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Abstract: Materials have a significant role in creating structures that are durable, valuable and possess
symmetry engineering properties. Premium quality materials establish an exemplary environment
for every situation. Among the composite materials in constructions, carbon fiber reinforced polymer
(CFRP) is one of best materials which provides symmetric superior strength and stiffness to reinforced
concrete structures. For the structure to be confining, the region jeopardizes seismic loads and axial
force, specifically on columns, with limited proportion of ties or stirrups implemented to loftier
ductility and brittleness. The failure and buckling of columns with CFRP has been studied by many
researchers and is ongoing to determine ways columns can be retrofitted. This article symmetrically
integrates two disciplines, specifically materials (CFRP) and computer application (machine learning).
Technically, predicting the lateral confinement coefficient (Ks) for reinforced concrete columns in
designs plays a vital role. Therefore, machine learning models like genetic programming (GP),
minimax probability machine regression (MPMR) and deep neural networks (DNN) were utilized to
determine the Ks value of CFRP-wrapped RC columns. In order to compute Ks value, parameters such
as column width, length, corner radius, thickness of CFRP, compressive strength of the unconfined
concrete and elastic modulus of CFRP act as stimulants. The adopted machine learning models
utilized 293 datasets of square and rectangular RC columns for the prediction of Ks. Among the
developed models, GP and MPMR provide encouraging performances with higher R values of 0.943
and 0.941; however, the statistical indices proved that the GP model outperforms other models with
better precision (R2 = 0.89) and less errors (RMSE = 0.056 and NMBE = 0.001). Based on the evaluation
of statistical indices, rank analysis was carried out, in which GP model secured more points and
ranked top.

Keywords: carbon fiber reinforced polymer; genetic programming; lateral confinement coefficient;
prediction; reinforced concrete column

1. Introduction

Hindering of buckling and brittle failure for any structure have become life-long issues.
Loads, such as seismic load, wind load and axial or transient forces, are substantial to
structures. In order to overcome these, effectuating columns, shear factors and seismic
resistance are significantly considered when designing a structure. The application of steel
materials for reconstruction and maintenance of structures was applied over a long period.
Steel materials complied to their mechanical performance, oxidization act and complex
in operations, therefore the innovation of new material such as fiber-reinforced polymer
(FRP), can be considered for retrofitting. Ref [1] utilized it to reinforce both strength and
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ductility of concrete columns by implementing limited proportion confinement to the
concrete core. Due to its symmetrical weightlessness, lifespan imperishability and anti-
corrosion properties, FRP was appropriate for jacketing or retrofitting the RC columns.
Many examples in the literature have manifested the utilization of FRP for retrofitting
columns. Ref. [2] enhanced achievement through experimental assessment of the load-
bearing capacity and ductility of columns externally strengthened with fitful FRP composite
confinement wraps under contemporaneous axial loading and bending moment due to
buckling of bars principally dependent on the lateral restraint by the inward steel ties.
Most research studies have been steadfast in the assessment of the performance of FRP-
confined RC columns under the application of axial loads, which enables execution of its
yield stress. On the other side, output has focused on FRP-jacketed columns under axial
load and buckling effect. Ref. [3] studied the behavior of partially and fully FRP-confined
circularized square columns under axial compression. Ref. [4] utilized the stress-strain
method for analysis and design of FRP-wrapped RC columns.

A carbon fiber reinforced polymer (CFRP) combination for external wrapping is
new-fangled engineering science that plays an important, indispensable aspect for both
buttressing and confining methods for dysfunctional or crippled RC concrete structures. All
engineering structures are jeopardized under intense loading conditions, such as seismic
load, shear stress and buckling effects, leading to severe wrecking in a fraction of the
time. The composite material availed greater strength–to–weight ratio, non-corrodible,
inexpensive implementation and application, as well as thin layers’ size for coating. The
following Figure 1 depicts the partially and fully CFRP-covered RC columns and their
load distributions. Ref. [5] CFRP can achieve up to 60% diminish in weight in correspon-
dence to elements present in steel. Utilization of CFRP is established for retrofitting and
reinforcing existing RC concrete elements structures, such as columns, piers and piles.
The performance diminished replacement of constructions, stabilizing the lifespan of the
existing structure. American institute of concrete [6] characterized behaviors of CFRP for
retrofitting RC concrete structures. This study elaborated how carbon fiber reinforced poly-
mer (CFRP) has been extensively exerted recently to wrap RC columns, with the purpose
of upgrading endurance, axial compressive load-bearing capacity and buckling impact.
Generally, wrecking of structures required CFRP impact design to improve or jacket their
longevity and load-carrying capacity compared to the costs of rebuilding or reconstruction.
Ref. [7] utilized CFRP for strengthening RC columns in the marine environment. The
utilization of carbon fiber reinforced polymers (CFRP) to restrain RC columns has been
accredited in resisting axial load compression applications and increasing capacity and
ductility of RC performance. Ref. [8] applied CFRP to revamp circular RC columns. The
impact of failure size on the integrity of CFRP-confined RC column is detailed in Ref. [9].
The researchers explored the tough character and water percipiency of concrete wrapped
with CFRP. Compressive strength of the concrete was upgraded through escalating the
amount of CFRP layers used as anti-corrosion [10].

Lateral confinement coefficient (Ks) is the predicted numerical value in design consid-
eration for the magnitude of hindered columns, since columns play an important role in
lateral seismic resistance. Ref. [11] predicted the lateral confinement coefficient of columns
cased with FRP, reinforcing and increasing the capability of RC columns. Ref. [12] utilized
Gaussian and tree model for the predication of Ks. The design code of Ks value must be
strict to ensure execution of the lateral force or axial load acting on the column. With the
enhancement of CFRP material, the Ks value is based on retrofitting ductile and brittle
materials to improve endurance strength and hardness of the column or structure lifespan.
In actuality, concrete as composite materials can simply rupture in the instance of axial
load application. Under seismic load, employed reinforcement bars claim to enlarge the
designed capability. Therefore, they dispel the seismic impact penetrate zone of structures
in a state of hysteresis strength and cause bilateral numbers of cycle loading. Due to
this, RC columns experience risky condition at maximum moments in term of stress and
strain. Concrete material is unable to sustain or withhold such amount of stress and strain



Symmetry 2023, 15, 545 3 of 23

under tension application, which is why Ks vales are needed as supportive elements for
confining or tying the zones so as to achieve ductility, as well as to enhance the lifespan of
RC columns. At various stages, many researchers have determined the equation of Ks for
CFRP-wrapped RC columns, which are tabulated in Table 1.
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Table 1. Framed Ks equations from the literature.

References Equations of Ks

Ref. [13] Ks =
f′cc
f′co

= 1 + 4.1 fl
f′co

Ref. [14]
Ks = 1 + ρsfyh

f′c
ρs =

Ashls
sbc
′dc

Ref. [15]

Ks = 1 + b2
c

140Pocc

[(
1− mc2

i
5.5b2

c

)(
1− s

bc

)2
]√

ρsfyh

Pocc = 0.85f′c(Ack −Ast)

Ks = 1 + 6.7
f′c
(fle)

−0.17fle

Ref. [16] Ks = 1− (b−2rc)
2+(h−2rc)

2

3bh(1−ρs)

Ref. [17]
fcc

fucon
= 1 + k flc

fucon

Ref. [11] Ks = exp
[(

7.16× 10−4)(b)− 0.0023(h) + 0.493(t)− 0.0223
(
f′co
)]

[
+
(
2.42× 10−6)(ECFRP) + 0.652

]
Ref. [18]

flc =
ρFRPFFRP

2

ρfrp =
8tfrpbfrp

D(bfrp+Sfrp)

Ref. [19]
fl =

2Eftfnefe
D

D =
√

b2 + h2

Genetic programming (GP) is one of the machine learning models evolved from
Genetic Algorithms, which was proposed and regulated [20]. The ideology of GP was
aroused from the theory of biological evolution: “survival of fittest.” Generally, GP targets
to enhance the population of individuals by executing the preceded metrics of fitness. In
a nuclear power plant, the identification of accidents was crucial, and it was effectively
determined by the GP model. Ref. [21] utilized the GP model and proved its potential of
being less time-consuming and almost 100% precise. Forecasting the strength of cemented
paste backfill (CPB) plays a vital role in minerals engineering for the effective design of
CPB. However, the traditional way of determining UCS consumes more time and money.
Ref. [22] utilized the GP model in order to predict the UCS of CPB, which exhibits promising
performance. The determination of undrained shear strength (Nk) of clayey soil is one
of the tedious tasks in the field. Therefore, the researchers employed the GP model for
computing the undrained shear strength of clay soil for the location East Port-Said by using
liquid limit, plastic limit, plasticity index, water content and unit weight of the clayey
soil as parameters. The researchers justified that the GP model predicts Nk with a good
correlation [23]. The capability of GP was extended to resolve many engineering problems
with better preciseness [24–28].

Minimax probability machine regression (MPMR) is a framework wing model of
machine learning that was developed by Ref. [29] as a nonlinear model for predicting
or estimating that the forthcoming mathematical outputs of the regression model will be
within some bound of the true regression function. Ref. [30] utilized minimax probability
machine regression (MPMR) to evaluate daily vaporization passing (Ep), forecasting models
was employed for the design of water systems, urban water assessments and irrigation
management. Other researchers such as Ref. [31] utilized MPMR for the prediction of
hardness and fracture toughness in liquid–phase–sintered alumina, which is considerably
more appropriate for predicting the parameters of liquid–phase–sintered alumina. Ref. [32]
determined the uplift capacity of suction caisson (P), where MPMR became stout models for
the prediction of suction caisson. Ref. [33] utilized minimax probability machine regression
(MPMR) for the prediction of rapid chloride permeability of self-compacting concrete. The
output verified that the MPMR model was satisfactory.
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Deep neural networks (DNN), a framework of machine learning models, uses com-
puter applications to decode complex functions over huge datasets, whereby the classifica-
tion challenges contributes a major function in the advanced systems. Ref. [34] deployed an
analysis of DNN for practical applications, and it showed a persuasive data package that
helps in the design and engineer effective performance. Ref. [35] highlighted a survey of
the application of (DNN) learning techniques on some selected areas (speech recognition,
pattern recognition and computer vision). Ref. [36] raised awareness of separate parameters
in (DNN) inclusion; the analytic framework enumerates antagonistic charges to semantic
image editing. Ref. [37] applied deep neural networks for the discovery and examination
of COVID-19 pandemic from chest X-ray illustrations. The DNN model carried out sub-
stantially higher results with minimum pre-processing of data for clinical practitioners.
Ref. [38] utilized DNN for a survey on traffic prediction: proclivities, approaches and
difficulties. The output offers a consultation based on the difficulties and a way forward
based on this field. Similarly, more researchers integrated the computer applications in
various engineering and medical problems [39–53].

This article comprises various sections as follows: Section 2 describes the summary of
variables that was adopted for the dataset. This section shows the heatmap of correlation
coefficient among the variables of the dataset and the scatter matrix of the variables. The
next section, Section 3, explains the detailed interpretations of the nominated machine
learning models. After the descriptions of the respective machine learning models, the
performances of the developed models were inferred elaborately in Section 4. In this section,
comparison of the models has been carried out by different statistical parameters, Taylor
diagram and distribution functions. Section 5 derives the summary of this article.

2. Dataset Interpretation

In order to determine the lateral confinement coefficient (Ks), variables such as column
width (b), length (h), corner radius (r), thickness of CFRP (tw), compressive strength of the
unconfined concrete (f’co) and elastic modulus (Efrp) are considered as inputs. The follow-
ing Table 1 conveys the comparison on the dataset of Ref. [11] and the adopted dataset.

In the above Table 2, the researchers had utilized 100 datasets of rectangular RC column
and developed fuzzy logic model without the consideration of the corner radius [11]. The
corner radius is one of the input parameters which has been considered in this study as it
furnishes the following significances:

• Corner radii are most significantly due to reduction/curtailments of the stress attack
and improved strain distribution during extreme load application. At this moment, RC
columns jeopardized maximum load, causing damage to weak zones due to uneven
stirrup distribution, proper reinforcement arrangement or mixing proportion.

• By reducing corner radii and wrapping with CFRP material, we can technically en-
sure that our RC columns have enhanced performance, with improved ductility and
comprehensive strength.

• Specimens examined by Ref. [54] showed that the compressive strength ratio (f′cc/f′co)
of relatively large-scale square columns confined by CFRP increases almost linearly
along with the increase of corner radius.

• Demonstrating that with CFRP, confinement is inconsequential to enlarge the com-
pressive strength of RC columns with sharp corners (r = 0 mm) at the highest loading
extents, although the ductility can be increased.

• A confinement effectiveness model, which considers lateral confinement level, corner
radius ratio and size effect of the column, displayed that the strain efficiency factor at
corner increases as the corner radius ratio increases [55,56].

• Ref. [57] pointed out that the strength and strain augmentation effect of sporadically
wrapped specimens can be perfected with evenly-distributed overlap regions. Thereupon,
respective overlapping zones were staged on a different side and ducked the corner zones.

• Ref. [58] demonstrated the confinement potency model by considering lateral con-
finement level, corner radius ratio and size effect, proposed for FRP-confined square
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columns. Juxtaposed with other extant models, the contemplated one provides an
enhanced examination of FRP-confined square columns.

Table 2. Dataset comparison of the current study and earlier method [11].

Current Study Doran et al. (2015) [11]

1 No of Dataset 293 100

2 Models

• Genetic Programming
• Minimax Probability

Machine Regression
• Deep Neural Network

Fuzzy Logic

3 No of Inputs 6 5
4 Type of CFRP RC Columns Rectangular and Square Rectangular
5 Corner Radii Considered Not Considered

In order to determine the confinement coefficient of square and rectangular columns
covered by CFRP fibers, a total of 293 datasets have been compiled from various works in the
literature [1,11,59–80]. The following Table 3 conveys the statistical summary of the dataset.

Table 3. Statistical summary of the adopted dataset.

b
(mm)

H
(mm)

r
(mm)

tw
(mm)

Efrp
(mm)

fco
(mm)

Ks
(mm)

Min 20 108 5 0.056 10,500 10.83 0.94
Mean 167.15 277.07 25.16 0.55 187,852.90 30.54 1.69
Std 57.66 149.73 12.74 0.50 87,680.16 11.61 0.69
Max 457 1200 60 3 640,000 55.36 4.79
skewness 1.46 2.26 0.41 2.36 0.24 0.28 1.74
Kurtosis 7.05 11.71 2.72 10.16 6.56 2.56 6.38

The above Table 2 exhibits the lowest, average, standard deviation, maximum value,
skewness and kurtosis for the compiled dataset, which has been utilized for developing
the machine learning models.

The above Figure 2 conveys the symmetrical correlation between various variables
in the form of matrix. In the above Figure 2, one color refers to the positive, and the other
color indicates the negative correlation among the variables. The variation in the shades
represents the potency of correlation which is easier to understand. The upcoming Figure 3
represents the scatterplot matrix which infers the companion relationship among various
combinations of variables in the form of a grid, for the development of machine learning
models and the understanding of variables between divergent features.
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The above Figure 3 exhibits the association between the adopted variables. This is
used to assess the linear correlation among the different variables.

3. Methodology

In this section, the adopted dataset, which was collected from various works in the
literature, has been compiled then normalized between null and unity in order to deduce
the perplexity of the machine learning models. The following Equation (1) depicts the
formula for normalizing the dataset. In the next step, the dataset is segregated as 75%
training dataset and 25% testing dataset. The datasets are then incorporated in the machine
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learning models such as GP, MPMR and DNN. Then, the models are compared based on the
performance of the developed machine learning models by various statistical computations.

Normalized data =
value− lower limit

upper limit− lower limit
(1)

where value represents the data to be normalized; upper and lower limits indicate the
greatest and the lowest values of the parameter, respectively.

The following Figure 4 shows the traditional and adopted methodology for the current
research work [19,81,82].
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3.1. Genetic Programming (GP)

Evolutionary algorithms arose from biological evolution processes which figured
out issues by executing the idea of natural selection to a population of individuals with
the anticipation of the fittest model. Genetic Algorithm (GA) is one of the evolutionary
algorithms which comprises reproduction as a tactic for yielding the better offspring with
good fitness using the leading genetic operators. GP is the subsection of GA, and hence
the principles of GP is homogenous as of GA. GP consists of hierarchical tree-like patterns
with prior functions and terminal nodes. The following Figure 5 shows the conventional
tree structure of the GP.
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The following steps define the typical technical procedure adopted by the GP model [83]:
Stage 1: Initially, the beginning populations are formed randomly, and the formation

of establishing the random trees can be achieved by full and grow strategies. Ref. [20]
proposed ramped half-and-half method for population initialization by partially full and
partially grows methods.

Stage 2: The developed tree was assessed by the fitness function, which forecasts
how a solution works on the issue. The solutions with greater precision are nominated as
parents for breeding in the process of evolution.

Stage 3: In every recurrence, two trees are chosen as better parents for producing
the offspring by genetic operations, such as crossover and mutation. Technically, the
crossover randomly determines the crossover point in every parent tree. Offspring trees
were generated by splicing together at the crossover point, whereas mutation with the same
process deputize a new randomly formed subtree which modifies the GP tree. The pictorial
representations of crossover and mutation are depicted in the following Figure 6a,b.

Stage 4: The above stages 2 to 3 are recapitulated until specified requirements have
been met.

The above are the procedures of GP. The adopted dataset has been incorporated in the
developed GP model. MATLAB was the software package adopted to develop the machine
learning models.

3.2. Minimax Probability Machine Regression (MPMR)

MPMR is one of the intelligent machine learning models proposed by [29] that reduces
the maximal probability of a test sample being mismatched. The core idea is to depress
the upper limit of the misclassification probability with respect to any choice of class
conditional dissemination that indulge the constraints. The following Figure 7 represents a
typical MPMR deciding the hyperplane for segregating the data.
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The regression surface, which is the area in between the lower and the upper limit of
probability, determines the space for misclassifying a point without making distributional
assumptions by the model [84]. The training dataset was classified into 2 random categories,
U and V, assuming that U is formed from the limited dispensation with the means U
and V and covariance matrices ΣU and ΣV . They can be defined as U ∼

(
U, ΣU

)
and

V ∼
(
V, ΣV

)
. The main objectives of MPMR are to determine the approximation function

f (x) and to predict the limits on the minimum probability [29,30]. The MPMR is based on
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kernel function. Hence, the f (x) can also be fabricated by representing the input data to a
greater dimensional space by the following Equations (2a) and (2b):

U 7−→ ω(U) ∼
(

ω(U), Σω(U)

)
(2a)

V 7−→ ω(V) ∼
(

ω(V), Σω(V)

)
(2b)

Let us consider c as the slope of the hyperplane, and σ is the bisecting term of the
hyperplane, therefore

cTω(x) = σ (3)

The ordinary least squares method symmetrically reduces the total sum of squared
residuals, but it can be utilized for linear and non-linear regressions. According to the
kernel method K

(
xi, xj

)
= ω(xi)ω

(
xj
)
, we can avoid ω explicitly. MPMR can evaluate

the predictive power of a regression function by a bound on the least probability, which
represents that data are in true regression function. The Equation (4) provides the true
regression function.

Y = f (x) =
{
∑n

i=1 αiK
(
xi, xj

)
+ σ

}
(4)

In order to determine the lateral confinement coefficient of the CFRP-wrapped rectan-
gle and square RC columns, the dataset that was utilized for the GP model is incorporated
into the MPMR model.

3.3. Deep Neural Network (DNN)

Deep neural network, a machine learning model, was originally proposed by Ref. [85].
The DNN model mimics the techniques of human brain in order to normalize complex
and non-linear classification and regression problems. Technically, DNN is comprised of
a number of neurons which are arrayed in a series of layer. A neuron is a mathematical
unit that consists of 1 or more weighted input connections, with a transfer function that
integrates the inputs in its way and connects the output [86]. The following Figure 8 depicts
the common DNN structure.
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The input data will be incorporated in the input layer, transforming in the hidden
layers and finally reaching the output layer as a prediction. The values in all the neurons of
hidden and output layers are computed by the activation function multiplied by the weight
plus the bias, in which the weights and bias can be modified, based on the errors generated
during the prediction or until the errors are minimal [87]. Let us consider the input dataset
I with the dimension M × N which is formulated as X = {x(1), x(2), . . . .x(M)} ∈RN, where
N and M represent the length and number of samples. In this feature, learning and
understanding the expression of input data can be given as

h(x(i), W, b) = ξ(Wx(i) + b), i = 1, . . . M) (5)

and the output layer function can be expressed as

Output layer = ξ
(

WTh(x(i) + b
)
+ c (6)

The activation function aj (x) of the j th hidden layer can be expressed as follows

a = aj(WX + b) (7)

where W represents the weight of input feature and indicates the bias. Using this presump-
tion, the mean weight of activation function can be depicted as

δj =
1
n ∑n

i=1

[
aj(x(i))

]
(8)

During the preliminary stage of training the DNN, average activation function is
presumed to be 0 due to the idleness of the neurons. The penalty (P) can be implemented to
the average activation function if it deviates from the substantial value of average activation
function, which can be expressed as:

P = ∑s
j=1 KL

(
δ ‖ δj

)
(9)

where s represents the total number of neurons in the hidden layer

KL
(
δ ‖ δj

)
= δlog

δ

δj
+ (1− δ)log

1− δ

1− δj
(10)

The determination of cost function (C), W and b is a significant task since these param-
eters are directly proportional to each other. The optimization problem can be resolved by
using back-propagation approach by modifying the values of W and b recurrently.

C(W, b) = C(W, B) + β
s

∑
j=1

KL
(
δ ‖ δj

)
(11)

Wij(l) = Wij(l)− ϑ
ψ

ψWij(l)
C(W, b) (12)

bi(l) = bi(l)− ϑ
ψ

ψbi(l)
C(W, b) (13)

where β is the weight of penalty; ϑ depicts the learning rate of the adopted DNN [88]. The
upcoming Figure 9 shows the technical procedure of the adopted DNN model.
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The DNN also adopts the same dataset utilized for GP and the MPMR model.

4. Results and Discussion

The performance of the developed machine learning models is discussed in this section.
In order to attain the best performance of the developed models, various tuning parameters
have been modified by the hit-and-run approach. The following Table 4 depicts the different
tuning parameters for the respective machine learning models.
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Table 4. Tuning parameters for the developed models.

GP MPMR DNN
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(15)

The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 
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The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 
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The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 
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MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 

Max tree depth = 7

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 23 
 

 

𝑅 = ∑ 𝑈 − 𝑈 𝐿 − 𝐿∑ 𝑈 − 𝑈 ∑ 𝐿 − 𝐿  (14)

where Li = predicted; Ui = observed; Lm = mean of predicted; Um = mean of actual; n is the 
total number of datasets 

Table 4. Tuning parameters for the developed models. 

GP MPMR DNN 
 Population size = 600 
 Number of generations = 150 
 Tournament size = 7 
 Max tree depth = 7 
 Functions: TIMES, MINUS, 

RDIVIDE, PSQROOT, 
SQUARE, COS, EXP 

 Max genes = 9 

 σ = 0.8 
 ε = 0.005 

 Number of Hidden layers = 5 
 Number of Neurons = 20 
 Epochs = 1000 
 Optimizer = ‘adam’ 
 Loss = mean_squared_error 

The R value of GP is 0.943 for training and 0.944 for the testing dataset with 600 
populations; 150 generations with a maximum 9 number of genes and various functions 
by the trial-and-error method in order to obtain the best-optimized equation for pre-
dicting the lateral confining coefficient of rectangular and square columns. The following 
is the equation generated by the GP model.  𝐾 = 2.268(𝑏) + 0.3329(ℎ) + 0.1053(𝑟) + 0.2276(𝐸 ) − 0.1053𝑝𝑠𝑞𝑟𝑜𝑜𝑡 𝑒𝑥𝑝((𝐸 )    − 0.4354𝑠𝑞𝑢𝑎𝑟𝑒 𝑠𝑞𝑢𝑎𝑟𝑒((𝐸 ) − 0.2362𝑐𝑜𝑠 𝑒𝑥𝑝 𝑒𝑥𝑝 𝑐𝑜𝑠 𝑒𝑥𝑝(𝑏)− 1.62𝑝𝑠𝑞𝑟𝑜𝑜𝑡(0.1906(𝑏)(𝐸  )(𝐹 ) + 1.62𝑒𝑥𝑝 𝑐𝑜𝑠 𝑒𝑥𝑝(𝑏) − 0.3329𝑝𝑠𝑞𝑟𝑜𝑜𝑡(ℎ)+ 0.4354(ℎ)(𝐸  ) − 0.2363𝑡 (𝑏 − 𝑟 + 𝐸  ) + 0.0068(𝑏)𝑐𝑜𝑠 𝑒𝑥𝑝(𝑡 ) − 𝑝𝑠𝑞𝑟𝑜𝑜𝑡(𝑡 )𝐹 − 𝑏(𝐸  )+ 2.803𝑡 𝐸  𝐹 − (𝑟) + 𝑝𝑠𝑞𝑟𝑜𝑜𝑡(exp (𝑡 ) + 2.911𝑡 𝑏(𝐸  ) 𝑒𝑥𝑝 𝑐𝑜𝑠(3.359(𝐹 )0.1468𝑏 + 𝑐𝑜𝑠(𝑟 − 𝑏)+ 0.000521𝑡 exp(𝑡 )(𝐹 − 𝑟(𝐸  ) 𝑐𝑜𝑠 𝑒𝑥𝑝(𝐸  ) − 𝑏 −  2.644 

(15)

The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 

Functions: TIMES, MINUS,
RDIVIDE, PSQROOT,
SQUARE, COS, EXP
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(15)

The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 

Max genes = 9
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(15)

The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 

σ = 0.8
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where Li = predicted; Ui = observed; Lm = mean of predicted; Um = mean of actual; n is the 
total number of datasets 

Table 4. Tuning parameters for the developed models. 
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 Max genes = 9 
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(15)

The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 

ε = 0.005
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(15)

The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 

Number of Hidden layers = 5
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(15)

The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 

Number of Neurons = 20

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 23 
 

 

𝑅 = ∑ 𝑈 − 𝑈 𝐿 − 𝐿∑ 𝑈 − 𝑈 ∑ 𝐿 − 𝐿  (14)

where Li = predicted; Ui = observed; Lm = mean of predicted; Um = mean of actual; n is the 
total number of datasets 

Table 4. Tuning parameters for the developed models. 

GP MPMR DNN 
 Population size = 600 
 Number of generations = 150 
 Tournament size = 7 
 Max tree depth = 7 
 Functions: TIMES, MINUS, 

RDIVIDE, PSQROOT, 
SQUARE, COS, EXP 

 Max genes = 9 

 σ = 0.8 
 ε = 0.005 

 Number of Hidden layers = 5 
 Number of Neurons = 20 
 Epochs = 1000 
 Optimizer = ‘adam’ 
 Loss = mean_squared_error 

The R value of GP is 0.943 for training and 0.944 for the testing dataset with 600 
populations; 150 generations with a maximum 9 number of genes and various functions 
by the trial-and-error method in order to obtain the best-optimized equation for pre-
dicting the lateral confining coefficient of rectangular and square columns. The following 
is the equation generated by the GP model.  𝐾 = 2.268(𝑏) + 0.3329(ℎ) + 0.1053(𝑟) + 0.2276(𝐸 ) − 0.1053𝑝𝑠𝑞𝑟𝑜𝑜𝑡 𝑒𝑥𝑝((𝐸 )    − 0.4354𝑠𝑞𝑢𝑎𝑟𝑒 𝑠𝑞𝑢𝑎𝑟𝑒((𝐸 ) − 0.2362𝑐𝑜𝑠 𝑒𝑥𝑝 𝑒𝑥𝑝 𝑐𝑜𝑠 𝑒𝑥𝑝(𝑏)− 1.62𝑝𝑠𝑞𝑟𝑜𝑜𝑡(0.1906(𝑏)(𝐸  )(𝐹 ) + 1.62𝑒𝑥𝑝 𝑐𝑜𝑠 𝑒𝑥𝑝(𝑏) − 0.3329𝑝𝑠𝑞𝑟𝑜𝑜𝑡(ℎ)+ 0.4354(ℎ)(𝐸  ) − 0.2363𝑡 (𝑏 − 𝑟 + 𝐸  ) + 0.0068(𝑏)𝑐𝑜𝑠 𝑒𝑥𝑝(𝑡 ) − 𝑝𝑠𝑞𝑟𝑜𝑜𝑡(𝑡 )𝐹 − 𝑏(𝐸  )+ 2.803𝑡 𝐸  𝐹 − (𝑟) + 𝑝𝑠𝑞𝑟𝑜𝑜𝑡(exp (𝑡 ) + 2.911𝑡 𝑏(𝐸  ) 𝑒𝑥𝑝 𝑐𝑜𝑠(3.359(𝐹 )0.1468𝑏 + 𝑐𝑜𝑠(𝑟 − 𝑏)+ 0.000521𝑡 exp(𝑡 )(𝐹 − 𝑟(𝐸  ) 𝑐𝑜𝑠 𝑒𝑥𝑝(𝐸  ) − 𝑏 −  2.644 

(15)

The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 
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The potency of the MPMR model relies upon two tuning parameters, σ and ε, and 
the values 0.8 and 0.005 have been determined by random approach. At these values, the 
MPMR model delivered the best outcome, which was encouraging. The DNN model ex-
hibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The 
following Figures 10 and 11 depict the training and testing performance of the developed 
GP, MPMR and DNN models.  

The above Figures 10 and 11 depict that the adopted models performed well for 
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the R 
value of GP and MPMR models described encouraging performances compared to the 
DNN model. Other statistical computations have been utilized to justify the capability of 
the models for predicting the Ks of RC rectangular and square columns covered by CFRP. 
The following Table 5 conveys the different statistical calculations and their ideal values. 
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Loss = mean_squared_error

The above Table 4 depicts various respective tuning parameters for the adopted models
to extract the best potential for the adopted dataset. The GP model has many regulators
compared to the other MPMR and DNN models. The potency of the MPMR model depends
on σ and ε. Similarly, the DNN model also has varied parameters. All the above-mentioned
parameters were obtained by hit and trial approaches. The adopted machine learning
models proclaimed their best optimized outcome from the above specified tuning variables.
The potential of the developed models can be assessed using the correlation coefficient
(R) value. The ideal value of R is unity, and it can be determined by using the following
Equation (14).

R =
∑n

i=1
(
Ui −Ui

)(
Li − Li

)
∑n

i=1
(
Ui −Ui

)2
∑n

i=1
(

Li − Li
)2 (14)

where Li = predicted; Ui = observed; Lm = mean of predicted; Um = mean of actual; n is the
total number of datasets

The R value of GP is 0.943 for training and 0.944 for the testing dataset with 600 pop-
ulations; 150 generations with a maximum 9 number of genes and various functions by
the trial-and-error method in order to obtain the best-optimized equation for predicting
the lateral confining coefficient of rectangular and square columns. The following is the
equation generated by the GP model.

Ks = 2.268(b) + 0.3329(h) + 0.1053(r) + 0.2276(ECFRP) − 0.1053psqroot(exp((ECFRP))

− 0.4354square(square((ECFRP)) − 0.2362cos(exp(exp(cos(exp(b)))))

− 1.62psqroot(0.1906(b)(ECFRP )(Fco) + 1.62exp(cos(exp(b))) − 0.3329psqroot(h)

+ 0.4354(h)(ECFRP ) − 0.2363tw(b − r + ECFRP ) + 0.0068(b)cos(exp(tw) − psqroot(tw))
(Fco − b(ECFRP ))

+ 2.803twECFRP
(Fco − (r) + psqroot(exp(tw))

+ 2.911twb(ECFRP )2exp(cos(3.359(Fco))

0.1468b + cos(r − b)2

+
0.000521tw exp(tw)

(Fco − r(ECFRP )(cos(exp(ECFRP )) − b2)
− 2.644

(15)

The potency of the MPMR model relies upon two tuning parameters, σ and ε, and
the values 0.8 and 0.005 have been determined by random approach. At these values,
the MPMR model delivered the best outcome, which was encouraging. The DNN model
exhibits the better performance with 5 hidden layers and 20 hidden neurons at 1000 itera-
tions, whereby the value of R = 0.898 for training and R = 0.844 for the testing dataset. The
following Figures 10 and 11 depict the training and testing performance of the developed
GP, MPMR and DNN models.
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Figure 10. Training performance of the GP, MPMR and DNN models.
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The above Figures 10 and 11 depict that the adopted models performed well for
determining the Ks of CFRP-wrapped RC columns. Among the developed models, the
R value of GP and MPMR models described encouraging performances compared to the



Symmetry 2023, 15, 545 16 of 23

DNN model. Other statistical computations have been utilized to justify the capability of
the models for predicting the Ks of RC rectangular and square columns covered by CFRP.
The following Table 5 conveys the different statistical calculations and their ideal values.

Table 5. Statistical assessments for the developed models.

Statistical Parameters Description Ideal Condition

Coefficient of Determination,

R2 = (∑n
i=1(Ui−Um)(Li−Lm))

2

∑n
i=1(Ui−Um)

2 ∑n
i=1(Li−Lm)

2

Coefficient of determination calculates the
constancy of collaboration between the
actual and the predicted values.

The ideal value must be near to unity.

Mean Absolute Error
MAE = 1

n ∑n
i=1|Li −Ui|

MAE enumerates the accuracy error of the
predicted and actual data.

MAE value should be 0. When the value
of R overtures to 0.

Root Mean Square Error

RMSE =
(

1
n ∑n

i=1[Li −Ui]
2
)0.5

Analyze the measured value to the
estimated value and calculate the square
root of the mean residual error.

RMSE has to be 0. When the value of R
overtures to 1, the RMSE value will be
near to 0, and vice versa.

Index of Agreement,

IA = 1− ∑n
i=1(Li−Ui)

2

∑n
i=1(|Li−Um |+|Ui−Um |)2

Index was employed to analyze the
precision of the measurable models in this
investigation.

The IA value should be 1 to enumerate
the performance model.

Fractional Variance
FV = 2(σu − σl)/(σu + σl)

FV emphases computed variance of actual
and predicted data.

FV ideal value must be 0.

Factor of Two (FA2)
0.5 6 FA2 = 1

n ∑n
i=1

(
Ui
Li

)
6 2

Indicates the range of the output results
data between 0.5–2 as benchmark
model accuracy.

Based on the model performance, the
range output result data should lie
between 0.5–2.

Coefficient of Variation (%)
CV = RMSE

Um
∗ 100

It symbolizes the ratio of the RMSE variance
to the actual data variance.
It is exhibited in percentage.

The ideal value of CV should be 0. RMSE
is also 0.

Durbin–Watson (DW) statistics,

DW = ∑n
i=2(ji−ji−1)

2

∑n
i=1 j2

i

where, (ji = Ui − Li)

It measures the predictive accuracy. To
validate the predictive capability of the
prediction models,

The ideal value of DW must be close to 2.

Normalized Mean Bias Error (NMBE),

NMBE =
1
n ∑n

i=1 (Li−Ui)
1
n ∑n

i=1 Ui
∗ 100

NMBE estimates the aptitude of the model
to anticipate a value, which is staged away
from the mean value. It is expressed
in percentage.

A positive NMBE reveals over-prediction,
and a negative value depicts
under-prediction

Where Li= predicted; Ui=observed; Lm = mean of predicted; Um= mean of actual; n is the total number of datasets.

Based on the above Table 5, the statistical computation has been carried out and the
respective computed values have been compared with the previous study [11].

The above Table 6 shows various statistical parameters and their values for the respec-
tive developed models. The R2 value of GP (0.89) is comparatively much better than the
other developed MPMR and DNN models. However, the Fuzzy logic method is slightly
better than the GP model, but the dataset for fuzzy logic was not parallel quantitatively.
The MAE and RMSE of the developed GP, MPMR and DNN models were comparatively
less than the Fuzzy logic model. Among the developed models in this study, the IA value
is almost in the vicinity of the ideal value 1, which depicts the GP and MPMR models
performed well for the prediction. The FV value of GP and DNN models is better, whereas
the MPMR model displayed better performance by depicting the FA2 values. The value of
CV and DW statistic conveys the better performance of the GP model when compared with
other developed models in this study. The NMBE value of the training GP model conveys
that it has the least error that is ignorable. However, the testing dataset value inferred
that the model under predicted. Similar to the GP model, MPMR also has both ignorable
error and under predicted values, but the DNN model did underprediction. Based on the
computed statistical calculations, the rank analysis has been carried out and tabulated in
the following Table 7 in order to determine the best model among the developed models.
Since three models were utilized in this study, a maximum of 3 points was awarded to the
best model and reduced to unity for the least performed model.
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Table 6. Comparison of statistical computations with the developed models.

Doran et al. (2015) [11]
(Fuzzy Logic)

Overall

Training
GP

Testing
GP

Training
MPMR

Testing
MPMR

Training
DNN

Testing
DNN

Number of
Dataset 100 220 73 220 73 220 73

R2 0.919 0.89 0.89 0.885 0.712 0.806 0.712
MAE 0.133 0.041 0.054 0.041 0.064 0.036 0.070
RMSE 0.174 0.056 0.073 0.057 0.097 0.076 0.117
IA 0.976 0.970 0.960 0.969 0.937 0.947 0.883
FV 0.111 0.116 0.389 0.123 0.067 0.071 0.499
FA2 0.993 0.836 1.135 1.237 1.283 1.184 1.454
CV(%) 10.74 30.777 31.933 31.185 42.794 41.421 51.411
DW statistic 1.513 1.453 1.004 1.491 0.978 0.842 0.877
NMBE (%) - 0.001 −9.596 0.130 −3.974 −2.666 −20.767

Table 7. Rank analysis based on statistical values.

Training
(GP)

Testing
(GP)

Training
(MPMR)

Testing
(MPMR)

Training
(DNN)

Testing
(DNN)

R2 3 3 2 1 1 1

MAE 1 3 2 2 3 1

RMSE 3 3 2 2 1 1

IA 1 3 3 2 2 1

FV 2 2 1 3 3 1

FA2 1 1 3 3 2 1

CV (%) 3 3 2 2 1 1

DW statistic 2 2 3 1 1 1

NMBE (%) 3 1 2 2 1 1

Total Points 19 21 20 18 15 9

Overall Points 40 38 24

Table 7 conveys that the GP model secured more points than the other MPMR and
DNN models. Thus, GP outperforms the other models. The cumulative and log normal
distributions of the different models have been plotted between the ratios of predicted to
the measured values and the cumulative and log normal distributions [89]. The following
Figures 12 and 13 depict that most of the values are in the range of 1, which expose the
potential of the developed models.

Taylor diagram is one of the charts that express the comparison of variables from one
or more datasets to one or more reference datasets. In our study, the reference is considered
as 1, and if the value of the respective model is in the vicinity of 1, then it can be referred
to as the best model. Taylor diagrams for the training and testing datasets are displayed
in the upcoming Figures 14 and 15. The GP and MPMR models are almost close to the
reference in the training dataset, whereas the GP model exposed more precision in the
training dataset compared with the other models.

All the above performance indices, statistical computations, rank analysis and Taylor
diagrams represent that the developed GP and MPMR models exhibit better performances
in forecasting the linear confinement coefficient of rectangular and square columns covered
by carbon fiber reinforced polymer.
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5. Conclusions

Carbon fiber reinforced polymer is one of the advanced composite materials with
better pros, such as mild weight, high strength and non-corrodible properties. The usage
of CFRP in the load-bearing component of a structure makes the building more reliable.
In this research study, based on the literature data available from experiments, the predic-
tion of lateral confinement coefficient (Ks) of CFRP-wrapped non-circular columns was
computed through intelligent models, such as GP, MPMR and DNN. The dimensions and
strength properties (width, length, total thickness of CFRP, corner radii, elastic young
modulus of CFRP and the compressive strength of unconfined concrete) of the non-circular
columns wrapped with CFRP were considered to accomplish the computation. When
compared with the literature model, the corner radii were also considered as the input in
this study. Based on the hit-and-trial approach, the tuning parameters were concluded,
in which the models had higher precision and the least errors. When comparing the ac-
curacy of the intelligent models, GP model performed better (R2 = 0.89) than the MPMR
model (R2 = 0.885). The error comparison carried out also showed that the GP model
(RMSE = 0.056 and NMBE = 0.001) outperformed the other models with fewer errors. A
comparison of all the statistical parameters of the developed models and the models de-
veloped in the literature was also tabulated. The rank analysis was performed to find
out which model had the greatest potential in predicting the Ks value of CFRP-wrapped
columns. The Taylor diagram showed that the GP and MPMR models have good capability
in forecasting this specific structural problem. The application of this knowledge-based
model is more unpretentious than complex mathematical formulations used to determine
the constitutive performance of CFRP-confined rectangular and square RC columns. These
machine learning models demonstrated that complicated structural engineering issues can
be resolved in a cost and time effective manner.
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