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Abstract: We explore the correlation of the neutrinoless double-β decay nuclear matrix element
(NME) with electric quadrupole (E2) strength in the framework of the Hamiltonian-based generator-
coordinate method, which is a configuration-mixing calculation of symmetry-restored intrinsic basis
states. The restoration of symmetries that are simultaneously broken in the mean-field states allows
us to compute the structural and decay properties associated with wave functions characterized by
good quantum numbers. Our calculations show a clear anti-correlation between the neutrinoless
double-β decay NME and the transition rate of the collective quadrupole excitation from the ground
state in response to artificial changes of the quadrupole–quadrupole interaction. The anti-correlation
is more remarkable in the decay from a weakly deformed parent nucleus to a more deformed grand-
daughter nucleus. This interrelation may provide a way to reduce the uncertainty of the nuclear
matrix element.

Keywords: neutrinoless double-β decay; generator-coordinate method; reduced E2 transition probability

1. Introduction

Large-scale experiments in search of neutrinoless double-beta (0νββ) decays are likely
to determine whether neutrinos are Majorana fermions, and hence reveal corresponding
new physics beyond the Standard Model of electroweak interactions. However, the esti-
mation of the rate of 0νββ decay, which is crucial for a definitive choice and quantity of
candidate nuclei required in these sophisticated experiments, depends on reliable descrip-
tions of nuclear matrix elements (NMEs) [1]. In addition, if this extremely rare decay is
observed, the measured decay rates can provide essential information for determining the
absolute neutrino mass scale and mass hierarchy, but it relies on whether one can obtain an
accurate description of the corresponding NMEs [1].

There are several nuclear structure methods for calculations of the 0νββ decay matrix
elements. The most used ones are the shell model (SM) [2–10], the interacting boson
model (IBM) [11–13], the quasiparticle random phase approximation (QRPA) [14–25], the
generator coordinate method (GCM) based on energy density functional (EDF) [26–30] or
effective Hamiltonian [31–34], the in-medium generator coordinate method (IM-GCM) [35],
and the coupled-cluster (CC) method [36]. At present, NMEs predicted by these nuclear
models differ by factors of 3 to 4 for most candidate nuclides, and up to 8 in the case of
decay from 48Ca to 48Ti [37–39]. These large uncertainties preclude an efficient plan for
experiments [37]. Reducing the uncertainty in the matrix elements thus becomes an urgent
need in the nuclear structure community.

One way to improve the accuracy of 0νββ NME calculations is searching for their
correlations with certain nuclear structure observables. Since the observables can be
determined experimentally, it could help to pin down the values of 0νββ NMEs if there
are strong correlations between them. It is found that some certain collective correlations
influence significantly on the calculated 0νββ NMEs. In particular, the matrix elements
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would be suppressed when the ground states of the grandparent and grand-daughter nuclei
have different intrinsic deformations [40]. This suppression was originally investigated with
axial quadrupole collectivity [26,28,29,41], and later extended to non-axial quadrupole [32]
and octupole correlations [30]. This leads to an interesting question: whether there is a
correlation between 0νββ NME and the observable in associate with quadrupole collectivity,
e.g., the reduced E2 transition probability B(E2).

Another interesting feature, which implies a potential correlation between 0νββ NME
and E2 strength, is the Gamow-Teller (GT) transition strength. On one hand, since the GT
transition replaces a neutron with a proton or the other way around, its strength of the
grandparent to intermediate nuclei, combined with the strength of the grand-daughter to
intermediate nuclei, is particularly related to double-β decay. On the other hand, recent
work has demonstrated a remarkable anti-correlation between the calculated Gamow-Teller
strength and the reduced transition probability of the lowest collective E2 excitation [42].
Though the connection between the GT strength and 0νββ NME is not straightforward, it
is quite natural to expect a similar correlation of 0νββ decay NME with the transition rate
of the low-lying collective E2 excitation.

Therefore it would be of particular interest to modify the quadrupole–quadrupole term
in the effective Hamiltonian and to examine how the 0νββ NME changes are correlated
with the resultant E2 strength. It is worth noting that a statistical analysis for the 0νββ
NME of 48Ca has been proposed recently by adding random contributions to three sets
of p f -shell effective Hamiltonians, i.e., the FPD6, GXPF1A, and KB3G interactions [43]. It
gives some hints that the B(E2) values in 48Ti are correlated with the neutron occupation
probabilities, and hence, indirectly influence the 48Ca-Ti 0νββ NME. It is natural to presume
that, instead of random contributions, a detailed analysis of NME by adding a specific term
directly related to quadrupole collectivity would be of great importance.

In this work, we propose an analysis of the 0νββ NMEs and their correlations with the
reduced collective quadrupole transition probabilities B(E2; 0+ → 2+). It is obtained by
adding a different amount of quadrupole–quadrupole contributions to the corresponding
effective Hamiltonians, and then perform the Hamiltonian-based GCM [32,33] calculation
using the modified effective Hamiltonians. We apply our analysis to 48Ca−Ti, 76Ge−Se,
124Sn−Te, 130Te−Xe, and 136Xe−Ba, which covers light-, medium-, and heavy-mass candi-
date nuclei associated with the 0νββ decay. We consider only the standard light left-handed
Majorana neutrino exchange mass mechanism in this work, since it is the simplest and
most studied mechanism of the 0νββ decay process.

2. The Model

Owing to the closure approximation, we can express the 0νββ decay matrix element
in terms of a two-body 0νββ transition operator between the ground-state wave functions
of the grandparent and grand-daughter nuclei. If the decay is originated from the exchange
of light Majorana neutrinos with usual left-handed weak interaction, the NME can be
obtained by:

M0ν = M0ν
GT −

g2
V

g2
A

M0ν
F + M0ν

T (1)

where GT, F, and T refer to the Gamow-Teller, Fermi and tensor parts of the matrix elements.
gV and gA are the vector and axial coupling constants, which are taken as gV = 1 and
gA = 1.254, respectively. Our wave functions are modified at short distances by using a
Jastrow-type short-range correlation (SRC) function in the parametrization of CD-Bonn [19].
A more detailed expression of the matrix element can be found in Ref. [18].

To calculate the 0νββ matrix element in Equation (1), a key feature is the description
of ground-state wave function of grandparent and grand-daughter nuclei, i.e., |I〉 and |F〉,
which can be given by our GCM calculations. Firstly, we employ a shell-model effective
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Hamiltonian (Heff). In an isospin scheme, Heff can be written in terms of one- and two-body
operators as the following:

Heff = ∑
a

εan̂a + ∑
a6b,c6d

∑
JT

VJT(ab; cd)T̂JT(ab; cd), (2)

where εa and VJT(ab; cd) stand for the one-body and two-body matrix elements of the
nucleon–nucleon interaction, respectively. n̂a denotes the number operator for the spherical
single-particle orbit a labelled with quantum numbers (na, la, ja), and

T̂JT(ab; cd) = ∑
MTz

A†
JMTTz

(ab)AJMTTz(cd) (3)

is the scalar two-body density operator for nucleon pairs occupied the spherical orbitals
a, b and c, d, which are coupled to the quantum numbers J, M, T, and Tz.

Changing adequately the effective Hamiltonian used in the calculations, one can
increase or decrease the quadrupole correlations in grand-parent, grand-daughter, or
both nuclei. In this manner, we can gauge the correlation of the decays with the E2
transition probabilities. We have artificially changed the quadrupole strength adding an
extra quadrupole–quadrupole term, namely λQ̂ · Q̂, to the effective interaction. Increasing
the values of coupling constant λ would increase the deformation and hence would enhance
the E2 transition strength.

The next step in our GCM calculation is generating a reference state set |Φ(q)〉. It
consists of quasiparticle vacua constrained to different expectation values qi = 〈Oi〉 for a
set of collective operators Oi. In this work, we take the following operators Oi:

O1 = Q20, O2 = Q22,

O3 =
1
2
(P0 + P†

0 ), O4 =
1
2
(S0 + S†

0),
(4)

where
Q2M = ∑

a
r2

aY2M
a ,

P†
0 =

1√
2

∑
l

l̂[c†
l c†

l ]
L=0,J=1,T=0
000 ,

S†
0 =

1√
2

∑
l

l̂[c†
l c†

l ]
L=0,J=0,T=1
000 ,

(5)

with M standing for the projection of angular momentum on the z-axis, a as a label of
nucleons, and the brackets indicating the coupling of orbital angular momentum, spin,
and isospin to different values, each of which has zero z-projection. The operator c†

l in
Equation (5) creates a particle occupying the single-particle orbital with an orbital angular
momentum l, and l̂ ≡

√
2l + 1. In addition, the operator P†

0 (S†
0) creates a correlated

isoscalar (isovector) proton–neutron pair in the single-particle level l. To include the proton–
neutron pairing effect, we start from a Bogoliubov transformation that mixes protons and
neutrons in the quasiparticle creation and annihilation operators, i.e., (schematically),

α† ∼ upc†
p + vpcp + unc†

n + vncn. (6)

In the practical calculations, the full equations should sum over single-particle states
in the valence space, and hence we replace each of the coefficients u′s and v′s in Equation (6)
with matrices U and V, which can be found in Ref. [44].
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We then solve the constrained Hartree-Fock-Bogoliubov (HFB) equations for the
effective Hamiltonian with linear constraints:

〈H′〉 = 〈Heff〉 − λN(〈NN〉 − N)− λZ(〈NZ〉 − Z)

−∑
i

λi(〈Oi〉 − qi), (7)

where the NN and NZ signify the neutron and proton number operators, while λN and λZ
stand for corresponding Lagrange multipliers. The sum over i includes the quadrupole
operators Q20 and Q22, with the addition of isoscalar or isovector proton–neutron pairing
operator in Equation (4). The λi represents the Lagrange multipliers that constrain the
expectation values of these operators to specified quantities of qi. We solve the HFB
equation repeatedly. In each time, the HFB vacuum is constrained to a different mesh point
in the space of qi.

After we get a set of HFB vacua with different amounts of axial quadrupole deforma-
tion, triaxial quadrupole deformation, and isoscalar (or isovector) proton–neutron pairing
amplitude, the GCM state can be composed of a linear superposition of the projected HFB
vacua, given by

|ΨJ
ZNσ〉 = ∑

K,q
f JK
qσ |JMK; ZN; q〉, (8)

where |JMK; ZN; q〉 ≡ P̂J
MK P̂Z P̂N |Φ(q)〉. The P̂′s are so-called projection operators which

project quasiparticle vacua onto definitive angular momentum J and its z-component M,
proton number Z, and neutron number N [45]. f JK

qσ are the weight functions, where σ is
simply a enumeration index. They can be taken as variational parameters and thus be
computed by solving the Hill-Wheeler-Griffin equation [45]:

∑
K′ ,q′

{
HJ

KK′(q; q′)− EJ
σN J

KK′(q; q′)
}

f JK′
q′σ = 0, (9)

where the Hamiltonian kernelHJ
KK′(q; q′) and the norm kernel N J

KK′(q; q′) are given by:

HJ
KK′(q; q′) = 〈Φ(q)|HeffP̂

J
KK′ P̂

Z P̂N |Φ(q′)〉,

N J
KK′(q; q′) = 〈Φ(q)|P̂J

KK′ P̂
Z P̂N |Φ(q′)〉.

(10)

To solve the Hill-Wheeler-Griffin equation, we diagonalize the norm kernel N first:

∑
K′ ,q′
N J

KK′
(
q; q′

)
uJ

K′k

(
q′
)
= nJ

kuJ
Kk(q). (11)

The nonzero eigenvalues nJ
k and corresponding eigenvectors uJ

Kk(q) can be used to
construct a set of orthonormal basis called “natural states”, which are defined by

|kJ〉 = ∑
K,q

uJ
Kk(q)√

nJ
k

|JMK; ZN; q〉. (12)

The Hamiltonian can be diagonalized in the space of these natural states, and the
Hill-Wheeler-Griffin equation thus can be transformed into a normal eigenvalue problem.
Then we can obtain the wave functions of GCM states |ΨJ

NZσ〉 (see details in Refs. [46,47]).
With the lowest J = 0 GCM states as ground states of the grandparent and grand-daughter
nuclei, we can finally compute the 0νββ decay matrix element M0ν in Equation (1).

3. Calculations and Discussion

We start by using our GCM employing an effective Hamiltonian in a valence model
space. For 48Ca−Ti, we employ two sets of effective interactions to show the effect from
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taking account for a larger model space. One is the KB3G interaction restricted in one-major
sd shell [48]. The other is the SDPFMU-DB interaction in the two-major sdp f shell [9]. For
76Ge−Se, we set the valence space in the so-called f 5pg9 space, which comprises the 0 f5/2,
1p3/2, 1p1/2, and 0g9/2 orbits. We have employed the GCN2850 Hamiltonian that are fine
tuned for relevant 0νββ decay candidate isotopes [49]. For the calculations of 124Sn−Te,
130Te−Xe, and 136Xe−Ba, we use a recently proposed shell-model effective Hamiltonian
called SVD Hamiltonian [50] for the jj55-shell configuration space that comprises the 0g7/2,
1d5/2, 1d3/2, 2s1/2, and 0h11/2 orbitals. It has been shown that these effective interactions
account successfully for the low-lying level spectra, electromagnetic and Gamow-Teller
transitions, and quadrupole deformations for these nuclei, respectively [7–9,49–51]. Since
the effect on 0νββ decay NME from triaxial deformation is found to be minor [32], and most
of the candidate isotopes show no theoretical or experimental evidence of being triaxially
deformed, we neglect the triaxial quadrupole moment q2 ≡ 〈Q22〉 in the choice of collective
generator coordinates for simplicity. Instead, our GCM calculations use axial quadrupole
moment q1 ≡ 〈Q20〉, as well as the proton–neutron pairing parameters q3 ≡ 1/2〈P0 + P†

0 〉
and q4 ≡ 1/2〈S0 + S†

0〉 as generator coordinates.
We first examine the reliability of our Hamiltonian-based GCM calculation for the

structural properties of the five pairs of 0νββ decay candidate nuclei of 48Ca−Ti, 76Ge−Se,
124Sn−Te, 130Te−Xe, and 136Xe−Ba, which are compared with the calculated results given
by the interacting shell model (ISM) calculations based on the same effective interaction
without the additional λQ̂ · Q̂ term in Figure 1. In principal, if the Hamiltonian-based
GCM and the ISM itself employ the same effective interaction in the same model space,
the ISM result can therefore be taken as the “exact” solution and an adequate benchmark,
because it diagonalizes the Hamiltonian exactly. A great agreement between GCM and
ISM calculations for all the candidate nuclei has been shown, except for the doubly magical
nucleus 48Ca in which the GCM calculation presents a slight overestimation in B(E2; 0+1 →
2+1 ) value. The lowest excited states in 48Ca should mainly be of particle-hole excitation,
the description of which requires the incorporation of non-collective configurations.
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100 GCM
 SM

0
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4

48Ti

48Ca

48Ti

48Ca

B(
E2

: 0
+ 1

2+ 1) 
(e

2 b2 )

48Ca
48Ca

48Ti48TiE x(2
+ 1) 

(M
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)

136Xe
SVD

124Sn
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KB3G GCN2850

SVD

48Ca

48Ca
SDPFMU-DB

130Te
SVD

136Xe
SVD

124Sn

76Ge
KB3G GCN2850

SVD

48Ca

48Ca
SDPFMU-DB

130Te
SVD

Figure 1. (Color online) Comparison of the calculated properties of low-lying states between our
Hamiltonian-based GCM and SM for the 0νββ decay candidate nuclei of 48Ca−Ti, 76Ge−Se, 124Sn−Te,
130Te−Xe, and 136Xe−Ba, including (left panel) excitation energies of 2+1 states Ex(2+1 ) and (right
panel) E2 transition strengths B(E2; 0+1 → 2+1 ). The SM results are taken from Refs. [7–9,49].

Before investigating the correlation of the neutrinoless double-β decay NME with the
low-lying electric quadrupole (E2) strength in the 0+ → 2+ transitions, we make one more
test. Figure 2 shows the linear anti-correlation between the excitation energies of the first
2+ states and the corresponding reduced E2 transition probabilities B(E2; 0+ → 2+). As
the quadrupole–quadrupole interaction becomes stronger in the effective Hamiltonian by
increasing the coupling constant λ in the extra λQ̂ · Q̂ term, the 2+ energies are suppressed,
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while the B(E2; 0+1 → 2+1 ) values are significantly enhanced. Qualitatively, we see a similar
evolution for 48Ti within one- and two-major-shell calculations, which employ the KB3G
and SDPFMU-DB interactions, respectively. Lowered excitation energies, combining with
the enhanced B(E2) values, indicate that the quadrupole collectivity of low-lying states is
changed smoothly along with the modification of the additional λQ̂ · Q̂ term, as we expect.

10 12 14 16 18 20 22
0.6

0.8

1.0

1.2

 Calculation
 Linear Fit

E(
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(M
eV

)

B(E2; 0+
1 2+

1) (W.u.)

48Ti
KB3G
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0.6

0.8
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1.4
48Ti
SDPFMU-DB

 Calculation
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E(
2+ 1) 

(M
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)

B(E2; 0+
1 2+

1) (W.u.)

Figure 2. (Color online) Calculated excitation energies of the first 2+ state of 48Ti is linearly anti-
correlated with the calculated reduced E2 transition probability B(E2; 0+ → 2+). The calculations
are performed in the p f shell (left panel) and sdp f shell (right panel), respectively.

Figure 3 plots the changes of 0νββ decay NMEs as a function of the B(E2; 0+ → 2+)
values for 48Ti. Though it is not explicitly marked in the figure, the larger constant λ always
corresponds to the larger calculated B(E2; 0+ → 2+) values. A remarkable anti-correlation
can be obtained between the 0νββ decay NMEs and the B(E2) values. The same relation
can be seen in both one- and two-shell calculations. The only difference is the 0νββ decay
NME for 48Ca→Ti decay calculated in the sdp f shell is slightly larger than that in the p f
shell, which is in accordance with the large-scale SM calculations [9] with the omission
of some cross-shell excitations. Nevertheless, the downward slope of the anti-correlation
between the 0νββ decay NMEs and the B(E2) values are almost the same in the the p f -shell
and the sdp f -shell calculations. The result suggests that enlargement of the model space
may not dramatically affect the anti-correlation between NME and quadrupole collectivity,
though gradual but continual effect arising from the addition of successive shells should
not be ruled out.

10 12 14 16 18 20 22
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1 2+

1)48Ti (W.u.)

M
0

48Ca 48Ti
   KB3G
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1)48Ti (e
2b2)

M
0

Figure 3. (Color online) Calculated 0νββ decay NMEs of 48Ca−Ti are anti-correlated with the
calculated reduced E2 transition probabilities B(E2; 0+ → 2+) in both p f -shell calculation (left
panel) and sdp f -shell calculation (right panel).
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We then turn to heavier candidate nuclei, e.g., 124Sn−Te, 130Te−Xe, and 136Xe−Ba
pairs. The anti-correlations are clearly presented in these candidate pairs, as shown in
Figure 4. Similarly, larger constant λ leads to larger calculated B(E2; 0+ → 2+) value,
and results in smaller 0νββ decay NME. Since 0νββ decay occurs from the ground state
of grand-parent nucleus to that of the grand-daughter nucleus, one may ask that what
the correlation would be between 0νββ decay NME and the quadrupole collectivity of
grand-parent nuclei. We thus plot the changes of 0νββ decay NMEs as a function of the
B(E2; 0+ → 2+) values for both the grand-parent nucleus 136Xe and the grand-daughter
nucleus 136Ba in the right panel of Figure 4. Robust anti-correlations are exhibited in
both 136Xe and 136Xe, though the downward slope is steeper in the grand-parent nucleus.
This is due to the fact that 136Xe has 82 neutrons, which is a magical number, resulting
in the characteristics of a spherical nucleus. Meanwhile, 136Ba is moderately deformed.
The additional quadrupole–quadrupole interaction can barely increase the quadrupole
deformation for the ground state of 136Xe owing to the robust N = 82 shell closure, but
can remarkably enhance the quadrupole collectivity for 136Ba. A similar situation occurs in
48Ca−Ti, 124Sn−Te, and 130Te−Xe, since in all these candidate nuclei pairs, grand-parent
nuclei are spherical or weakly deformed, while grand-daughter nuclei have relatively
larger deformation.

34 36 38 40 42 44 46 48
1.0

1.5

2.0

2.5

3.0

24 26 28 30 32 34 36

qq = 0
124Sn 124Te
       SVD

M
0

B(E2; 0+
1 2+

1)124Te (W.u.)

qq = 0

130Te 130Xe
       SVD

B(E2; 0+
1 2+

1)130Xe (W.u.)
10 12 14 16 18

1.0

1.5

2.0

2.5
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qq = 0

B(E2; 0+
1 2+

1)136Xe (W.u.)

M
0

qq = 0

136Xe 136Ba
       SVD

B(E2; 0+
1 2+

1)136Ba (W.u.)

Figure 4. (Color online) Similar to Figure 3, but for candidate nuclei 124Sn−Te, 130Te−Xe (left panel)
and 136Xe−Ba (right panel), respectively.

One may ask whether the anti-correlation between the 0νββ decay NMEs and the E2
transition strength merely result from the increasing difference of quadrupole collectivity
between near-spherical grand-parent and deformed grand-daughter nuclei. To answer this
question, we apply our analysis to 76Ge−Se candidate nuclei, since, in this pair, both grand-
parent and grand-daughter nuclei are well-deformed. The results are presented in Figure 5.
To illustrate the effect from enhanced quardupole-collectivity difference between grand-
parent and grand-daughter nuclei, we apply two different analyses, namely, (i) the λQ̂ · Q̂
term is added in the effective Hamiltonian used in the GCM calculations for both 76Ge and
76Se, (ii) the λQ̂ · Q̂ term is added only for grand-daughter nucleus 76Se. Apparently, the
latter case would increase the difference of quadrupole collectivity between 76Ge and 76Se.
It is shown that, though the enhanced deformation difference between 76Ge and 76Se leads
to a steeper downward slope of the 0νββ decay NME against the reduced E2 transition
probability in the latter analysis, the anti-correlation between them still exists in the first
analysis, in which the quadrupole collectivity is enhanced almost equally in 76Ge and 76Se.

To show the thorough interrelation between the 0νββ decay NMEs and the E2 strengths,
Figure 6 summarizes our calculated results. As noted, the anti-correlation of 0νββ decay
NMEs with the E2 strengths exists for investigated candidate nuclei in a universal way.
The downward slopes are similar in both the p f -shell and sdp f -shell case of 48Ca−Ti,
as well as in the case of 48Ca−Ti. The anti-correlated trend is even more drastic in the
heavier candidates 124Sn−Te, 130Te−Xe, and 136Xe−Ba. We also plot the adopted values of
B(E2; 0+ → 2+) from experiments [52], shown as vertical shades. The width of the shade
displays the uncertainty of measured reduced E2 transition probability. It can be seen
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that the calculated B(E2; 0+ → 2+) value without the artificial quadrupole–quadrupole
interaction, which is denoted by the starting point of each curve, shows non-negligible dis-
crepancy when compared with adopted values. It should be noted that, the more accurate
correlation between 0νββ decay NME and E2 strength can be determined if we can obtain
a better description of reduced E2 transition probability, and hence potentially help us to
reduce the uncertainty of the 0νββ decay NME.

24 26 28 30
2.2

2.4

2.6

2.8

3.0

3.2

76Ge 76Se
 GCN2850

B(E2; 0+
1 2+

1)76Se (W.u.)

M
0

 qqQ·Q for 76Ge and 76Se

 qqQ·Q for 76Se only

qq = 0

Figure 5. (Color online) Calculated 0νββ decay NMEs of 76Ge−Se changing against the calculated
reduced E2 transition probabilities B(E2; 0+ → 2+). The calculation adding λQ̂ · Q̂ term for both
76Ge and 76Se is denoted by red diamonds and a dash line, while the calculation adding λQ̂ · Q̂ term
for only 76Se is shown as cyan circles and a solid line.
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0
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 130Te 130Xe (SVD)
 136Xe 136Ba (SVD)
 76Ge 76Se (GCN)
 76Ge 76Se (GCN) (76Ge fixed)

136Ba

B(E2)exp of 76Ge

Figure 6. (Color online) Calculated 0νββ decay NMEs of all investigated candidate nuclei changing
against the calculated reduced E2 transition probabilities B(E2; 0+ → 2+). The vertical shades
represent the adopted values of B(E2; 0+ → 2+).

4. Conclusions

In this paper, we apply a detailed analysis of the interrelation between 0νββ decay
NMEs and E2 transition rates B(E2; 0+ → 2+), using the Hamiltonian-based GCM built
on the configuration mixing of symmetry-restored intrinsic basis states. The calculated



Symmetry 2023, 15, 552 9 of 12

0νββ decay NMEs are clearly anti-correlated with the calculated transition rates of the
collective quadrupole excitation from the ground state to the first 2+ state in response to
artificial changes of quadrupole–quadrupole contributions in effective Hamiltonians. The
anti-correlation is more remarkable in the decay from a spherical or weakly deformed grand-
parent nucleus than a more deformed grand-daughter nucleus. Therefore, we conclude that
a reliable description of the reduced collective E2 transition probability would be useful for
reducing the uncertainties of the 0νββ decay NME.

Another interesting study would be the correlation of 0νββ decay NME with E2
strength for 150Nd−Sm decay process. It is because 150Nd−Sm is the only candidate
nuclei pair of which the grandparent 150Nd has larger quadrupole deformation compared
with the grand-daughter 150Sm. However, to compute the NME of the heaviest candidate
150Nd−Sm with Hamiltonian-based GCM, the first issue that must be grappled with is what
to use for the effective Hamiltonian. Since 150Nd consists of 60 protons and 90 neutrons, the
calculation should be carried out in the valence space between the proton and neutron 50 to
126 shell closures. The effective Hamiltonian for this extremely large model space is beyond
the current capability. To overcome this difficulty, an implementation of multiple-shell
valence-space Hamiltonians derived from non-perturbative ab initio methods, such as
in-medium similarity renormalization group (IM-SRG) [53] or CC [54] method, would
be of great importance. Recently, the valence-space Hamiltonians derived from both IM-
SRG [55,56] and CC method [57] has been used to explore the open-shell nuclei in one
single shell. The extension of the ab initio valence-space Hamiltonian to multiple shells is
still in progress.

Finally, it should be mentioned that we only discuss the NME of 0νββ decay from
the ground-state of grandparent nucleus to the ground-state of grand-daughter nucleus
here. Actually, the decay to the low-lying excited states of the grand-daughter nucleus
should also be taken into account if it is allowed energetically. The NME of this process
is expected to be strongly suppressed by the phase-space factor in the standard light left-
handed Majorana neutrino exchange mechanism [58,59]. Nevertheless, it may considerably
contribute to the NME in the non-standard mechanism. Further investigation of 0νββ
decay NME to the lowest 2+1 state of grand-daughter nucleus within the framework of
Hamiltonian-based GCM would be a desirable next step in future work.
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Abbreviations
The following abbreviations are used in this manuscript:

0νββ Neutrinoless double-β decay
NME Nuclear matrix element
E2 Electric quadrupole
ISM Interacting shell model
IBM Interacting boson method
QRPA Quasiparticle random phase approximation
GCM Generator-coordinate method
EDF Energy density functional
IM-GCM In-medium generator-coordinate method
CC Coupled-cluster method
HFB Hartree-Fock-Bogliubov
IM-SRG In-medium similarity renormalization group
GT Gamow-Teller
SRC Short range correlation
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