with n ≤ 5 by obtaining the permanents of
their adjacency matrices, and in particular, they enumerate the number of perfect matchings
of the 5-cube as 589,185. In the most recent work on the topic, Östergård and Pettersson [54]
have employed a dynamic programming technique analogous to the one used in the
present study. The number of perfect matchings of the 6-cube [70] and 7-cube [54] are
16,332,454,526,976 and 391,689,748,492, 473, 664,721, 077,609,089, respectively. It is thus
readily seen that the problem of computing the matching polynomials of n-cubes is compu-
tationally and combinatorially far more complex than computing the constant term of the
matching polynomial, which itself grows astronomically. Hosoya as well as the author and
Hosoya [63–67] have proposed computational techniques for selective labelling of some of
the edges of such graphs with imaginary weights in order to generate the matching polyno-
mials from the characteristic polynomials of the imaginary-weighted adjacency matrices.
The technique is extremely useful when such an edge-weighted graph can be found, as it
simplifies the matching polynomial problem into an O(n3) problem since the characteristic
polynomial can be obtained by the present author’s codes and techniques [56–58] by O(n3)
computations using n iterative computations of traces of matrices generated through matrix
multiplication methods. Hosoya and the author [66,67] applied such a technique to gener-
ate the matching polynomial of a 3-cube from the characteristic polynomial of the associated
edge-weighted cube with selected edges weighted with imaginary weights. However, the
technique is not general and it is not always feasible to find such edge-weighted graphs
for all n-cubes. At present we are not aware of any such algorithm to find edge-weighted
n-cubes whose characteristic polynomials yield the matching polynomials of n-cubes.

As described in the previous section, we have made significant enhancements through
dynamic programming and reducing repeated computations of matching polynomials of
line graphs and cyclic graphs by previous computations, and storing these polynomials
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in a sequential binary file. In the process of recursive computation and reduction tech-
niques numerous fragment graphs are generated in the reductive algorithm, which are
trees, line graphs and cyclic graphs with pendants of varied complexities. In the present
dynamic programming method, the matching polynomials are not repeatedly computed
for such fragments, as they are read from the stored files and brought into the computer’s
memory as needed. The techniques definitely reduce the computational complexity of the
matching polynomial problem, and thus we show the computed matching polynomials
of the 4-cube, 5-cube and 6-cube in Tables 6–8, respectively. As seen from these tables, the
nonzero coefficients of the matching polynomials of terms beyond the third term grow in
astronomical proportions. As special cases of our computations, the constant coefficient in
the matching polynomial of the 5-cube agrees with Graham and Harary’s result [53], while
for the 6-cube our computed result is in accord with the results listed in Refs. [54,69], thus
providing a validation of the computed results in Tables 6–8. Furthermore, the numerical
results in Tables 6–8 obtained using our enhanced computer codes match with the online
encyclopaedia sequence A192437 attributed to an unpublished work of D. H. Wiedemann
and other works that are listed in reference [70].

Table 6. Matching Polynomial of the 4-Cube a.

k Mk

0 1

1 −32 (n × 2n−1)

2 400 (25/2) ×M1

3 −2496

4 8256

5 −14,208

6 11,648

7 −3712

8 272(17 × 24)
a k refers to the number of disjoint dimers, as defined in the matching polynomial: M(x) = ∑m

k=0(−1)k Mkx2m−2k ,
m = 2n−1, Mersenne number for an n-cube.

Table 7. Matching Polynomial of the 5-Cube.

k Mk

0 1

1 −80 (n × 2n−1)

2 2840(71/2) ×M1

3 −59,120

4 803,580

5 −7,517,264

6 49,715,240

7 −235,146,480

8 795,862,790

9 −1,910,146,160

10 3,190,117,800

11 −3,594,554,960

12 2,605,908,220

13 −1,129,177,840
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Table 7. Cont.

k Mk

14 259,084,440

15 −25,108,944

16 589,185(32 × 5 × 13,093)

Table 8. Matching Polynomial of the 6-Cube.

k Mk

0 1

1 −192 (n × 2n−1)

2 17,376 (181/2) ×M1

3 −986,240

4 39,408,480

5 −1,179,696,384

6 27,488,385,408

7 −511,416,198,144

8 7,732,531,647,360

9 −96,216,012,236,800

10 994,137,263,758,848

11 −8,583,228,570,909,696

12 62,184,244,929,659,648

13 −378,969,619,199,569,920

14 1,944,655,398,731,796,480

15 −8,398,980,067,449,999,360

16 30,480,925,212,093,104,640

17 −92,675,048,634,081,607,680

18 235,053,748,112,782,356,480

19 −494,482,501,391,128,289,280

20 856,482,708,316,893,954,048

21 −1,210,188,907,641,505,775,616

22 1,378,948,882,982,541,631,488

23 −1249,011,213,103,104,491,520

24 883,258,965,992,225,095,680

25 −476,635,207,372,408,553,472

26 190,551,239,146,197,909,504

27 −54,258,655,709,480,353,792

28 10,420,946,627,414,016,000

29 −1,246,585,402,333,593,600

30 81,808,261,704,974,336

31 −2,333,280,165,691,392

32 16,332,454,526,976
215 × 32 × 7 × 7,911,539
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We have noted a few trends from the numerical results for the various coefficients in
the matching polynomials of the n-cubes reported in Tables 5–8. First, the third nonzero
coefficient in the matching polynomial is a rational multiple of the second coefficient in
the polynomial that is given by n × 2n−1. We note that the third (nonzero) coefficient (M2)
in the matching polynomials of the n-cube forms an interesting sequence in terms of its
previous (nonzero) coefficient (M1):

{(1/2)M1, (7/2)M1, (25/2)M1, (71/2) M1, (181/2)M1, (435/2)M1, (1009/2)M1, (2287/2)M1...}

for the 2-cube, 3-cube, 4-cube, 5-cube, 6-cube, 7-cube, 8-cube, and 9-cube, respectively (Tables 5–8
show up to the 6-cube). Hence we have a new integer sequence: {1, 7, 25, 71, 181, 435, 1009, 2287,
. . . .}. The prime factors of the constant coefficients exhibit complex patterns in that they are:

{1, 2, 32, 17 × 24, 32 × 5 × 13,093, 215 × 32 × 7 × 7,911,539..}

for the K2 graph, 2-cube, 3-cube, 4-cube, 5-cube and 6-cube, respectively. Some powers of 2 appear
as factors only for even n-cubes, and some powers of 3 appear to be a factor for the constant
coefficients of odd n-cubes including the possibility of 3 being a divisor. In fact, the number of perfect
matchings of the 7-cube, 391,689,748,492,473,664,721, 077,609,089, is divisible by 3 but not by 9. The
corresponding constant coefficient has been previously obtained for the 3-cube as 9 [66], and the
matching polynomial of the 3-cube [66] is given by:

M(3-cube) = x8 − 12 x6 + 42 x4 − 44 x2 + 9

We note that the third coefficient is (7/2) times the second coefficient for the cube, a trend that
we have noted above. The above matching polynomial of the 3-cube was obtained by assigning
imaginary weights to three of the edges of the cube, each edge separated by one edge in the direction
of arrows. Subsequently, the rows of the adjacency matrix need to be rearranged in the order of
odd vertex labels first followed by even vertex labels. The secular determinant of such a complex
but hermitian matrix yields the matching polynomial of the cube. We have made several such trial
attempts to compute the matching polynomial of the 4-cube, but thus far we were unable to find a
suitable edge-weighted graph that would generate the matching polynomial of the 4-cube through the
secular determinant method. The recursive procedures that we have used for computing the matching
polynomials are extremely intensive and do not work well beyond the 6-cube. Consequently, we
envisage a combination of recursive reduction and artificial intelligence techniques to speed up the
recursive pruning and computations, so that when sufficiently larger cluster graphs such as cubes
and cubes with pending bonds are reached the technique can stop the recursive reduction. In this
case the matching polynomials of such cluster fragments need to be stored in a library, and then
using prior methods and machine learning techniques the matching polynomials of the parent graph
can be computed. Unlike the spectral polynomials, at present, no relations seem to exist between
the matching polynomial of the n-cube and the matching polynomials of the (n-1)-cube, (n-2)-cube,
(n-3)-cube . . . , 3-cube. If such relations can be found then the matching polynomials of n-cubes can
indeed be computed more efficiently than the presently available methods to compute them. The
other alternative is to find the complex-edge-weight n-cube whose characteristic polynomial is the
matching polynomial of the n-cube.

4. Conclusions
In the present work we have computed a large number of distance- and degree-based topological

indices, entropies, spectra, the characteristic, and matching polynomials of n-dimensional hypercubes.
We have demonstrated the power of recursive Hadamard transforms in computing the spectra of
n-cubes. We have reported numerical results for several topological indices of 11- and 12-cubes
and the numerical spectra of up to 23-cubes. The computed numerical results form the basis to
validate the exact analytical expressions that we have obtained for the topological indices, spectra,
and their polynomials. Furthermore, a robust dynamic programming technique was employed to
compute the matching polynomials of nD-hypercubes. We have shown that both the computed
distance degree vector sequences and spectra up to 108-cubes exhibit a binomial distribution. We note
that the computations of the matching polynomials continue to pose computational challenges for
such large highly clustered graphs, and future studies are desirable to combine recursive computing
with machine learning and artificial intelligence techniques for robust computations of the matching
polynomials of such highly clustered structures, including n-cubes for n ≥ 7. At present only the
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constant coefficient (391,689,748,492,473,664,721, 077,609,089) and the first three coefficients (1, -448,
97,440) of the matching polynomial of the 7-cube are known. The first 3 coefficients in the matching
polynomials of the 8-cube and 9-cube are computed as (1, -1024, 516,608) and (1, -2304, 2,634,624),
respectively. It is hoped that the present study will stimulate future works on these open-ended
problems pertinent to the n-cubes.
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