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Abstract: The study of the symmetric properties of differential equations is essential for identifying
effective methods for solving them. In this paper, we examine the oscillatory behavior of solutions
of Emden–Fowler-type mixed non-linear neutral differential equations with both canonical and
non-canonical operators. By utilizing integral conditions and the integral averaging method, we
present new sufficient conditions to ensure that all solutions are oscillatory. Our results enhance and
extend previous findings in the literature and are illustrated with suitable examples to demonstrate
their effectiveness.
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1. Introduction

In this paper, we are concerned with Emden–Fowler-type differential equations with
non-canonical operators and mixed neutral terms

(q1(ι)(q2(ι)|N ′(ι)|γ−1N ′(ι))′)′ + p1(ι)|y($1(ι))|α−1y($1(ι)) + p2(ι)|y($2(ι))|β−1y($2(ι)) = 0, (1)

for ι ≥ ι0 where N (ι) = y(ι) + r(ι)y(τ(ι)). Throughout this paper, we will assume that the
following conditions hold:

(A1) q1(ι), q2(ι), r(ι) ∈ C([ι0, ∞),R+) and 0 < r(ι) ≤ r1 < 1, where R+ = (0, ∞);
(A2) p1(ι), p2(ι) ∈ C([ι0, ∞),R+), α, β, γ are positive constants with 0 < α < γ < β ;
(A3) τ(ι), $i(ι) ∈ C([ι0, ∞),R+), τ(ι) ≤ ι, $i(ι) ≤ ι, limι→∞ τ(ι) = limι→∞ $i(ι) = ∞, where

i = 1, 2, and α̃ = min{γ, α}, β̃ = min{γ, β}.
By a solution of (1), we mean a function y(ι) : [Ty, ∞)→ R such thatN (ι) ∈ C3[Ty, ∞),

q2(ι)|N ′(ι)|γ−1N ′(ι) ∈ C2[Ty, ∞), q1(ι)(q2(ι)|N ′(ι)|γ−1N ′(ι)) ∈ C1[Ty, ∞) and satisfies (1)
on [Ty, ∞). We will assume that every non-trivial solution y(ι) of (1) under consideration
here is continuable to the right and satisfies sup{|y(ι)| : ι ≥ T} > 0 for all T ≥ Ty. We
suppose that (1) possesses such a solution. A non-trivial solution of (1) is called oscillatory
if it has arbitrary large zeros on [Ty, ∞), otherwise it is called non-oscillatory. Equation (1)
is called oscillatory if all of its solutions are oscillatory.

In the present paper, we shall discuss the following three cases:

Symmetry 2023, 15, 553. https://doi.org/10.3390/sym15020553 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15020553
https://doi.org/10.3390/sym15020553
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2756-0089
https://orcid.org/0000-0002-0939-7564
https://orcid.org/0000-0001-8845-3095
https://orcid.org/0000-0002-7251-9608
https://doi.org/10.3390/sym15020553
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15020553?type=check_update&version=3


Symmetry 2023, 15, 553 2 of 10

∫ ∞

ι0

1
q1(ι)

dι = ∞,
∫ ∞

ι0

1
q2(ι)

dι = ∞, (2)∫ ∞

ι0

1
q1(ι)

dι < ∞,
∫ ∞

ι0

1
q2(ι)

dι = ∞, (3)∫ ∞

ι0

1
q1(ι)

dι < ∞,
∫ ∞

ι0

1
q2(ι)

dι < ∞. (4)

The Emden–Fowler equations were developed in the middle of the 9th century from
astrophysical ideas addressing gaseous dynamics. Emden–Fowler equations are one of
the most significant classical topics in differential equation theory. Fowler investigated
an equation to model multiple processes in fluid mechanics [1]. Since then, there has
been an increase in interest in summarizing this equation and using it to explain different
physical phenomena [2,3]. This interest extends to delay differential equations, particularly
neutral-type equations. In this type of equation, the second- and highest-order derivative
of the unknown function occurs both with and without delayed arguments. This type of
equation has practical significance, because it simulates a variety of situations including
electric networks, vibrating mass coupled to an elastic bar, etc. [4].

In this context, the study of the oscillations of the solutions to these problems is of
specific importance; in particular, there has been a great deal of research on the oscillation of
second- and higher-order Emden–Fowler neutral delay differential equations over the past
several decades. To the best of our knowledge, the number of works devoted to the study
of second- and higher-order neutral differential equations in non-canonical conditions is
significantly less than the number of works addressing equations in the canonical case
(see [5–25]).

Oscillation theory is an important area of research in mathematics and has numerous
applications in various fields. In particular, the study of oscillations in neutral differential
equations has received significant attention in recent years. The study of advanced differen-
tial equations, which contain both advanced and delayed arguments, is also an active area
of research. In this context, the diffusive convection model has been widely used to study
the oscillation behavior of solutions. Many studies have been conducted to investigate the
oscillation of solutions to diffusive convection models and to derive sufficient conditions
for oscillation, including [26–29].

As a result, several studies on the oscillation of various orders of certain differential
equations in canonical and non-canonical form have been studied. As we have estab-
lished, nearly all oscillation criteria described in the literature, such as [30,31] are specified
for Emden–Fowler-type equations with mixed nonlinearities of second order. In 2007,
Xu et al. [32] studied the oscillatory behavior of the second-order Emden–Fowler neutral
delay differential equation in the form

(|N ′(ι)|γ−1N ′(ι))′ + q1(ι)|y(ι− $)|α−1y(ι− $) + q2(ι)|y(ι− $)|β−1y(ι− $) = 0,

for ι ≥ 0, where N (ι) = y(ι) + p(ι)y(ι− τ).
This motivated our current study, the principal goal of which is not just to investigate

oscillations of (1) in both canonical and non-canonical operator cases mentioned above,
but to derive new oscillation criteria for (1), also including the case where condition
0 < r(ι) ≤ r1 < 1 holds. This rest of the current paper has the following structure: In
Section 2, we present some new results of oscillation of solutions of (1) under both canonical
and non-canonical operators (2), (3) and (4). In Section 3, three examples are provided to
illustrate the main results.

2. Main Results

In this section, we will present some new oscillation results for (1).

Theorem 1. Suppose that conditions (A1)–(A3) and (2) hold. If there exists a ψ ∈ C1([ι0, ∞),R+),
for some ι1 ≥ ι0 and for ι3 > ι2 > ι1, one has



Symmetry 2023, 15, 553 3 of 10

lim sup
ι→∞

∫ ι
ι3

ψ(s)

(
p1(s)(1− r($1(s)))α̃qα̃−1

2 (s)

( ∫ $1(s)
ι2

∫ v
ι1

1
q1(u)

du

q2(v)
dv∫ s

ι1
1

q1(u)
du

)α̃

+p2(s)(1− r($2(s)))β̃qβ̃−1
2 (s)

( ∫ $2(s)
ι2

∫ v
1

1
q1(u)

du

q2(v)
dv∫ s

ι2
1

q1(u)
du

)β̃

− q1(s)(ψ(s))2

4ψ(s)

)
ds = ∞

(5)

and

∫ ∞

ι0

(
1

q2(v)

∫ ∞

v

1
q1(u)

∫ ∞

u
(p1( s) + p2( s))dsdu

) 1
γ

dv = ∞. (6)

Then, every solution of Equation (1) is oscillatory or limι→∞ y(ι) = 0.

Proof. Assume that the solution y(ι) is an eventually positive solution of Equation (1). We
examine the following two cases based on condition (2):

(CI )N (ι) > 0, N ′(ι) > 0, (q2(N ′)γ)′(ι) > 0, (q1(q2(N ′)γ)′)′(ι) < 0
(CII ) N (ι) > 0, N ′(ι) < 0, (q2|N ′|γ−1N ′)′(ι) > 0, (q1(q2|N ′|γ−1N ′)′)′(ι) < 0, for ι ≥ ι1

is large enough.

First, assume (CI ) holds. Define the generalized Ricatti function w(ι) by

w(ι) = ψ(ι)
q1(ι)(q2(ι)(N ′(ι))γ)′

q2(ι)(N ′(ι))γ
, (7)

and w(ι) > 0 on ι ≥ ι1. Using N ′(ι) > 0, we have

y(ι) ≥ (1− r(ι))N (ι). (8)

Thus, for all ι ≥ ι1, {
y($1(ι)) ≥ N ($1(ι))(1− r($1(ι)))
y($2(ι)) ≥ N ($2(ι))(1− r($2(ι))).

(9)

Because

q2(ι)(N ′(ι))γ ≥
∫ ι

ι1

q1(s)(q2(s)(N ′(s))γ)′

q1(s)
ds ≥ q1(ι)(q2(ι)(N ′(ι))γ)′

∫ ι

ι1

1
q1(s)

ds, (10)

we have ( q2(ι) (N ′(ι))γ∫ ι
ι1

1
q1(s)

ds

)′
≤ 0. (11)

Therefore, we obtain

N (ι)−N (ι2) =
∫ ι

ι2

q2(s)N ′(s)∫ s
ι1

1
q1(u)

∫ s
ι1

1
q1(u)

du

q2(s)
ds

N (ι) ≥ q2(ι)N (ι)∫ ι
ι1

1
q1(u)

du

∫ ι
ι2

∫ s
ι1

1
q1(u)

du

q2(s)
ds,

(12)

for ι ≥ ι2 ≥ ι1. Differentiating (7), we have that

w′(ι) = ψ′(ι) q1(ι)(q2(ι)(N ′(ι))γ)′

q2(ι)(N ′(ι))γ + ψ(ι) (q1(ι)(q2(ι)(N ′(ι))γ))′

q2(ι)(N )′(ι))γ

−ψ(ι) q1(ι)((q2(ι)(N )(ι)γγ))2

(q2(ι)(N )′(ι))γ)2 .
(13)
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Using (1), (7), (9) and (A3),

w′(ι) ≤ ψ′(ι)
ψ(ι)

w(ι)− w2(ι)
ψ(ι)q1(ι)

− ψ(ι)
q2(ι)(N ′(ι))α̃ p1(ι)(1− r($1(ι)))

α̃N α̃($1(ι))

− ψ(ι)

q2(ι)(N ′(ι))β̃
p2(ι)(1− r($2(ι)))

β̃N β̃($2(ι)).
(14)

From (11) and (12), we obtain

w′(ι) ≤ ψ′(ι)
ψ(ι)

w(ι)− ψ(ι)p1(ι)(1− r($1(ι)))
α̃qα̃−1

2 (ι)

( ∫ $1(ι)
ι2

∫ s
ι1

1
q1(u)

du

q2(s)
ds∫ ι

ι1
1

q1(u)
du

)α̃

−ψ(ι)p2(ι)(1− r($2(ι)))
β̃qβ̃−1

2 (ι)

( ∫ $2(ι)
ι2

∫ s
ι1

1
q1(u)

du

q2(s)
ds∫ ι

ι1
1

q1(u)
du

)β̃

− w2(ι)
ψ(ι)q1(ι)

.

(15)

Hence, we have

w′(ι) ≤ q1(ι)(ψ
′(ι))2

4ψ(ι)
− ψ(ι)p1(ι)(1− r($1(ι)))

α̃qα̃−1
2 (ι)

( ∫ $1(ι)
ι2

∫ s
ι1

1
q1(u)

du

q2(s)
ds∫ ι

ι1
1

q1(u)
du

)α̃

−ψ(ι)p2(ι)(1− r($2(ι)))
β̃qβ̃−1

2 (ι)(

∫ $2(ι)
ι2

∫ s
ι1

1
q1(u)

du

q2(s)
ds∫ ι

ι1
1

q1(u)
du

)β̃.

(16)

Integrating (16) from ι3 to ι, we obtain

∫ ι
ι3
(ψ(s)(p1(s)(1− r($1(s)))α̃qα̃−1

2 (s)

( ∫ $1(s)
ι2

∫ v
ι1

1
q1(u)

du

q2(v)
dv∫ s

ι1
1

q1(u)
du

)α̃

+p2(s)(1− r($2(s)))β̃qβ̃−1
2 (s)

( ∫ $2(s)
ι2

∫ v
1

1
q1(u)

du

q2(v)
dv∫ s

ι2
1

q1(u)
du

)β̃

− q1(s)(ψ(s))2

4ψ(s) ds) < w(ι3),

(17)

which contradicts the condition (5).
Next, assume (CII ) holds. Because N (ι) > 0 and N ′(ι) < 0, then

lim
ι→∞
N (ι) = l.

Claim l = 0. Suppose that l > 0. We have l + ε > N (ι) > l, for any ε > 0. Set
0 < ε < l(1−r)

r . Then, we have

y(ι) = N (ι)− r(ι)y(τ(ι)) > l − rN (τ(ι)) > l − r(l + ε) = µ(l + ε) > µN (ι),

where µ = l−r(l+ε)
l+ε > 0. Integrating (1) from ι to ∞, we have

(q2(ι)|N ′(ι)|γ−1N ′(ι))′ ≥ 1
q1(ι)

∫ ∞

ι
(p1(s)yα$1(s) + p2(s)yβ$2(s))ds.

Integrating again from ι to ∞, we obtain

−N ′(ι) ≥ (
1

q2(ι)

∫ ∞

ι

1
q1(u)

∫ ∞

u
(p1(s)yα$1(s) + p2(s)yβ$2(s))dsdu)

1
γ .

Using the inequality, integrating ι1 to ∞, we obtain

N (ι1) ≥ µ
α
γ l

α
γ

∫ ∞

ι1
(

1
q2(v)

∫ ∞

v

1
q1(u)

∫ ∞

u
(p1(s) + p2(s))dsdu)

1
γ dvs..
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This contradicts (6). Because l = 0 and 0 ≤ y(ι) ≤ N (ι) implies limι→∞ y(ι) = 0.

Theorem 2. Suppose that conditions (A1)–(A3) and (3) hold. If there exists a ψ ∈ C1([ι0, ∞),R+),
for some ι1 ≥ ι0 and for ι3 > ι2 > ι1, one has (5) and (6). If

lim sup
ι→∞

∫ ι
ι2

{
δ(s)

(
p1(s)(1− r($1(s)))α̃(q2(s))α̃−1

( ∫ $1(s)
ι1

dv
q2(v)

)α̃)
+p2(s)(1− r($2(s))β̃(q2(s))β̃−1(

∫ $2(s)
ι1

dv
q2(v)

)β̃)− 1
4q1(s)δ(s)

}
ds = ∞,

(18)

where

δ(ι) :=
∫ ∞

ι

1
q1(s)

ds. (19)

Then, every solution of Equation (1) is oscillatory or limι→∞ y(ι) = 0.

Proof. Assume that the solution y(ι) is an eventually positive solution of Equation (1). Based
on condition (3), there exist three possible cases (CI ), (CII ) (as in Theorem 1) and

(CIII ) N (ι) > 0, N ′(ι) > 0, (q2(N ′)γ)′(ι) < 0, (q1(q2(N ′)γ)′)′(ι) < 0, for ι ≥ ι1 is
large enough.

Let us assume that case (CI ) and case (CII ) hold. Using the proof of Theorem 2,
we may arrive at the conclusion of Theorem 1. Assume that case (CIII ) holds. From
(q1(ι)(q2(ι)(N ′(ι))γ)′)′ < 0, thus, we obtain

q1(s)(q2(s)(N ′(s))γ)′ ≤ q1(ι)(q2(ι)(N ′(ι))γ)′, for s ≥ ι ≥ ι1. (20)

Dividing (20) by q1(s) and integrating it from ι to l, we obtain

q2(l)(N ′(l))γ ≤ q2(ι)(N ′(ι))γ + q1(ι)(q2(ι)(N ′(ι))γ)′
∫ l

ι

ds
q1(s)

. (21)

Letting l → ∞, we obtain

0 ≤ q2(ι)(N ′(ι))γ + q1(ι)(q2(ι)(N ′(ι))γ)′
∫ ∞

ι

1
q1(s)

ds, (22)

then

− q1(ι)(q2(ι)(N ′(ι))γ)′

q2(ι)(N ′(ι))γ

∫ ∞

ι

ds
q1(s)

≤ 1. (23)

The Riccati function φ(ι) is defined by

φ(ι) :=
q1(ι)(q2(ι)(N ′(ι))γ)′

q2(ι)(N ′(ι))γ
, ι ≥ ι1. (24)

Then, φ(ι) < 0 for ι ≥ ι1. Hence, by (23) and (24), we have

−δ(ι)φ(ι) ≤ 1. (25)

Now, differentiating (24), we have

φ′(ι) = (q1(ι)(q2(ι)(N ′(ι))γ)′)
q2(ι)(N ′(ι))γ − q1(ι)(q2(ι)(N ′(ι))γ)′(q2(ι)(N ′(ι))γ))′

(q2(ι)(N ′(ι))γ)2

≤ −p1(ι)(1−r($1(ι)))
αN α($1(ι))−p2(ι)(1−r($2(ι)))

βN β($2(ι))
q2(ι)(N ′(ι))γ − φ2(ι)

q1(ι)
.

(26)
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Using (A3), we obtain

φ′(ι) ≤ − p1(ι)(1−r($1(ι)))
α̃Ñ α̃($1(ι))

q2(ι)(N ′(ι))α̃

qα̃
2(ι)

qα̃
2(ι)
− p2(ι)(1−r($2(ι)))

β̃ β̃β̃($2(ι))

q2(ι)(N ′(ι))β̃

qβ̃
2 (ι)

qβ̃
2 (ι)

− φ2(ι)
q1(ι)

.
(27)

In view of case (CIII ), we see that

N (ι) ≥ q2(ι)N ′(ι)
∫ ι

ι1

ds
q2(s)

. (28)

Hence, ( N (ι)∫ ι
ι1

ds
q2(s)

)
≤ 0, (29)

which implies

N ($i(ι))

N (ι)
≥

∫ $i(ι)
ι1

ds
q2(s)∫ ι

ι1ι
ds

q2(s)

, (30)

where i = 1, 2. By (24) and (27), (28) and (30), we obtain

φ′(ι) ≤ −p1(ι)(1− r($1(ι)))
α̃(q2(ι))

α̃−1
( ∫ $1(ι)

ι1
ds

q2(s)

)α̃

−p2(ι)(1− r($2(ι)))
β̃(q2(ι))

β̃−1
( ∫ $2(ι)

ι1
ds

q2(s)

)β̃
− φ2(ι)

q1(ι)
.

(31)

Multiplying (31) by δ(ι) and integrating it from ι2 to ι, we obtain

δ(ι)φ(ι)− δ(ι2)φ(ι2) +
∫ ι

ι2
δ(s)(−p1(s)(1− r($1(s)))α̃(q2(s))α̃−1

( ∫ $1(s)
ι1

dv
q2(v)

)α̃

−p2(s)(1− r($2(s)))β̃(q2(s))β̃−1
( ∫ $2(s)

ι1
dv

q2(v)

)β̃
)ds−

∫ ι
ι2

δ(s) φ2(s)
q1(s)

ds,
(32)

which follows that

∫ ι
ι2

{
δ(s)(p1(s)(1− r($1(s)))α̃(q2(s))α̃−1(

∫ $1(s)
ι1

dv
q2(v)

)α̃

+p2(s)(1− r($2(s)))β̃(q2(s))β̃−1(
∫ $2(s)

ι1
dv

q2(v)
)β̃)− 1

4q1(s)δ(s)

}
ds ≤ δ(ι2)φ(ι2) + 1,

(33)

due to (25), which contradicts (18).

Theorem 3. Suppose that conditions (A1)–(A3) and (4) hold. If there exists a ψ ∈ C1([ι0, ∞),R+),
for some ι1 ≥ ι0 and for ι3 > ι2 > ι1, one has (5), (6) and (18). If∫ ∞

ι1

1
q2(v)

∫ v

ι1

1
q1(u)

∫ u

ι1
p1(s)ξα($1(s))ηα

1 (s)ds du dv = ∞ (34)

and ∫ ∞

ι1

1
q2(v)

∫ v

ι1

1
q1(u)

∫ u

ι1
p2(s)ξβ($2(s))η

β
2 (s)ds du dv = ∞, (35)
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where

ηi(ι) = 1− p($i(ι))
ξ(τ($i(ι)))

ξ($i(ι))
> 0, ξ(ι) =

∫ ∞

ι

1
q2( s)|N ′(s)|γ−1 ds. (36)

Then, every solution of Equation (1) is oscillatory or limι→∞ y(ι) = 0.

Proof. Assume that the solution y(ι) is an eventually positive solution of the Equation (1).
By condition (4), there exist four possible cases (CI ), (CII ) and (CIII ), (as those of Theo-
rem 2) and

(CIV ) N (ι) > 0, N ′(ι) < 0, (q2|N ′|γ−1N ′)′(ι) < 0, (q1(q2|N ′|γ−1N ′)′)′(ι) < 0, for ι ≥
ι1, ι1 is large enough.

We suppose that case (CI ), case (CII ), and case (CIII ) hold. Using the proof of
Theorem 2, we may arrive at the conclusion of Theorem 3.

Assume that case (CIV ) holds. Because (q2(ι)|N ′(ι)|γ−1N ′(ι))′ < 0, we obtain that

N ′(s) ≤ q2(ι)|N ′(ι)|γ−1

q2(s)|N ′(s)|γ−1N
′(ι), s ≥ ι, (37)

which implies that

N (ι) ≥ −q2(ι)|N ′(ι)|γ−1N ′(ι)ξ(ι) ≥ Lξ(ι) (38)

for some L > 0. By (38), we have (N (ι)

ξ(ι)

)′
≥ 0. (39)

Using (8) and (39), we have

y(ι) = N (ι)− r(ι)y($1(ι)) ≥ N (ι)− r(ι)N ($1(ι)) ≥ (1− r($1(ι))
ξ(τ($1(ι)))

ξ($1(ι))
), (40)

y(ι) = N (ι)− r(ι)y($2(ι)) ≥ N (ι)− r(ι)N ($2(ι)) ≥ (1− r($2(ι))
ξ(τ($2(ι)))

ξ($2(ι))
). (41)

From (1), (36), (38), (40) and (41) we obtain

(q1(ι)(q2(ι)|N ′(ι)|γ−1N ′(ι))′)′ + p1(ι)Lαξα($1(ι))[η1(ι)]
α

+p2(ι)Lβξβ($2(ι))[η2(ι)]
β ≤ 0.

(42)

Integrating (42) from ι1 to ι, we have

q1(ι)(q2(ι)|N ′(ι)|γ−1N ′(ι))′ + Lα
∫ ι

ι1
p1(s)ξα($1(s))[η1(ι)]

αds
+Lβ

∫ ι
ι1

p2(s)ξβ($2(s))[η2(ι)]
βds ≤ 0.

(43)

Integrating again, we obtain

q2(ι)|N ′(ι)|γ−1N ′(ι) + Lα
∫ ι

ι1
1

q1(u)

∫ u
ι1

p1(s)ξα($1(s))[η1(s)]αdsdu
+Lβ

∫ ι
ι1

1
q1(u)

∫ u
ι1

p2(s)ξβ($2(s))[η2(s)]βdsdu ≤ 0.
(44)

Integrating once again, we obtain

N (ι1) ≥ Lα
∫ ι

ι1

1
q2(v)

∫ v

ι1

1
q1(u)

∫ u

ι1
p1(s)ξα($1(s))[η1(s)]αds du dvs. (45)

+ Lβ
∫ ι

ι1

1
q2(v)

∫ v

ι1

1
q1(u)

∫ u

ι1
p2(s)ξβ($2(s))[η2(s)]βds du dvs. +N (ι), (46)
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which contradicts (34) and (42).

Theorem 4. Suppose that conditions (A1)–(A3) and (4) hold. If there exists a ψ ∈ C1([ι0, ∞),R+),
for some ι1 ≥ ι0 and for ι3 > ι2 > ι1, one has (5), (6) and (18). If

∫ ∞

ι1

(
1

q2(v)

∫ v

ι1

1
q1(u)

∫ u

ι1
(p1(s) + p2(s))dsdu

) 1
γ

dv = ∞. (47)

Then every solution of Equation (1) is oscillatory or limι→∞ y(ι) = 0.

Proof. Assume that the solution y(ι) is an eventually positive solution of the Equation (1).
By the convergent condition (4), it is natural to consider that four possible cases (CI ),
(CII ), (CIII ) and (CIV ) hold (as those of Theorem 3. By assuming the cases (CI ), (CII )
and (CIII ) hold, the conclusion of Theorem 2 is derived. For the case (CIV ) when
limι→∞ Z(ι) = l ≥ 0 ( l is finite). Assume that l > 0. From (6) in Theorem 1, there
exists a positive constant µ > 0 such that y(ι) > µl. Because the rest of the proof is similar
to that of Theorem 3, we omit the details.

3. Examples

The examples below demonstrate applications of some of the theoretical concepts
discussed in the earlier sections.

Example 1. Consider the Emden–Fowler-type neutral delay differential equation

(
1
ι
(ι

1
2 (y(ι) +

1
2

y(ι− π))′)′))′ +
3
8

ι−
5
2 y

2
3 (ι− 3π

2
) +

1
2

ι−
1
2 y

5
3 (ι− 7π

2
) = 0, (48)

for ι ≥ 1, where q1(ι) = 1
ι , q2(ι) = ι

1
2 , τ(ι) = ι− π, α = 2

3 , β = 5
3 , γ = 1, p1(ι) = 3

8 ι−
5
2 ,

p2(ι) =
1
2 ι−

1
2 , $1(ι) = ι− 3π

2 , $2(ι) = ι− 7π
2 , r(ι) = 1

2 , ψ(s) = 1. Hence, all the conditions of
Theorem 1 are satisfied. Therefore, every solution of (48) is oscillatory or tends to zero as ι→ ∞.

Example 2. Consider the third-order Emden–Fowler-type differential equation

(
1
ι
(ι2(y(ι) + r1y(ι− 3))′)′)′ + ιmy

1
2k+1 (ι− 1) + ιny

4k+1
2k+1 (ι− 1) = 0, (49)

for ι ≥ 1. Here, q1(ι) =
1
ι , q2(ι) = ι2, τ(ι) = ι− 3, α = 1

2k+1 , β = 4k+1
2k+1 , k > 0, γ = 1, p1(ι) =

ιm, p2(ι) = ιn, m, n > 1, $1(ι) = $2(ι) = ι− 1, 0 ≤ r(ι) ≤ r1 < 1, ψ(s) = 1. Hence, all the
conditions of Theorems 3 and 4 are satisfied. Therefore, each solution of (49) is oscillatory and tends
to zero as ι→ ∞.

Example 3. Consider the Emden–Fowler of the third-order-type differential equation

(ι3((ι−2 + 1)(y(ι) + 1
3 y( ι

2 ))
′)′)′ + C1 m( m+3)(1−m)2m/3

ι(6−2m)/3 y
1
3 ( ι

2 )

+C1
m(1−m2)

ιm/2 y
3
2 (ι) = 0,

(50)

for ι ≥ 1. Here, q1(ι) = ι3, q2(ι) = ι−2 + 1, τ(ι) = ι
2 , α = 1

3 , β = 3
2 , γ = 1, p1(ι) =

C1m(m+3)(1−m)2m/3

ι(6−2m)/3 , p2(ι) = C1m(1−m2)ι−m/2, m > 1, $1(ι) = ι
2 , $2(ι) = ι, 0 ≤ r(ι) ≤

r1 < 1, ψ(s) = 1. It follows that condition (5) in Theorem 1 is not satisfied. It follows that there
exists a non-oscillatory solution of (50) and in this case y(ι) = ιm is such a solution.

4. Conclusions

In this study, a new criterion was developed to test the oscillatory behavior of yjr
solutions of an Emden–Fowler-type mixed non-linear neutral differential equation with
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both canonical and non-canonical operators (2), (3) and (4). This criterion is simple to apply,
takes into consideration all of the variables, and may be used when 0 < r(ι) ≤ r1 < 1.
Our results improve, unify, and extend some known results for differential equations with
neutral terms. Suitable examples are given to illustrate effectiveness of our results. It would
be of interest to suggest a different method to further investigate (1) assuming that the
unbounded neutral coefficient r(ι).
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