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Abstract: Numerical methods have gained momentum among specific engineering problems that
must be solved in such a manner that accuracy and speed are the two most important aspects to
consider regarding the output. This paper presents a fast, semi-analytical method (SAM) and original
mathematical algorithms to determine the pressure distribution and von Mises stress for spur gears’
meshing teeth. The SAM begins with the Hartnett approach, based on Boussinesq’s equation for the
half-space theory of linear elasticity, which implicitly means an infinite width of the gear flank. To
simulate more realistic quarter-space conditions, corrections based on virtual mirror pressure are
introduced in the computational algorithm. Mathematical surfaces modeling is an important aspect
for spur gears as an intermediate stage to determine the pressure distribution and von Mises stress.
Shaft misalignment changes the contact problem from symmetric, in which the half- or quarter-space
model can be used, to asymmetric. In the latter case, the model must determine the entire contact
area. The obtained output is validated by comparisons between our original FEA results and results
from the literature using SAMs and FEA.

Keywords: spur gears; symmetric and asymmetric contacts; mathematical modeling; numerical
methods; contact mechanics

1. Introduction

Rolling contact fatigue (RCF) represents the final failure mode for gear teeth if the
root bending fatigue or static tooth fracture were avoided in the design steps and diverse
wear appearance and scuffing were prevented by the choice of an adequate lubricant. A
chronological appraisal performed by Sanchez-Marin et al. [1] pointed out the major role of
tooth contact analysis (TCA) in the design process of gear drives.

In any real gearing application, the gear width has a finite value, and the normal load
has a non-uniform distribution as result of various causes, such as the elastic deformation
of shafts or errors due to gear manufacturing or mounting operations. The concentrated
contacts achieved during the tooth meshing process is no longer Hertzian, and no direct
analytical solution exists. The contact loading induces 3D contact stresses, which have
very high depth gradients. Consequently, their values become irrelevant at quite a small
depth. This particularity of the state of stresses developed in a concentrated contact
loading requires a very fine mesh for its modeling, resulting a higher computing time. The
numerical approaches, such as FEMs and semi-analytical methods, have been involved
to solve the non-Hertzian contact problems. Recent works published by Najjari and
Guilbaut [2] mentioned that, when compared with a SAM, the same accuracy of output
data required a computing time 125 times longer when a FEM was used. In [3], the aim of
the research was to develop a theoretical calculation method for the surface contact stresses
and root-bending stresses of spur gears in cases of misalignment error, assembly error,
and tooth modifications. It proposed a mathematical algorithm combined with FEM. Hsu
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and Su [4] described the mathematical calculations of a modified hob mill that generated
crowned profiles for pinion and gear. With crowned profile teeth, the contact changes
from a non-Hertzian line contact to point contact and, if the surfaces in mesh are quadratic
forms, contact ellipses are established with Hertz relations. Based on instantaneous contact
analysis (ICA), Sanchez-Marin et al. [1] obtained a pretty accurate pressure distribution on
gear teeth.

A comprehensive tooth contact analysis was presented by Yse and Tsai in [5]. The
numerical algorithm of pressure distribution was the same for both spur and helical
gears. Several profile modifications of the tooth—end relief, tip relief, and crowned profile
teeth—have identified the major role played by tooth profile modifications on the pressure
distribution on the tooth flank. In the case of the profile modification of a gear pair,
vibrations and noise level remain the same, with the tooth profile modifications having
no positive impact on this aspect. Additionally, Mao [6] accomplished a FEM in order to
illustrate the effects of tooth profile modifications, misalignment, and material treatments
on gear reliability.

In their paper, Qin and Guan [7] used a FEM to investigate the development of con-
tact fatigue. The authors concluded that the dynamic simulation results are closed to
the static simulation results, especially when the von Mises stress is considered a critical
stress for contact fatigue. Regarding dynamic simulation, a similar result was obtained by
Hwang et al. [8]. Today, von Mises stresses are considered critical stresses that are able to
cause rolling contact fatigue, also offering reliable explanations for some experimental data
such as the sub-surface or surface initiation of RCF, the effect of residual stresses, the role of
tangential forces, the influence of roughness and lubrication on the life of gears, the edge ef-
fect, and the influence of as misalignment and its attenuation by profile modification [9-11].
Roda-Casanova [12] used three different FEM configurations to illustrate the role played
by deformations of gears shafts and deformations caused by shaft torsions upon pressure
distribution and pressure values.

A numerical model, derived from the concentrated contacts theory of elastic half-space,
was developed by Gonzalez-Perez et al. [13]. Its results were in good correlation with FEM.
The main objective in [13] was to find the dependence between pressure distribution and
stress state upon the misalignment caused by the elastic deformations manifested in two
planes. Related to this aspect, Perez et al. [13] presented the interdependence between
the misalignment angle and pressure distribution. Roda Casanova et al. [14] presented
a comparison between the values of a face load factor calculated using an FEM and the
value provided by ISO 6336 [15]. The influences of different parameters such as the shaft
length, gear width, relative position of the gear on the shaft, and the ratio between the pitch
radius and the shaft radius have been investigated. The correlation relating to the absolute
difference between the values of the face load factor (calculated according to ISO 6336 and
FEM) and the gear location on shafts was noted.

In order to provide accurate values for the contact stress, Pedrero et al. [16,17] com-
bined the Hertz equation and the non-uniform model of load distribution along the contact
line. A parametrized calculation model based on 3D finite elements was presented in
Hedlund and Lehtovaara [18]. The starting assumption was that the tooth geometry is not
ideal due to the occurrence of errors in the manufacturing process. The gear geometry was
presented using equations derived from the rotational and translational matrices, which
were determined after the coordinates transfer from the tool coordinate system to the part
coordinate system. The normal force distribution between the pairs of teeth in mesh and
the influence of the tooth deflections, from both tooth root bending deformations and
contact deformations, have been studied. A 3D finite elements model was designed for the
calculation of tooth deflection. This model combined both contact and structural analysis
and has the potential to point out edge contacts.

A calculation model for bending and contact stresses was developed in Sanchez et al. [19].
The value of the stiffness of the meshing teeth was calculated as a sum of the individual
stiffnesses. An interdependence between the stiffness of the tooth pair meshing and
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a defined-profile factor that emphasizes the importance of contact position was found.
Lahtivirta and Lehtovaara [20] used two FEAs for meshing with different precisions. The
mesh in [20] was prepared to be very fine in the contact point zone and sparser in the
rest. Additionally, a parametric model was developed to analyze the contact pressure
and root-bending stresses of the tooth. For conditions of mixed elastic-hydrodynamic
lubrication (EHL), D. Zhu et al. [21,22] noticed that the stress concentration due to pressure
peaks was similar to the stress concentration of the of dry contact solutions presented
in Hu Y. et al. [23]. It was demonstrated that solutions for pressure distribution obtained
under EHL conditions gradually approach those of dry contact when the hydrodynamic
effect disappears. The unreasonable lubrication in the gearbox can also affect the fatigue
life of gears, as provided in [24].

The model used in the present paper was developed under the hypotheses of normal
and dry contact loading. Regarding the existing literature, this paper proposes a new
computational, semi-analytical method for the contact analysis of standard spur gears. The
original contributions of this paper are:

e  The proposal of original algorithms to calculate matrices of separations for spur gears
in different cases—ideal gearing, profile modifications, and misalignment—as long as
the matrix of separations represents a key factor for semi-analytical method approaches;

e  Theresults for contact pressure distribution were obtained considering the finite length
effect of gear width;

e  The use of von Mises equivalent stress to quantify the harmful influence of the edge
effect and misalignment errors was also considered.

Developing numerical models for gear meshing is not new, but models often face
the difficulties of a high computational duration, robustness, and accuracy. The present
paper proposes an algorithm for the geometrical modeling of the tooth mating surfaces to
determine matrices of separation in cases of shaft misalignment with respect to two planes.
It is well known that a shaft deforms not only with respect to one plane but with respect to
two because the deformation is a spatial one. A fast and practical algorithm was developed
in order to simulate a more realistic deformation of the shaft and to calculate contact
pressures and von Mises stresses in this case. The simplicity of the proposed algorithm
allows for the modeling of the surfaces according to the needs of the user. The present
algorithm can simulate the case of double misalignment of the shaft and different profile
corrections in order to avoid a sudden increase in the stress risers. The most-used profile
modifications are crown profiled teeth and the end relief profile of teeth. The proposed,
present work exhibits a much lower computation time and a high degree of accuracy. The
semi-analytical models (SAMs) developed in this work performed a fast tooth contact
analysis (TCA) with a good degree of adaptability and accuracy for the case studies on
concentrated contacts in spur gears. The present work also analyses the contact cases for
which Hertz hypotheses are not available (e.g., they are not quadratic surfaces) which has
been presented systematically in very limited work.

2. Modeling the Gear Tooth and Modeling the Contact Points (Non-Hertzian Method)
2.1. Developing the Semi-Analytical Model (SAM)

The modeling used in the present study considered the following hypotheses:

- The materials are isotropic and homogenous;

- The linear elasticity rules work up to the yield point, and a perfectly plastic evolution
manifests for larger loads;

- The two bodies are considered as half-spaces, resulting in a simpler form for the
general equations of elasticity with very few analytical solutions for particular bound-
ary conditions. Hertz’s formulae for non-conformal, concentrated contacts are the
most-known example, but different numerical methods have been developed instead;

- The contacting surfaces have no roughness, and no lubricant exists between a dry,
frictionless, normal contact;

- Noresidual stress develops as long as the loading force creates an elastic stress state only.
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When a normal load acts on any contact point of a body, the body deforms. The contact
can either be a conformal or counter-formal but, in both cases, the shape of the real contact
area and the resultant stresses remains unknown. A body is considered half-space when
there are no margins that can become stress concentration factors and a certain contact
surface is defined. A body is considered quarter-space when margins that cause stress
risers do exist, or when the contact surface ends suddenly with a 0-degree contact with the
other surfaces that are not contact surfaces. Therefore, to determine the displacement of the
half-space boundary, a numerical solution using the flexibility matrix was built.

The influence functions were built with Love’s equations for the Boussinesq integral
from the half-space theory [25]. At the common tangent plane, a virtual, rectangular
contact area large enough to cover the real contact area is considered (Figure 1). The elastic
displacements, (x, ¥) and (x, y), were measured along the common normal direction. For a
certain point situated on the tangent plane, (x, ), the sum of each individual displacement is
noted with (x, y). The semi-analytical method uses the initial, no-load separations between
surfaces of the conjugate teeth that sustain the meshing process [25]. A virtual rectangular
contact area, Ay, built on the common tangent plane around the initial contact line and a
cartesian system, (O, x, y, z), are defined. A uniformly spaced, rectangular array is defined
on the virtual contact area, with the grid sides parallel to the x and y axes. The nodes of
the grid are denoted by (i, j), where the i and j indices refer to the Ny grid columns and
N, grid rows, respectively. The real pressure distribution is approximated with a virtual
pressure distribution, characterized by a number, N = Ny-Ny, of values of Pij» which act
uniformly inside the corresponding (i, j) patch, [26,27].

(a) (b)

Figure 1. Numerical mesh of virtual rectangular contact area (a) meshing of gear tooth (b) magnified
image of meshed gear tooth. AB = the width of the gear contact virtual area. Ax, Ay = grid step on
OX and OY axis, respectively.

The surface deformation is simulated by the following group of linear algebraic
equations [28-30]:
The geometric equation of the elastic contact is:

gij = hij+wij—d, 1i=12...Ny; j=1,...Ny. M

where g;; is the gap between the normal surfaces, h;; is the matrix of separations for the
unloaded state, wjj is the elastic displacement of the two surfaces, measured along the
direction of the straight-line support of the normal load, and Jy is the rigid displacement of

the bodies.
The equation of the normal surface displacement is:

Ny N, . .
wjj = Zk=1 9 (Kifk,];rpkl), i=12,...Ny j=1,...Ny. 2)



Symmetry 2023, 15, 554

5of 27

where Kij represents the influence coefficient function and illustrates the surface displace-
ment value that was created on the (i, j) elementary rectangle by the sum of elementary
displacements created by a unit pressure located successively in all of the grid cells, and Pj;
and p,, are specific pressure values for the patch whose position on the array corresponds
to (i,j) or (k,1), respectively.

The load balance equation is:

Nx Ny o
AxBy) 7 2;':1 pij =F ®)

where F is the normal force applied on the two bodies in contact.
The constraint equation of non-penetration is:

jeld ..
ij =0 >0, (i,7)3A, )

The constraint equation of non-adhesion is:

yields ..
gij > 0——p;; =0, (i,)) h A, (5)
The elastic-plastic behavior of the material, the elastic-perfect evolution, was chosen
due to its simplicity:
pij > Py => pij = Py (6)
For contact cases, Boussinesq equation from the half-space theory of linear elasticity
has the simpler form [29]:

1[(1-0v% 1-10? 1
K= — L+ “)- dédn )
o~ i) gy ——

with the solution obtained by Love [29]:

2 12
Ki = (2 V0 [y, ) + f (o) — F (e y) — F (o))
E; Err

U
flx,y) = xln(y—l— \/ﬂ) +yln(x+ \/ﬂ)

Ax x—x—i—g‘ — = +&

X1 = X —

where:

vy, vyj—are the Poisson coefficients of body I and 1II, respectively; 0.3 for steel;

E;, E;j—Young’s moduli corresponding to body I and 11, respectively; 2.1 x 105 MPa
for a steel body;

Ax, Ay—the length and width of a patch, respectively;

x1, y;—the half-dimensions of the virtual rectangle;

Xk, Yr—the coordinates of the middle points of the kth patch;

and 1 and & are the axes of a so-called source reference system (17O¢)—this coordinate
system is useful when half-space contact problems are solved (these two axes can coincide
with the X and Y axes) [30].

In (4) and (5), A, represents the real contact area, and in (6) py is the value of the
pressure that enables the initiation of the plastic yield.

It is obvious that all machine elements whose functionality is based on a 5-degree
kinematic coupling are quarter-spaces. This is also true in the case of two meshing teeth,
because a margin is involved as long as the width of the teeth is limited. The solution to
these problems necessitates an extension to the Hertz theory. Due to the complexity of
the boundary conditions, quarter-spaces are converted into half-spaces with established
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eigenstrains that are analyzed using the solution of half-space inclusion. Quarter-space
problems are particular cases of general wedge problems. Contact problems for general
wedges can be solved by considering the contact bodies to be half-spaces.

2.2. Validation of the New Model

Due to its high accuracy and convergence speed, the conjugate gradients method [30-33]
was chosen to solve the system of algebraic linear Equations (1)—(3). The fast Fourier
transform (FFT) algorithm was used to reduce the computation time needed to calculate
the convolution products. Thus,

Nx—1 Ny—1 =~ o
wj=Kop=Y Y K gy e U= IPFT(K-p) ®)

where wj; is the elastic displacement of the two surfaces, measured along the direction of
the straight-line support of the normal load and is the rigid displacement of the bodies; the
symbol ® represents the convolution product between K;; and pj; K and p are the complex
matrices obtained as discrete Fourier transforms of the matrices Kj; and p;;, respectively;
U = K-p, where U is the displacement matrix in the frequency domain and K-7 is an
element-to-element product; and U = IFFT (ﬁ) , where IFFT means inverse fast Fourier
transform and U is the displacement matrix in the spatial domain.

Two types of comparisons have been accomplished to validate the accuracy of a semi-
analytical method (SAM) for pressure distribution. For Hertzian point contacts, the pressure
distribution obtained numerically with a SAM proved to be identical to the distribution
stipulated by Hertz relations (Figure 2). For non-Hertzian contacts, the comparisons have
been made using results made available by FEM analyses. For the contact between a
crowned cylindrical roller and a cylindrical raceway, Figure 3 exemplifies the very good fit
of the SAM results with those of the FEM analysis carried out by de Mul et al. [34].

Plane x = (. ° SAM
- _ | ——Herlz
-y =
N <. Son
o B 0.5
bH =0.7 mm
f o =1990 MPa |
L | on g
-1 -0.5 0.5 1
y/b
H
| e T .
Plane £7$ﬁa-a seboooong, |
_ 0.5 ,um : . ﬂu-%
E ,{a : R’\
= 0p : ! ]
g g q\ ,,,,a Kwa
o “a&aﬁﬂ_wa poananas?’
R 1 ; ;
-1 0.5 0 0.5 1 0.5 0 0.5

.'c.-’h“ X (mm)

Figure 2. The pressure distributions resulted at normal loading of two identical smooth steel spheres:
SAM results versus Hertz results (F = 2000 N, 4 = 100 mm).

(MPa)
2
2

XX

XX
=
2
2

Pressure , P
5]
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1] o
=
=
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‘ ) n L
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Figure 3. The non-Hertz algorithm vs. FEM results reported in [34].
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A perfect correlation can be observed between the two approaches: the Hertz analytical
results and the semi-analytical results (Figure 2).

The contact between a crowned roller bearing and its raceway, analyzed using a
FEM by de Mull et al. [34], has been chosen to exemplify the second method used for
the validation of a non-Hertz solver (Figure 3). A good correlation exists between the
subroutine that solves the equation group given in (1)-(6) and the FEM results from [34]
(Figure 3).

The computational algorithm that solves the non-Hertz equations is available in any
case of concentrated contact. What differs between one case or another is the geometry
of the bodies that are in contact. As long as the pressure distribution subroutine has been
validated as 100% accurate, the focus can be set on different cases of standard spur gears.
As previously mentioned, the matrix of separations is determined after the mathematical
modeling of the surfaces in contact.

2.3. Matrix of Separations for Various Conditions
2.3.1. Matrix of Separations for Ideal Gearing Conditions

In general, the geometrical modeling process consists of using an involute profile
(Figure 4). By fixing a certain contact point on the transversal profile of a pinion tooth,
the position of the contact point corresponding to the gear profile can be determined
by considering a perfect and smooth contact between the profiles. The present paper
analyzes concentrated contact cases for gears that are not corrected (x; = x» = 0). No
misalignment conditions, manufacturing errors, or profile modifications were considered
while developing the models. The separation matrix determination algorithm in this case
is based on the following considerations.

Figure 4. Illustrative sketch regarding the matrix of separations formation—basic principle.

The parametric equations of the involute curve are:

{ x = ry(cosf + Bsind) ©)

y = rp(sind — Ocosh)

where 1y, is the radius of base circle and 0 is the curve parameter.

In Figure 4, the next notations were adopted:

AB = the width of the gear contact virtual area.

MN = the width of the pinion contact virtual area.

A contact point, C;, with a radius, rc, (computed as initial data), and a corresponding
pressure angle, oci, were considered on the involute curve. In order to determine the



Symmetry 2023, 15, 554 8 of 27

position of the associated contact point of the gear, the corresponding pressure angle of
point C, was determined using the following relations:

r,,%](rbl + rpp)tan oy = —rpptan ac, =>

xc, = arc’ran(r%1 [(rp1 + rpp)tan oy — rpptan occz}) & tan o, —
tan o, — L (rpg +rpp ) tan oy > (10)

tan occ, — L (11 +1pp ) tan oy

tanxc, = — ﬁrw => xc, = arctan<—

b1
b2

With «c, known, the position of C; can be determined as:

acy = arccos 22 => rc, = b2 (11)
rco COs X ¢,
Here, 1,1 and ry,; are the radii of the base circles of the pinion and gear, respectively,
and o, is the pressure angle at the gear centrode.
The curve parameter, 6, of the established position can be determined by summing
the two squared expressions presented in Equation (9):

(12)

Here, Oc, is the curve parameter corresponding to the contact point on the mating
gear. Analogous:

(13)

where O¢, is the curve parameter associated to the contact point position on the pinion.
The tangent straight lines that pass through the two tangent segments on C; and C,
have the following equations:
X1 —Xxg, Y17 Yq

A (14)
Xc, Yo,
X2 — XC Y2 = Yc
7 2= 7 s (15)
Xc, Yc,
The y; and y, expressions are:
I‘bl ecl
= . Ee— 1
y; = cotOc,-x1 + sin0c, (16)
1,0
y, = cotOc,-xp + i 4 (17)

sin 6C2

In these equations, x; is the variable of the linear function, y;, and xc, and yc. (i = 1,2)

are their afferent values at points C; and C,. Additionally, y’Ci and x’Ci (i=1,2) are the

first derivatives at points C; (i = 1,2) with respect to 6.
The coordinates of M and N can be determined using the following relations:

XM = I, - (sin B¢, — 1p,-0c, -cos Oc, ) — by cos (arctan (cot Oc, )) (18)
Ya = Tb, - (cos O, +1p, B¢, -sin B¢, ) — byy- sin (arctan (cot ¢, ) ) (19)
XN = Tp, - (sin O, — Oc, -cos Oc, ) + by- cos (arctan (cot O¢, ) (20)
YN = T, (cos O, + O, sinOc, ) + by sin (arctan (cot Oc, ) ) (21)

The coordinates of A and B can be determined using the following relations:

XA = TIp,-(sin B¢, — 11,,-0¢,c0s O, ) + by - cos (arctan (cot 6, )) (22)
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Yo = I, (08 B, + 1p,-6¢,-sin B¢, ) + by~ sin (arctan (cot 6c, ) ) (23)
Xp = I, (sinOc, — O¢,-cos Oc,) — by cos(arctan(cot O, ) ) (24)
Vg = Tn,  (cos O, + ¢, sin Bc,) — byy- sin (arctan (cot Oc, ) ) (25)

In the above relations, by is the half-width of the virtual rectangle that approximates
the real contact area.
The normal line at point N will have the following equation:

Yon = " ooton o Xny + Yy + XN+ cot(atan(cot Oc, )) (26)
where xn is the variable of the normal straight line defined as a linear function—ynN.

To find the contact point between the normal and the involute curve, a contact function
is defined by substituting xn, and y, with the parametric equations of x and y presented
in Equation (9). The contact function is noted with ®.

D= Yot ﬁ‘xm\; — yN — XN~ cot(atan(cotO¢, ) )

& = Yo + b - - cot{atan(eot ) = @
® = rp,- c0s 0 +rp, -0-sin O + ﬁ- (rp, sin® — B cos0) — yy — xn- cot(atan (cot O, ))
1

The distance between N and D, Figure 5a, represents the separation between N and
the new point determined on the involute curve (called D, for exemplification):

d(N,D) = /(x0 — xn)2 + (¥ — ¥ 28)
Ya
B

C;

Al
f( E\

0 * >
X - "
(a) (b)

Figure 5. Schematic representation of procedure formation of matrix of separations (a) tooth flank
(b) gear flank (the notations with letters were specified before Figure 4).

The steps (i)—(ix) are repeated for all Ny discretization points situated on both tangent
segments that correspond to pinion and gear contact points (Figure 5). The positions of
each point vary depending on the position of the current chosen discretization point. An
elementary side width between two neighbor points is:

—
_ IIMN]

A=
Ny —1

(29)
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The same procedure can be used to calculate the separation between the tangent
segment at the homologous point of C;, which is C; (Figure 5b). As long as C; is the
homologous point with respect to Cq, the homologous separation of d(N, D) is the distance
between A and E—d(A,E).

The procedure is also extended for each discretization point situated on the tangent
segment of the gear profile. The matrix of separations was obtained by summing each
distance from each discretization point to each determined point situated on the involute
curve for each pinion and gear case. The described algorithm is applied until all separations
are calculated. The separations are the same for all tooth widths, even though only the
transversal profile is used for the tooth in the presented calculation procedure. This happens
because the tooth flank surface is a ruled surface, with straight lines that are parallel to the
gear axis (Figure 1). Figure 1 exhibits that all straight lines forming the tooth flank surface
are parallel to the OX axis. In order to calculate the separation matrix, two tangent planes
are drawn through C; and C,.

2.3.2. The Configuration of Matrix of Separations in Case of Shaft Misalignment Conditions

In practice, the meshing process between two mating tooth surfaces cannot be ac-
complished under ideal conditions. During meshing, a number of aspects exist that affect
the functionality of the gear. Due to the normal load—and other loads that appear in the
process—the gear shafts suffer deformations. In addition to this, if manufacturing and
mounting errors are considered, it is obvious that the meshing process is affected and the
contact does not take place along a line anymore but at a point. This leads to a sudden
increase in contact pressure and the occurrence of stress risers at the tooth edges of the gear.

In case of shaft misalignment situations, the following hypotheses were considered:

- The shaft is a rigid body, so the inner deformations will not be considered: only the
surface point displacements are considered (Casanova [12]);

- The bending stresses on the tooth are neglected;

- The shaft torsion is not considered;

- Other deformations regarding the whole assembly will not be considered;

- The only shaft that will be deformed (as a rigid body) is the pinion shaft; the gear
shaft remain unaffected by deformation.

Two types of misalignment, one with respect to one plane and a second with respect
to two planes, are considered in this work.

The Configuration of Matrix of Separations in Case of Shaft Misalignment with Respect to
One Plane

In this case, the shaft deformation is in accordance with the model depicted in Figure 6.
The flank surface of the pinion is not in a line contact with the mating surface but in a point
contact. In an abstract mode, this surface can be considered the ruled surface defined by the
involute curve, ruled along the gear axis and tilted with respect to the mating surface. The
orientation is kept the same as in previous case, in which ideal conditions were considered.

The deformations, in this case, will be measured with respect to the deviated plane.
Instead of calculating the separation matrix between each point on the pinion flank surface
and the tangent plane, the segment lengths between each point situated on the tooth flank
surface and a new deviated plane were calculated, keeping the direction of the normal
vector of the initial normal plane. This approach to calculating the matrix of separations
best simulates this axial misalignment case, in which separations increase as long as the
point positions become further from the contact point (point A, according to Figure 6).
Therefore, for the first case, it is enough to change the spatial orientation of the tangent
plane in the algorithm. The tangent plane on the tooth flank surface contains a straight
line belonging to the flank surface. In this case, the calculation procedure for matrix of
separations admits the following considerations:
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- Anew plane is drawn through the intersection in a straight line between the tangent
plane and the plane Z = 0, so that the angle between these two planes is exactly the
misalignment shaft angle;

- Each tangent plane contains the involute profile tangent segments presented in
Section 2.3.1;

- Each separation, calculated a priori, is then summed up with the segment lengths
between the tangent plane and the new deviated one.

Deviated plane that helps in
_~ calculating the matrix of
separations in case of axial

misalignment

i Tangent plane

Flank

surface

The angle between the tangent plane \\

A\
. > \“
and the deviated plane (equal to \ Straight lines family that form the

shaft misalignment angle) flank surface

Figure 6. Schematic representation of the tangent plane and deviated plane for modeling of misalign-
ment conditions (A,B,C are the contact points).

When the misalignment angle is known, the segment, [OA], is determined as:

OB

OA= ———
cos AOB

(30)

The value of [OB] can be found at every step because, when the flank surface is meshed,
the coordinates of any point are determined by establishing each point on the axis that is
parallel to the straight lines that form the tooth flank:

OB = V (xg —x0)> + (y5 — Yo)” + (z5 — 20)? (31)

For each step, [BC| represents the value of separations for ideal gearing conditions,
and [AB] can be calculated as:
AB = OA-tan AOB (32)

Therefore, the separations consist of the sum between each AB and BC segment
lengths (BC being the representative separation whose determination was presented in
Section 2.3.1).

The Configuration of Matrix of Separations in Case of Shaft Misalignment with Respect to
Two Planes

For the second case, the deformation of the shaft will be measured with respect to the
axial plane but also to another plane that is perpendicular to the axial plane (Figure 7). Each
type of misalignment illustrated in Figure 7 is analyzed in the current paper. In general,
most cases are a combination between the first and the second type of shaft misalignment
(Figure 7a,b). This case is also treated in the current paper. In Figure 7c, there is a type
of non-coincident edge contact. Stress risers occur when the edges of bodies that are in
contact are half-spaces and their edges are not coincident. In the case of edge coincidence,
the stress risers are significantly lowered or even eliminated. This fact was proven in [2],
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and this correction procedure was also applied in the current paper for coincident edges
(Guilbault correction procedure for coincident edges—Section 3).

| | e—
| | | ~
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1]
I
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i
ot | S |
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[f
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(a) (b) (©)

Figure 7. Different misalignment situations [12]: (a) skewed gear, (b) tilted gear, and (c) displaced gear.

Therefore, after shaft misalignment, the tooth flank surfaces will have similar positions
as in Figure 8.

When deformation takes place with respect to the XOZ plane, the Y-coordinate remains
constant; the X-coordinate remains constant when the deformation takes place with respect
to YOZ plane.

In Figure 9, C1D; is the contact line before shaft deformation and C'l' D'l' is the new
position of C1D; after the shaft deformation. In this case, the contact is attained at one
single point: C;. Let M be a point on the pinion flank surface that is displaced because of
the shaft deformation. Point P represents the shaft bearing and remains fixed. When the
flank surface is meshed in a certain number of points, the calculation procedure for the
separation matrix is repeated for each point. For simplification reasons, the problem will be
reduced from a spatial matter to a plane matter (Figure 10). Here, d; represents the distance
between the bearing and the force appliance point on the tooth flank.

If misalignment is present with a known value, the algorithm to calculate the matrix
of separation follows the following steps. The new coordinates after the point are rotated

with respect to YOZ plane.

‘?/]:\/(di+zM,)2+yM,2

0y = arcsin YW (33)
K
The coordinates after rotation are:
XMl/ = XM
Ymy = 1/-sin(6p — @) (34)

zyyr = —dj +1cos(0p — @)
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Gear tooth flank -

= 4 _Pinion tooth flank after

|
—T1
: shaft deformation
Pinion tooth flank before '
1

shaft deformation

The new plane

Tangent plane

Pinion’s tooth position

before shaft deformation

after shaft deformation

(b)

Figure 8. Schematic representation of tooth flanks (a) and tooth positions (b) before and after shaft
misalignment (the notations with letters were specified before Figure 4).

X

Figure 9. Meshing teeth position before (with black) and after shaft deformation (with red).
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Figure 10. Point displacement in case of a shaft misalignment with respect to two planes: (a) YoZ
plane and (b) XoZ.

Find the new coordinates after the point is rotated with respect to XOZ plane.

—

I.//

= \/(dl + 2z M//)2 + YM"Z
X M (35)
S

B9y = arcsin

The coordinates after rotation are:

Xp 7 = XMy T /- Sin(eoo + 'V)

yMl// = yMl/ (36)
zy,r = —dj + 1"+ cos(8go + V)

Identifying the necessary plane for the matrix of separation calculation.

Two mating surfaces intersect each other along a contact line. Either the pinion flank
or gear flank are ruled surfaces, so the tangent plane between these two surfaces contains
the line intersection between these two surfaces. When shaft deformation happens, the
flank surface changes its position and contact point. Thus, a new plane must be drawn,
parallel to the tangent plane. Let [P] and [P;] be the planes presented in Figure 8b. As
long as these two planes have parallel directions, the only term that differs between their
equations is the free term. The Z-coordinate may be found after the displacement with
respect to the planes for each discretization point on the tooth flank surface.

As long as the new coordinates have been achieved, through each new Z-coordinate, a
straight line representing the normal on the tangent plane is drawn. Its equation is:

— — — —
N=Al+Bj +Ck (37)

where A, B, and C are the coefficients of the tangent plane.

This straight line intersects the tangent plane and the conjugate surface of the gear
tooth flank. As long as a deformation is achieved there, the homologous points situated on
the gear tooth flank must be found. In Figure 11, C; is a certain point on the pinion tooth
flank, taken as the discretization point before shaft deformation. Without misalignment,
its homologous point on the gear involute profile is Cp. After misalignment, according to
Equations (33) and (35), point C; changes its coordinates, and a new position in space is
obtained: Cj. From this point, the normal line on the plane is defined. The position marked
with Dy is the intersection between the normal and the pinion flank surface if misalignment
did not happen. This straight line also intersects the gear tooth flank at D,. Therefore, D,
is the homologous point on the gear tooth flank to C;. As long as D, is found, the same
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procedure of separation calculation, previously mentioned in Section 2.3.1., can be applied.
The presented algorithm also applies to C;. The procedure exposed in Section 2.3.1. is
available for two parametric equations of the same involute profile, defined in the plane
Z = 0. Although the coordinate of C; was obtained using Equation (35), the points C}
and D, will have the same coordinate along the Z axis. Therefore, the procedure presented
in Section 2.3.1. can be applied for every plane that is parallel to the plane Z = 0 and
which passes through any point whose Z-coordinate is known. In this case, the algorithm
is available for each Ny x Ny point of the mesh.

v

Figure 11. Graphical illustration of the determination of homologous points on the gear tooth flank.

3. Hertzian Distribution of Contact Pressure. Contact Pressure Determination Using
FEA. (Guilbault Correction Factor)

3.1. Pressure Distribution as an Infinite, Long Half-Cylinder

The Hertz analytical approach for the line contact subjected to normal loading provides
the pressure distribution as a half-cylinder with infinite length and a constant elliptic shape
of any transversal section without edge effect (Figure 12). However, for the non-Hertzian
line contacts subjected to normal loading, the pressure distributions are closed to those
obtained by using the Hertz approach for ideal Hertzian line contacts except for the edge
zones. Due to the edge effect, the middle values of pressure in the case of non-Hertz contact
are lower than in the case of a Hertz contact type. Therefore, in the case of a non-Hertzian
linear contact, the analytical result displayed by the Hertz methodology can be a first
validation of the developed SAM. When misalignment situations occur, the Hertz approach
can no longer be used as comparison.
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Figure 12. The non-realistic stress plane state at free boundaries of a finite length contact.

3.2. The Pressure Distribution Using a Finite Element Method

The robustness and accuracy of the data obtained using the SAM algorithm were
confirmed through comparison with data provided under similar conditions by:

- The authors’ FEA results;
- Other authors’ TCA and FEA results;
- Other authors’ results from using a different SAM approach.

The FEM analysis for the validation of this SAM was performed in the Static Structural
module of the ANSYS Workbench. The material used was linear structural steel, and the
mesh consisted of 67.000 nodes and 15.000 hexahedral elements of the second order. For
these FEAs, an ANSYS calculation used a preconditioned conjugate gradient solver with
sub-steps varying from 10 to 100 per time step.

3.3. Guilbault Correction Factor

The Hertz approach of linear concentrated contact was developed from basic half-
space equations and, consequently in this approach, at each free side of the tooth flank
there is a plane stress state which is not a real situation (Figure 12).

In order to eliminate the occurrence of the two shear stresses and the single normal
stress at the edge zones, a two-step correction procedure was proposed by Hetényi [35,36],
applied by de Mul [34], and methodically searched by Najjari and Guiblault [2]:

- A fictive mirror pressure distribution was used to eliminate the shear stresses (Figure 13);
- Iterative half-space solutions were used until all quarter-space boundary conditions
were accomplished.

To increase the speed of the algorithm and to diminish the normal stresses at free
boundaries, Guilbault [37] proposed the multiplication of fictive pressure with virtual
distributions by a factor, ¢ (Figure 13):

1
b =129 — 7= (0.08 — 0.5v) (38)
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Figure 13. The objectives pressure distribution and Guilbault virtual pressure distribution.

As presented by Guilbault [37], for two edges that are coincident, the edge effect is
significantly lowered or completely eliminated in some cases.

For contact cases where the edge effect appears, the results using this correction
procedure will also be presented.

4. The Importance of Contact Pressure Determination (Von Mises Equivalent Stress)

All real, concentrated contact cases consist of rough surfaces with a finite contact
length (if the contact takes place along a line, as in the case of gears) and the radii of at
least one body that is in contact is not constant but varies in the range, following a specific
mathematical law. In this paper, even though practical concentrated contact is analyzed,
the hypothesis of smooth contact surfaces is maintained, with lubrication and roughness
being neglected. If at least one body has a finite length, the pressure values are higher at
the end zones. This process is known as the edge effect. Many machine elements, such as
roller bearings and raceways, perform gear (flanks contact) work and transmit load based
on a linear, non-Hertz contact type, and the edge effect manifests in these cases.

The contact loading determines a spatial distribution of stresses with high depth
gradients [29]. The von Mises stresses have a sudden variation, and the maximum depth
value of propagation of these stresses varies in the range between 50 and 100 pm. In-depth
stresses are the main cause of gear fatigue and the occurrence of pitting. The occurrence of
stress on a contact surface leads to the occurrence of micro-cracks. If the friction between
two flanks is considered, the tangential stresses lead to the peeling occurrence, which
represents a systematic elimination of surface material, thus affecting the gear reliability.

It is very important to consider elementary volume stresses when studying the relia-
bility of a part. Ioannides and Harris [38] developed a model for estimating the bearing
contact fatigue. For any elementary volume under the stress incidence, the reliability, S, is
calculated as a function of N, the number of cycles, as follows:

L~ Ne {1f (0 =) 5, (39)
5 i

where oeq is the equivalent stress value of the elementary volume; ou is the stress fatigue
limit; ¢ is the stress exponent; z’ is the mean value of the stress; & is the depth exponent; e
is the Weibull slope; and V is the volume under the stress incidence. The values of ou, e,
¢, and h are experimentally determined, according to [38]. Popinceanu, Diaconescu, and
Cretu [9] made a comparative analysis of different components of the stress tensor. The
analysis concluded that the equivalent von Mises stress can assure the best correlation
with respect to different theoretical and experimental research findings. The maximum
value of the von Mises stress was obtained under the contact domain, with this stress
having a high influence on the contact surface. The maximum operational value of the
von Mises stress can occur under or on the contact surface, depending on the working
conditions (lubrication, surface roughness, etc.). Von Mises stresses are used in durability
and pitting calculations.
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Under real working conditions, the gearing process is influenced by different factors.
One of these factors is elastic deformation. Elastic deformation involves error transmission
and perturbations of pressure distributions along the tooth flank, especially on the edge
zones. Pressure concentrations rush the contact fatigue and wear occurrence. Alternative
fatigue criteria consider the maximum shear stress, 745, or the maximum von Mises stress,
oym (Figure 14b), are critical stresses responsible for the initiation of RCF. Equation (40)
of the von Mises equivalent stress reflects the contribution of each component of the
stress tensor.

1/2
(40)

.
. .
R
3
.
s,

e

meTH . -1.5¢ _GvMiseS/GH |
wnG o, ; T 5O
—o_Jo, : =T 450
0 08 06 04 02 0 02 2 02 04 06 08 I
c/oy S /O
@) (b)

Figure 14. Stress evolutions along centerline of contact area: (a) normal stresses and (b) critical
stresses for RCF.
5. Numerical Results

The computation program is based on the mathematical principles exposed in the

previous paragraphs. The numerical results are presented in the following particular cases.

Case 1. Contact pressure distribution determined using the SAM and FEA in an ideal gearing case.
Von Mises stresses were determined with original FEA results. The SAM validation was performed
with the original FEA. Table 1 exhibits the initial data used for analysing the first gear pair.

Table 1. The initial data for the first gear pair to be analyzed.

Item Symbol Unit Pinion Gear
Module m mm 4 4
Pressure angle X grades 20 20
Number of teeth z 25 51
Young’s modulus E GPa 208 208
Poisson ratio v 0.3 0.3
Normal load Fn N 5978.9 5978.9
Action point radius—pinion Iy mm 51.4 51.4
Number of SAM meshing points Nx x Ny 128 x 32 128 x 32
Tooth width B mm 50 50

Profile correction coefficients X] = Xp - 0 0
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The data provided by the current SAM algorithm are presented in Figure 15 as the
3D spatial distribution of the pressure; two views of this distribution (longitudinal and
transversal pressure distribution in the center of the contact domain) and the contact area.

600
— 400+
-]
2
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Figure 15. 3D (a), transversal (b), longitudinal pressure distribution (c), and contact area (d).

The value of the pressure provided by the SAM algorithm in the middle of the contact
area is 509.3 MPa. The maximum pressure values at the edge zones are 910 MPa. These
extreme values depend on the resolution of the mesh. Unlike extreme pressure, the middle
pressure values maintain approximately the same value as the number of patches have a
negligible impact on the middle pressure values.

A FEM analysis was developed, and the final results are presented in Figure 16. The
middle value is 493.84 MPa for the current FEM simulation. The difference between
SAM and FEM is approximately —3.13%, which can be appreciated as a very good fit.
Additionally, the inner stresses for this case were determined using a FEA. The maximum
value of the von Mises stresses is around 570 MPa. In the following cases, the von Mises
stresses will be determined using the SAM algorithm. The original FEA results were
developed in order to better validate the accuracy of the virtual solver.

Max - 606.32

538.96.

1.3
4716 —

404.24
336.88

15124 3
269.51

202.15

134.79
67.43
Min - 0.07

Figure 16. FEA simulation results for the same case.

The same simulation case of the SAM was performed with the Guilbault correction procedure.
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When the Guilbault procedure is applied (Figure 17), it can be observed that the
extreme values of the pressure decreased from 910 MPa to 640 MPa due to the correction
factor, 1. This reduction in the extreme values leads to an increase in the median pressure
of up to 543 MPa. This is due to the necessity of satisfying the equilibrium equations of the
non-Hertzian method.
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Figure 17. 3D (a), transversal (b), longitudinal pressure distribution (c), and contact area (d) in the
case of Guilbault procedure appliance.

Case 2. Contact pressure distribution determined using the SAM in an ideal gearing situation.
Von Mises stresses determined using the SAM. The validation used neutral results found in open
technical literature.

The SAM results are presented in Figure 18 in the same manner as the previous case.
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(b)
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Figure 18. 3D (a), transversal (b), longitudinal pressure distribution (c), and contact area (d) using
the SAM.

These results were validated by comparing them with the results provided by the com-
putational algorithm presented in [39]. It can be observed that the difference between the
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two approaches is insignificant, comprising only several MPa at the edge zones. Figure 19
exhibits the results when Guilbault procedure was applied.
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Figure 19. 3D (a), transversal (b), longitudinal pressure distribution (c), and contact area (d) using
the SAM and taking into account the Guilbault procedure.

The von Mises stresses provided by the current computational algorithm are presented
in Figure 20.
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Figure 20. The longitudinal pressure distribution and the effect of end stress riser on distributions of
contact pressure and von Mises equivalent stress.
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Both the SAM algorithm and the SAM with the Guilbault correction algorithm use the
same procedure to obtain the boundary of the contact zone. The boundary of the contact
area is attained in points M(j, j) for which pressure has the evolution:

pij—1)>0; pij)=0; p@ij+1)=0;

The results from Figures 18d and 19d indicate the presence of peaks in the pressure
distribution at both ends of the SAM analysis. Practically no such peaks exist when the
SAM algorithm included the Guilbault correction.

It has already been mentioned that the von Mises equivalent stress is considered to be
a critical stress for starting and developing RCE. Under working conditions, the gearing pro-
cess runs in the presence of inherent elastic deformations that involve transmission errors
with perturbations of pressure distribution along the tooth flank. Pressure concentrations
precipitate the contact fatigue and wear occurrence, leading to much shorter gear lives. The
developed SAM allows for the study of different influences on distributions of von Mises
stress. This set of results was used to exemplify how the von Mises stress distribution is
changed by the stress risers (Figure 20). As long as the accuracy of the contact pressure
distribution has been validated, the von Misses distribution is also considered validated. A
stress increase is observed at each edge zone. For a better observation at point b, a detail
section is provided on a tooth width portion equal to 1 mm. At a depth of approximately
—0.075 mm, the von Mises stresses reach a maximum value, with the ratio between the von
Mises stress and the Hertz value being equal to 1. Thus, a value of 579 MPa is observed for
the von Mises stress.

Case 3. The determination of the Von Mises stress in the case of shaft misalignment with respect to
one plane.

The initial data are the same as in Case 2.

In order to highlight the harmful effect of shaft misalignment, a set of results were
provided by the computation algorithm using the same initial data presented in Table 2. A
misalignment angle measuring ¢ = 0.3 min (0.005 degrees) was further introduced in this
part. In addition, a chamfer of 0.2 mm was defined for the tooth profiles in order to avoid
material damage and lower the high stresses that would have appeared without this small
correction (Figure 21).

Table 2. The initial data for the second gear pair to be analyzed.

Item Symbol Unit Pinion & Gear
Module m mm 4

Pressure angle o) grades 20

Number of teeth z 23 51
Young’s modulus E GPa 208

Poisson ratio v 0.3

Normal load Fn N 2910

Action point radius—pinion Iy mm 46

Number of SAM meshing points Nx x Ny 256 x 50

Tooth width B mm 32

Profile correction coefficients X1 = Xp - 0 0

For simplicity, due to the fact that the initial data are the same, only the transversal
contact pressure distribution is presented with von Mises stresses. In the case of a mis-
alignment occurrence, the Guilbault procedure cannot be considered because it operates
only in cases of coincident edges. When misalignment occurs, the edges of the teeth are
not coincident.
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Figure 21. The effects of stress riser and a misalignment of 0.3 min on distributions of contact pressure
and von Mises equivalent stress.

A significant Increase can be observed on the left side of the teeth of the contact
pressure values. The maximum value of the contact pressure is approximately 1150 Mpa.
Additionally, the von Misses stresses have much higher values on the left side. For every
elementary volume of material appreciably stressed, Equation (38) connects the parameters
referring to material (ou), load (oeq, z, h), volume of material (V), and the level of reliability
corresponding to a certain number of loading cycles. Even if the balance equation is
satisfied, the strong, non-linear character of Equation (38) establishes the requirement to
identify the influence of each factor. At a depth of approximately —0.05 mm on the left side,
the von Mises stresses reach a maximum value, with the ratio between the von Mises stress
and the Hertz stress equal to 1.65. Thus, a value of 955.32 Mpa is observed for the von
Mises stress on the left side. On the right side, obviously, the edge pressure value decreases,
with the ratio between the von Mises stress and the Hertz value being equal to 0.7. Thus, a
value of 405.3 Mpa is observed for the von Mises stress on the right side.

Case 4. Contact pressure determination in the case of shaft misalignment with respect to two planes.

The initial data are presented in Table 3.

A coarser mesh was chosen for this case in order to be closer to the mesh type presented
in Casanova [12], in which the authors used 80 elements for the SAM mesh. In addition to
a SAM, a FEA was run in [12] in order to make a comparison between the results. Figure 22
shows the results obtained with the current computation algorithm, and Figure 23 is a
variation chart with the comparison between the results provided by the current presented
algorithm, the SAM-based algorithm presented in [12] and the FEA-run results presented
in [14].
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Table 3. The initial data for the fourth gear pair to be analyzed.

Item Symbol Unit Pinion & Gear
Module m mm 3
Pressure angle o) grades 20
Number of teeth z 34 57
Young’s modulus E Gpa 208
Poisson ratio v 0.3
Normal load Fn N 2910
Action point radius—pinion Ix mm 51
Number of SAM meshing points Nx x Ny 16 x 16
Tooth width B mm 25
Angle plane I P arcsec 72 0
Angle plane I v arcsec 194.4 0
1500

1000}
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=~ 5001

12 -10 -8 -6 -4 -2 0 2
X {(mm)
(b)

Figure 22. 3D contact pressure distribution obtained by SAM (our results) (a) and longitudinal profile
of pressure distribution (b).
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Figure 23. Comparison between the current SAM algorithm results, the SAM results from [12], and
the FEA results from [12].

Due to the small number of discretization points, only the 3D pressure distribution and
longitudinal pressure distribution are presented. The maximum values of contact pressure
are as follows: 1411 Mpa according to the current SAM results, 1394 Mpa according to the
FEA from [12], and 1511.1 Mpa according to the SAM from [12] (Figure 23).

The increase in edge pressure value decreases the functionality of the gear, affecting the
reliability of the part. The difference between the results provided by the current SAM and
the SAM from Casanova [12] is +7%, while the results provided by the current SAM and
the FEA results from [12] are close, with a difference below 1%. For the current computation
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algorithm, 256 mesh elements were used for the virtual rectangle discretization, and 103
of them were found with pressure values higher than 0. This means that the number of
mesh elements is almost equal to the number of mesh elements from [12], even though the
discretization method used there was different. Thus, the present algorithm is validated.

6. Conclusions

The aim of the present work was to develop numerical methods to obtain the von Mises
stresses and pressure distributions on the surfaces of a pair of mating spur gears. Thus, a
SAM was developed based on the Boussinesq equation of half-space theory, following the
Hartnett approach for numerical formulation. Furthermore, the necessary corrections for
linear concentrated contacts with a finite length, as proposed by Najjari and Guilbault [2],
were considered in the numerical algorithm.

Matrices of separation between conjugate teeth of spur gears running in ideal condi-
tions and under realistic conditions of misalignment were considered. The determination of
matrices followed a specific and original algorithm, based on the tooth transversal profile
and gear geometry. The large system of algebraic equations was solved using the conjugate
gradients method (CGM), which proved to be precise, robust, and very fast when compared
to the finite element approaches.

The validation of the developed SAM was performed by comparing its results with
those from the literature and with our original FEA results. When the shaft misaligns, the
contact problem changes from being symmetric, in which the half-space or quarter-space
model can be applied, to being asymmetric. It is necessary for the model to determine
the entire contact area in the latter case. The state of elastic stresses in the significantly
stressed volume of material was obtained using the superposition principle (influence
coefficients functions). On this basis, the depth distribution of the von Mises equivalent
stress was used to quantify, comparatively to Hertzian loading, the harmful influences of
the end concentrations and the misalignment of the teeth. According to Guilbault [37], a
contact analysis performed with semi-analytical methods is 125 times faster than when it
is performed with a finite element analysis. For this reason, semi-analytical methods are
preferred when a tooth contact analysis needs to be accomplished. In addition, comparing
with the sources presented, the present algorithm provides in-depth stresses, which are the
main factor in contact fatigue occurrence. There are more algorithms available in the public
literature, but this algorithm is easily implemented.

The proposed SAM exhibited results with as high an accuracy as that of a redefined
FE work; however, it brings some significant advantages when compared to FE models:
a much lower computation time, robustness, accuracy, and a good degree of adaptability.
These advantages recommend the SAM to perform fast TCA for case studies regarding the
concentrated contacts developed in the spur power gearing.
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