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Abstract: In this paper, we deal with a new family of iterative methods for approximating the solution
of nonlinear systems for non-differentiable operators. The novelty of this family is that it is a m-step
generalization of the Steffensen-type method by updating the divided difference operator in the
first two steps but not in the following ones. This procedure allows us to increase both the order
of convergence and the efficiency index with respect to that obtained in the family that updates
divided differences only in the first step. We perform a semilocal convergence study that allows us
to fix the convergence domain and uniqueness for real applied problems, where the existence of a
solution is not known a priori. After this study, some numerical tests are developed to apply the
semilocal convergence theoretical results obtained. Finally, mediating the dynamic planes generated
by the different numerical methods that compose the family, we study the symmetry of the basins of
attraction generated by each solution, the shape of these basins, and the convergence to each root of a
polynomial function.

Keywords: iterative method; symmetry; semilocal convergence; multi-step method; Steffensen-type
scheme; nonlinear system

1. Introduction

Using iterative methods for solving nonlinear systems is the most common technique
to solve a great variety of applied nonlinear problems. Nowadays, iterative methods with
a high order of convergence are being developed because the use of variable precision
arithmetic in the existing software allows us to obtain approximated solutions with high
accuracy. In addition, other approximation techniques have been developed in recent years,
such as hybrid algorithms, schemes that use iterative methods together with optimization
algorithms [1,2].

In this sense, we deal, in the present work, with high-order iterative methods for solving
the system F(x) = 0, with F, a nonlinear operator between Banach spaces X and Y [3,4].

It is well known that the iteration function for solving the problem involves the
operator F and probably its Fréchet derivative, F′(x), as is the case of Newton’s method [5].
However, in real applications, it is highly probable to find non-differentiable operators
modeling the problem. In these cases, the secant-type or Steffensen-type iterative methods
are used [6–8] since the derivative has been approximated by divided differences, mainly
first-order forward or backward divided differences or second-order symmetric divided
differences [9]. For this reason, we concentrate on high-order iterative methods for non-
differentiable problems [10]. Let us consider the composition of a generalized Steffensen
method with itself by performing m steps, whose iterative expression is as follows:
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z(k)1 = x(k) − [w(k), x(k); F]−1F(x(k))
z(k)2 = z(k)1 − [w(k), x(k); F]−1F(z(k)1 )

...
z(k)j = z(k)j−1 − [w(k), x(k); F]−1F(z(k)j−1) j = 1, 2, . . . , m

...
z(k)m−1 = z(k)m−2 − [w(k), x(k); F]−1F(z(k)m−2)

x(k+1) = z(k)m−1 − [w(k), x(k); F]−1F(z(k)m−1), k = 0, 1, . . .

(1)

where x(0) is the starting point, w(k) = x(k) + βF(x(k)), and β is an arbitrary constant such
that β 6= 0. The number of steps selected is denoted by m, and k denotes which iteration
we are computing. Ref. [11] proved that this iterative method reaches convergence order
m + 1 (see [12–14]).

In order to increase the convergence order without losing the efficiency index, we
introduce a new family of iterative methods, consisting in performing m-steps per iteration,
but we will perform two first steps of the Steffensen method updating all data. After that,
we reuse the divided differences of the second step in the remaining ones. The iterative
expression is as follows:

z(k)1 = x(k) − [w(k), x(k); F]−1F(x(k))
z(k)2 = z(k)1 − [z(k)1 , v(k); F]−1F(z(k)1 )

...
z(k)j = z(k)j−1 − [z(k)1 , v(k); F]−1F(z(k)j−1), j = 2, . . . , m

...
z(k)m−1 = z(k)m−2 − [z(k)1 , v(k); F]−1F(z(k)m−2)

x(k+1) = z(k)m−1 − [z(k)1 , v(k); F]−1F(z(k)m−1), k = 0, 1, . . .

(2)

where w(k) = x(k) + βF(x(k)) and v(k) = z(k)1 + βF(z(k)1 ). The number of steps selected is
denoted by m, and k denotes which iteration we are computing. That is, we perform two
steps of the Steffensen type. From then, by using the divided difference obtained in the
second step, we perform m− 2 new steps.

Our family of methods coincides with the family studied in [15] for the weight function
H(t) = t−1 and for the parameters β = δ. Moreover, in this article, the complex dynamics is
studied in depth. From this study, we can deduce the dynamics of our family (for example,
see [16,17]).

The paper is organized as follows: Section 2 is devoted to set a semilocal convergence
study for this new family of iterative methods. Next, in Section 3, we perform some
numerical tests in order to apply the theoretical results obtained previously. Finally, we
expose some conclusions.

2. Semilocal Convergence

In this section, we analyze the semilocal convergence of the iterative method (2), that
is, we impose the necessary conditions so that, given a starting point x(0), the iterative
method (2) converges to a solution. Moreover, we determine the existence and uniqueness
convergence domains [18].

For this, we consider x(0) ∈ Ω, and we assume the following:

(I) There exists L−1
0 = L(x(0))−1 = [w(0), x(0); F]−1 such that ‖L−1

0 ‖ ≤ γ. Furthermore,
‖F(x(0))‖ ≤ η0 such that ‖L−1

0 F(x(0))‖ ≤ γη0 = b.
(II) ‖F(x)− F(y)‖ ≤ µ0(‖x− y‖), x, y ∈ Ω where µ0 : R+ → R+ is a continuous non-

decreasing function.
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(III) We suppose that there exists [x, y; F] for each pair x, y ∈ Ω, x 6= y such that the divided
differences operator satisfies the following:

‖[x, y; F]− [u, v; F]‖ ≤ µ1(‖x− u‖, ‖y− v‖); for all x, y, u, v ∈ Ω,

where µ1 : R+ ×R+ → R+ is a continuous non-decreasing function with respect to
both arguments.

Note that since F is non-differentiable, µ1(0, 0) > 0. Then, we will give a generalized
result of the semilocal convergence. We will do so by fixing the radius r of the domain
of existence and we will try to calculate it so that the sequence {x(n)} is contained in the
ball of convergence B(x(0), r) whose center is the initial iteration and whose radius is our
fixed r.

Theorem 1. Under conditions (I)–(III), we consider the following functions and parameters:

l(t) = µ1(t, βη0),

m(t) = γµ1(t, t + βη0(t)),

λ(t) =
γ

1−m(t)
l(t),

with t ∈ R+. Suppose the following equation has at least one positive real root:

t− b
1− λ(t)

= 0, (3)

where r is the smallest positive real root that satisfies Equation (3) and the conditions l(r)γ < 1,
m(r) < 1 and λ(r) < 1. Then, the sequence {xn} given by the iterative method (2) is well defined,
remains on the semilocal ball of convergence B(x0, r) and converges to the solution α of the equation
F(x) = 0.

Proof. To simplify the notation, we denote

Li = L(x(i)) = [x(i) + βF(x(i)), x(i); F].

We start from the fact that z(0)1 is well defined since by the condition (I), we have the
following:

‖z(0)1 − x(0)‖ = ‖L−1
0 F(x(0))‖ ≤ γη0 = b < r.

Let us see that there exists [z(0)1 , v(0); F]−1. To do this, we denote S0 = [z(0)1 , v(0); F]−1

and apply Banach’s lemma:

‖I − L−1
0 S0‖ ≤ ‖L−1

0 ‖ ‖L0 − S0‖

≤ γ
∥∥∥[x(0), x(0) + βF(x(0)); F]− [z(0)1 , z(0)1 + βF(z(0)1 ); F]

∥∥∥
≤ γ

(
‖x(0) − z(0)1 ‖, ‖x

(0) − z(0)1 + β(F(x(0))− F(z(0)1 )‖
)
)

≤ γµ1(r, r + βµ0(r)) = m(r) < 1.

So, by applying Banach’s lemma, there exists S−1
0 and

‖S−1
0 ‖ ≤

γ

1−m(r)
.

Since F is Fréchet differentiable, one has

F(z(0)1 ) = F(z(0)1 ) + F(x(0))− F(x(0)) = F(x(0)) + [z(0)1 , x(0); F]
(

z(0)1 − x(0)
)

.
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By the first step,
F(x(0)) = −[w(0), x(0); F](z(0)1 − x(0)).

Therefore,

F(z(0)1 ) =
(
[z(0)1 , x(0); F]− [x(0), w(0); F]

)
(z(0)1 − x(0)).

Taking the rules in the above expression and taking into account conditions (I)–(III),
one has

‖F(z(0)1 )‖ ≤ µ1

(
‖z(0)1 − x(0)‖, ‖w(0) − x(0)‖

)
‖z(0)1 − x(0)‖

≤ µ1(r, βη0)‖z
(0)
1 − x(0)‖ ≤ l(r)γη0 < η0,

where we denote l(r) = µ1(r, βη0) to simplify the notation. Moreover, thanks to the
condition of the theorem l(r)γ < 1, we can say that l(r)γη0 < η0. With this bound, we
can determine

‖z(0)2 − z(0)1 ‖ = ‖S
−1
0 F(z(0)1 )‖ ≤ γ

1−m(r)
l(r)‖z(0)1 − x(0)‖ = λ(r)‖z(0)1 − x(0)‖ < r,

where we denote λ(r) =
γ

1−m(r)
l(r). Moreover, in the previous equation, we applied the

fact that λ(r) < 1. Thus,

‖z(0)2 − x(0)‖ = ‖z(0)2 − z(0)1 ‖+ ‖z1 − x(0)‖ ≤ λ(r)‖z(0)1 − x(0)‖+ ‖z1 − x(0)‖

= (λ(r) + 1)‖z(0)1 − x(0)‖ ≤ (1 + λ(r))b < r.

Therefore, since ‖z(0)2 − x(0)‖ < r, one has z2 ∈ B(x(0), r). To prove that z3 resides
inside B(x(0), r), we must first bound

‖z(0)3 − z(0)2 ‖ = ‖S
−1
0 F(z(0)2 )‖ ≤ γ

1−m(r)
‖F(z(0)2 )‖.

As the value of ‖F(z(0)2 )‖ is unknown, we are going to develop the expression

F(z(0)2 ) = F(z(0)2 ) + F(z(0)1 )− F(z(0)1 )

= F(z(0)1 ) + [z(0)1 , z(0)2 ; F](z(0)2 − z(0)1 )

= −[z(0)1 , v(0); F]
(

z(0)2 − z(0)1

)
+ [z(0)2 , z(0)1 ; F](z(0)2 − z(0)1 ).

By taking norms,

‖F(z(0)2 )‖ ≤ ‖z(0)2 − z(0)1 ‖µ1

(
‖z(0)2 − z(0)1 ‖, ‖v

(0) − z(0)1 ‖
)

≤ µ1

(
r, β‖F(z(0)1 )‖

)
‖z(0)2 − z(0)1 ‖

≤ µ1(r, βη0)‖z
(0)
2 − z(0)1 ‖ = l(r)‖z(0)2 − z(0)1 ‖ = l(r)γη0 < η0.

Now, we can bound the following ‖z(0)3 − z(0)2 ‖:

‖z(0)3 − z(0)2 ‖ ≤
γ

1−m(r)
‖F(z(0)2 )‖ ≤ γ

1−m(r)
l(r)‖z(0)2 − z(0)1 ‖

≤ λ(r)‖z(0)2 − z(0)1 ‖ ≤ λ(r)2‖z(0)1 − x(0)‖ < r.
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It is therefore easy to obtain that

‖z(0)3 − x(0)‖ ≤ ‖z(0)3 − z(0)2 ‖+ ‖z
(0)
2 − z(0)1 ‖+ ‖z

(0)
1 − x(0)‖

≤ λ(r)2‖z(0)1 − x(0)‖+ λ(r)‖z(0)1 − x(0)‖+ ‖z(0)1 − x(0)‖

=
(

λ(r)2 + λ(r) + 1
)
‖z(0)1 − x(0)‖ < r.

This proves that z3 ∈ B(x(0), r). We are going to induce the number of steps m to
finally obtain that the iteration x(1) is also inside the convergence ball. To do so, we assume
that for q ≥ 3, the following are satisfied:

(1) ‖F(z(0)q )‖ ≤ l(r)‖z(0)q − z(0)q−1‖ < η0.

(2) ‖z(0)q − z(0)q−1‖ ≤ λ(r)‖z(0)q−1 − z(0)q−2‖ ≤ λ(r)q−1‖z(0)1 − x(0)‖ < r.

(3) ‖z(0)q − x(0)‖ ≤ 1− λ(r)q

1− λ(r)
b < r and, therefore, z(0)q ∈ B(x(0), r).

Let us see that, since it is true for q, it is also true for q + 1.

• We start by proving (2) for q + 1, using (1), (2) and (3) for q:

‖z(0)q+1 − z(0)q ‖ =
∥∥∥[z(0)1 , v(0); F]−1F(z(0)q )

∥∥∥ ≤ γ

1−m(r)
l(r)‖z(0)q − z(0)q−1‖

≤ λ(r)‖z(0)q − z(0)q−1‖ ≤ λ(r)q‖z(0)1 − x(0)‖ < r.

It is, therefore, proven.

• Using the hypothesis on q, we prove (3) for q + 1:

‖z(0)q+1 − x(0)‖ = ‖z(0)q+1 − z(0)q ‖+ ‖z
(0)
q − x(0)‖ ≤ λ(r)q‖z(0)1 − x(0)‖+ 1− λ(r)q

1− λ(r)
b

≤
(

λ(r)q +
1− λ(r)q

1− λ(r)

)
b =

1− λ(r)q+1

1− λ(r)
b < r.

With this, it is proved that zq+1 ∈ B(x(0), r) and (3) is satisfied for q + 1.

• Finally we prove (1) for q + 1 provided that q < m:

F(z(0)q+1) = F(z(0)q+1) + F(z(0)q )− F(z(0)q )

= [z(0)q+1, z(0)q ; F](z(0)q+1 − z(0)q ) + F(z(0)q )

= [z(0)q+1, z(0)q ; F](z(0)q+1 − z(0)q )− [z(0)1 , v(0); F](z(0)q+1 − z(0)q ).

Applying the rules, we obtain

‖F(z(0)q+1)‖ ≤ µ1

(
‖z(0)q+1 − z(0)1 ‖, ‖z

(0)
q − v(0)‖

)
‖z(0)q+1 − z(0)q ‖

≤ µ1

(
‖z(0)q+1 − x(0)‖+ ‖x(0) − z(0)1 ‖, ‖z

(0)
q − z(0)1 ‖+ β‖F(z(0)1 )‖

)
‖z(0)q+1 − z(0)q ‖

≤ µ1

(
1− λ(r)q+1

1− λ(r)
b + b,

1− λ(r)q

1− λ(r)
b + b + βη0

)
‖z(0)q+1 − z(0)q ‖

≤ l(r)‖z(0)q+1 − z(0)q ‖,

where

l(r) = max

{
µ1(r, βη0), µ1

(
2b− bλ(r)(λ(r)q + 1)

1− λ(r)
,

2b− bλ(r)
(
λ(r)q−1 + 1

)
1− λ(r)

+ βη0

)}
,
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for q = 2, . . . , m− 1. Therefore, it is proved (3) for q + 1.

If q = m− 1, we have that z(0)m = x(1) and, therefore, the first iteration generated by
the method is inside B(x(0), r). Now we want to prove that x(2) ∈ B(x(0), r). To do so,
we have to see that z(1)1 , . . . , z(1)m are well defined and inside the convergence ball. Since

z(0)m = x(1) ∈ B(x(0), r), we go to the first step of the method. In this step, we want to bound∥∥∥z(1)1 − x(1)
∥∥∥ to prove that x(1) is inside B(x(0), r). By the method, one has

‖z(1)1 − x(1)‖ ≤
∥∥∥[w(1), x(1); F]−1

∥∥∥‖F(x(1))‖ ≤ ‖L−1
1 ‖‖F(x(1))‖.

Since by induction we saw that (3) is satisfied for q ≥ 3, then

‖z(1)1 − x(1)‖ ≤ ‖L−1
1 ‖l(r)‖z

(0)
m − z(0)m−1‖.

Now, let us see that L−1
1 exists. To do this, we use Banach’s lemma:

‖I − L−1
0 L1‖ ≤ ‖L−1

0 ‖‖L0 − L1‖ ≤ γ
∥∥∥[w(0), x(0); F]− [w(1), x(1); F]

∥∥∥
≤ γµ1

(
‖w(1) − w(0)‖, ‖x(1) − x(0)‖

)
≤ γµ1

(
‖x(1) − x(0)‖+ β‖(F(x(1))− F(x(0))‖, ‖x(1) − x(0)‖

)
≤ γµ1

(
‖x(1) − x(0)‖+ βµ0

(
‖x(1) − x(0)‖

)
, ‖x(1) − x(0)‖

)
γµ1(r + βµ0(r), r) = m(r) < 1.

Therefore, by Banach’s lemma,

‖L−1
1 ‖ ≤

γ

1−m(r)
.

Therefore,

‖z(1)1 − x(1)‖ ≤ γ

1−m(r)
l(r)‖z(0)m − z(0)m−1‖ ≤ λ(r)‖z(0)m − z(0)m−1‖

≤ λ(r)λ(r)m−1‖z(0)1 − x(0)‖ ≤ λ(r)m‖z(0)1 − x(0)‖ < r.

To see if it is part of the convergence ball,

‖z(1)1 − x(0)‖ ≤ ‖z(1)1 − x(1)‖+ ‖x(1) − x(0)‖

≤ λ(r)m‖z(0)1 − x(0)‖+ ‖z(0)m − x(0)‖

≤
(

λ(r)m +
1− λ(r)m

1− λ(r)

)
‖z(0)1 − x(0)‖

=
1− λ(r)m+1

1− λ(r)
b < r.

It is therefore established that z(1)1 ∈ B(x(0), r). To continue with induction, we are

going to prove that z(1)2 is inside the convergence ball. To do this, we want to bound

‖z(1)2 − z(1)1 ‖ ≤
∥∥∥[z(1)1 , v(1); F]−1

∥∥∥‖F(z(1)1 )‖ ≤ ‖S−1
1 ‖‖F(z

(1)
1 )‖.
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Let see that there exists S−1
1 using Banach’s lemma

‖I − L−1
0 S1‖ ≤ ‖L−1

0 ‖‖L0 − S1‖ ≤ γ
∥∥∥[w(0), x(0); F]− [v(1), z(1)1 ; F]

∥∥∥
≤ γµ1

(
‖z(1)1 − x(0)‖+ β‖F(z(1)1 )− F(x(0))‖, ‖z(1)1 − x(0)‖

)
≤ γµ1(r + βµ0(r), r) = m(r) < 1.

Therefore, there exists S−1
1 and ‖S−1

1 ‖ ≤
γ

1−m(r)
. Now we develop

F(z(1)1 ) = F(z(1)1 ) + F(x(1))− F(x(1)) = [z(1)1 , x(1); F](z(1)1 − x(1)) + F(x(1)).

By taking the norms, we obtain

‖F(z(1)1 )‖ ≤
∥∥∥[z(1)1 , x(1); F](z(1)1 − x(1))− [x(1), w(1); F](z(1)1 − x(1))

∥∥∥
≤ µ1

(
‖z(1)1 − x(1)‖, β‖F(x(1))‖

)
‖z(1)1 − x(1)‖

≤ µ1

(
‖z(1)1 − x(1)‖, βη0

)
‖z(1)1 − x(1)‖ ≤ S‖z(1)1 − x(1)‖ < η0.

Therefore, we calculate the difference

‖z(1)2 − z(1)1 ‖ ≤
γ

1−m(r)
l(r)‖z(1)1 − x(1)‖ ≤ λ(r)‖z(1)1 − x(1)‖

≤ λ(r)λ(r)m‖z(0)1 − x(0)‖ ≤ λ(r)m+1‖z(0)1 − x(0)‖ < r.

Finally, we would have that z(1)2 ∈ B(x(0), r), since

‖z(1)2 − x(0)‖ ≤ ‖z(1)2 − z(1)1 ‖+ ‖z
(1)
1 − x(0)‖

≤ λ(r)m+1‖z(0)1 − x(0)‖+ 1− λ(r)m+1

1− λ(r)
‖z(0)1 − x(0)‖

≤ 1− λ(r)m+2

1− λ(r)
b < r.

Again, by induction on the number of steps to reach the iteration x(2), we can argue
analogously (1), (2) and (3) and we obtain for q = 3, . . . , m:

(4) ‖F(z(1)q )‖ ≤ l(r)‖z(1)q − z(1)q−1‖ ≤ η0.

(5) ‖z(1)q − z(1)q−1‖ ≤ λ(r)‖z(1)q−1 − z(1)q−2‖ ≤ λ(r)m+q−1‖z(0)1 − x(0)‖ < r.

(6) ‖z(1)q − x(0)‖ ≤ 1− λ(r)m+q

1− λ(r)
b < r and, therefore, z(1)q ∈ B(x(0), r).

By induction, we would see that (4), (5) and (6) are satisfied for q = m. Therefore,
x(2) = z(1)m is well defined, and it holds that x(2) ∈ B(x(0), r). Suppose we repeat the process
to see that there exist x(1) and x(2) for all the iterations x(i) with i = 3, . . . , n− 1. Then, we
would obtain the following:

(7) ‖F(z(n−1)
q )‖ ≤ l(r)‖z(n−1)

q − z(n−1)
q−1 ‖ ≤ η0 for q = 2, . . . , m and ‖F(z(n−1)

1 )‖ ≤ l(r)

‖z(n−1)
1 − x(n−1)‖ ≤ η0.

(8) ‖z(n−1)
q − z(n−1)

q−1 ‖ ≤ λ(r)‖z(n−1)
q−1 − z(n−1)

q−2 ‖ ≤ λ(r)(n−1)m+q−1‖z(0)1 − x(0)‖ < r for
q = 1, . . . , m.

(9) ‖z(n−1)
q − x(0)‖ ≤ 1− λ(r)(n−1)m+q

1− λ(r)
b < r and z(n−1)

q ∈ B(x(0), r) for q = 1, . . . , m

where z(n−1)
m = x(n).
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Assuming that (7), (8) and (9) are satisfied for n− 1, then let us prove that they are
also satisfied for n, and, furthermore, x(n+1) is well defined and belongs to B(x(0), r).
We start with the same aim as always. We want to bound

‖z(n)1 − x(n)‖ ≤
∥∥∥[w(n), x(n); F]−1F(x(n))

∥∥∥ ≤ ‖L−1
n ‖‖F(x(n))‖.

To do this, we must prove that there exists L−1
n :

‖I − L−1
0 Ln‖ ≤ ‖L−1

0 ‖‖L0 − Ln‖ ≤ γ
∥∥∥[w(0), x(0); F]− [w(n), x(n); F]

∥∥∥
≤ γµ1

(
‖w(0) − w(n)‖, ‖x(n) − x(0)‖

)
≤ γµ1

(
‖x(n) − x(0)‖+ β‖F(x(n))− F(x(0))‖, r

)
≤ γµ1(r + βµ0(r), r) = m(r) < 1.

Therefore, applying Banach’s lemma again, we obtain that there exists L−1
n and

‖L−1
n ‖ ≤

γ

1−m(r)
. As we have seen in induction,

‖F(x(n))‖ ≤ l(r)‖z(n−1)
m − z(n−1)

m−1 ‖ < η0.

Thus,

‖z(n)1 − x(n)‖ ≤ γ

1−m(r)
l(r)‖z(n−1)

m − z(n−1)
m−1 ‖ ≤ λ(r)‖z(n−1)

m − z(n−1)
m−1 ‖

By applying (8), we obtain

‖z(n)1 − x(n)‖ ≤ λ(r)λ(r)(n−1)m+m−1‖z(0)1 − x(0)‖ ≤ λ(r)nm‖z(0)1 − x(0)‖ < r.

From this, we deduce

‖z(n)1 − x(0)‖ ≤ ‖z(n)1 − x(n)‖+ ‖x(n) − x(0)‖ ≤ λ(r)nm‖z(0)1 − x(0)‖+ ‖x(n) − x(0)‖.

By applying (9), we easily obtain

‖z(n)1 − x(0)‖ ≤ λ(r)nm‖z(0)1 − x(0)‖+ 1− λ(r)m(n−1)+m

1− λ(r)
‖z(0)1 − x(0)‖

≤ 1− λ(r)nm+1

1− λ(r)
‖z(0)1 − x(0)‖ ≤ 1− λ(r)nm+1

1− λ(r)
b < r,

(4)

that is, z(n)1 ∈ B(x(0), r). Let us see that z(n)2 ∈ B(x(0), r). To do this, we first bound

‖z(n)2 − z(n)1 ‖ ≤
∥∥∥[z(n)1 , v(n); F]−1

∥∥∥‖F(z(n)1 )‖ ≤ ‖S−1
n ‖‖F(z

(n)
1 )‖.

Let see that S−1
n exists, using Banach’s lemma:

‖I − L−1
0 Sn‖ ≤ ‖L−1

0 ‖‖L0 − Sn‖ ≤ γ
∥∥∥[w(0), x(0); F]− [v(n), z(n)1 ; F]

∥∥∥
≤ γµ1

(
‖z(n)1 − x(0)‖, ‖z(n)1 − x(0)‖+ β‖F(z(n)1 )− F(x(0))‖

)
≤ γµ1(r, r + βµ0(r)) = m(r) < 1.

Therefore, there exists S−1
n , and ‖S−1

n ‖ ≤
γ

1−m(r)
. Now, we calculate

F(z(n)1 ) = F(x(n)) + [z(n)1 , x(n); F](z(n)1 − x(n)) =
(
[x(n), z(n)1 ; F]− [w(n), x(n); F]

)
(z(n)1 − x(n)),
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and by applying rules

‖F(z(n)1 )‖ ≤ ‖z(n)1 − x(n)‖µ1

(
β‖F(x(n))‖, ‖z(n)1 − x(n)‖

)
≤ ‖z(n)1 − x(n)‖µ1(r, βη0) ≤ l(r)‖z(n)1 − x(n)‖ < η0.

Therefore, we calculate the distance between iterations

‖z(n)2 − z(n)1 ‖ ≤
γ

1−m(r)
l(r)‖z(n)1 − x(n)‖ ≤ λ(r)mn+1‖z(0)1 − x(0)‖ < r.

Then, we have that z(n)2 ∈ B(x(0), r), since

‖z(n)2 − x(0)‖ ≤ ‖z(n)2 − z(n)1 ‖+ ‖z
(n)
1 − x(0)‖ ≤ λ(r)mn+1‖z(0)1 − x(0)‖+ 1− λ(r)mn+1

1− λ(r)
b

λ(r)mn+1b +
1− λ(r)mn+1

1− λ(r)
b ≤ 1− λ(r)mn+2

1− λ(r)
b < r.

By induction on the number of steps in iteration number n + 1 of the method, we can
reason analogously to the other iterations and obtain

(A) ‖F(z(n)m )‖ ≤ l(r)‖z(n)m − z(n)m−1‖ < η0.

(B) ‖z(n)m − z(n)m−1‖ ≤ λ(r)m(n+1)−1‖z(0)1 − x(0)‖ < r.

(C) ‖z(n)m − x(0)‖ ≤ 1− λ(r)m(n+1)

1− λ(r)
b < r and z(n)m ∈ B(x(0), r), ∀n ∈ N.

Since x(n+1) = z(n)m , we obtain that the iteration x(n+1) belongs to the convergence ball
B(x0, r), where

‖x(n+1) − x(0)‖ ≤ b
1− λ(r)

= r,

being that r is the radius of convergence. Now, using (A), (B) and (C), we are going to prove
that the sequence of iterations {xn} is a Cauchy sequence in the ball B(x0, r). We want to
bound ‖x(n) − x(n−1)‖ in relation to ‖z(n−1)

1 − x(n−1)‖.

‖x(n) − x(n−1)‖ = ‖z(n−1)
m − x(n−1)‖

= ‖z(n−1)
m − z(n−1)

m−1 + z(n−1)
m−1 − z(n−1)

m−2 + z(n−1)
m−2 + . . .− z(n−1)

2 + z(n−1)
2 − z(n−1)

1 + z(n−1)
1 − x(n−1)‖

≤ ‖z(n−1)
m − z(n−1)

m−1 ‖+ ‖z
(n−1)
m−1 − z(n−1)

m−2 ‖+ . . . + ‖z(n−1)
2 − z(n−1)

1 ‖+ ‖z(n−1)
1 − x(n−1)‖

By condition (8), it follows that

‖z(n−1)
q − z(n−1)

q−1 ‖ ≤ λ(r)q−1‖z(n−1)
1 − x(n−1)‖.

Therefore, by applying this,

‖x(n) − x(n−1)‖ = ‖z(n−1)
m − x(n−1)‖

≤ ‖z(n−1)
m − z(n−1)

m−1 ‖+ ‖z
(n−1)
m−1 − z(n−1)

m−2 ‖+ . . . + ‖z(n−1)
2 − z(n−1)

1 ‖+ ‖z(n−1)
1 − x(n−1)‖

≤ λ(r)m−1‖z(n−1)
1 − x(n−1)‖+ λ(r)m−2‖z(n−1)

1 − x(n−1)‖+ . . . + λ(r)‖z(n−1)
1 − x(n−1)‖+ ‖z(n−1)

1 − x(n−1)‖
≤ (λ(r)m−1 + λ(r)m−2 + . . . + λ(r) + 1)‖z(n−1)

1 − x(n−1)‖

≤ 1− λ(r)m

1− λ(r)
‖z(n−1)

1 − x(n−1)‖.

We therefore calculate
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‖x(n+k) − x(n−1)‖ ≤ ‖x(n+k) − x(n+k−1)‖+ ‖x(n+k−1) − x(n+k−2)‖+ . . . + ‖x(n+1) − x(n)‖+ ‖x(n) − x(n−1)‖

≤ 1− λ(r)m

1− λ(r)
‖z(n+k−1)

1 − x(n+k−1)‖+ 1− λ(r)m

1− λ(r)
‖z(n+k−2)

1 − x(n+k−2)‖+ . . . +
1− λ(r)m

1− λ(r)
‖z(n−1)

1 − x(n−1)‖

≤ 1− λ(r)m

1− λ(r)
(‖z(n+k−1)

1 − x(n+k−1)‖+ ‖z(n+k−2)
1 − x(n+k−2)‖+ . . . + ‖z(n−1)

1 − x(n−1)‖)

Furthermore, from the property (8) it also follows that

‖z(n−1)
1 − x(n−1)‖ ≤ λ(r)mk‖z(n−1−k)

1 − x(n−1−k)‖.

In this way,

‖x(n+k) − x(n−1)‖ ≤ 1− λ(r)m

1− λ(r)
(‖z(n+k−1)

1 − x(n+k−1)‖+ ‖z(n+k−2)
1 − x(n+k−2)‖+ . . . + ‖z(n−1)

1 − x(n−1)‖)

≤ 1− λ(r)m

1− λ(r)
(λ(r)mk‖z(n−1)

1 − x(n−1)‖+ λ(r)m(k−1)‖z(n−1)
1 − x(n−1)‖+ . . . + ‖z(n−1)

1 − x(n−1)‖)

≤ 1− λ(r)m

1− λ(r)
(λ(r)mk + λ(r)m(k−1) + . . . + λ(r)m + 1)‖z(n−1)

1 − x(n−1)‖

≤ 1− λ(r)m

1− λ(r)
1− λ(r)m(k+1)

1− λ(r)m ‖z(n−1)
1 − x(n−1)‖

≤ 1− λ(r)m

1− λ(r)
1− λ(r)m(k+1)

1− λ(r)m λ(r)m(n−1)‖z(0)1 − x(0)‖

≤ 1− λ(r)m(k+1)

1− λ(r)
1− λ(r)m

1− λ(r)m λ(r)m(n−1)‖z(0)1 − x(0)‖

≤ 1− λ(r)m(k+1)

1− λ(r)
λ(r)m(n−1)‖z(0)1 − x(0)‖

<
1

1− λ(r)
λ(r)m(n−1)‖z(0)1 − x(0)‖.

By condition (A), ‖F(z(n)m )‖ ≤ l(r)‖z(n)m − z(n)m−1‖ < η0.

Therefore, by applying condition (B), ‖F(x(n+1))‖ = ‖F(z(n)m )‖ ≤ l(r)‖z(n)m − z(n)m−1‖ ≤
l(r)λ(r)m−1‖z(n)1 − x(n)‖.

Moreover, by taking limits when n −→ ∞, as ‖z(n)1 − x(n)‖ −→ 0, and thus, by the
continuity of the operator F, F(x∗) = 0.

Theorem 2. Under the conditions (I)–(III), we suppose that the equation

γµ1(t, t + βµ0(t))− 1 = 0 (5)

has at least one positive real root, where R is the smallest positive real root of this equation. Then,
the solution α is the only solution of the equation H(x) = 0 in B(α, R) ∩Ω

Proof. To see the uniqueness of the solution, we assume by the reduction to the absurd
that another solution exists α̃ ∈ B(x0, R) ∪Ω, and we consider the operator P = [α, α̃; F].
Then, since P(α̃− α) = F(α̃)− F(α) = 0, if we prove that P is an inverse operator, we will
have that α̃ = α. Then, to apply Banach’s lemma, we prove
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‖I − L−1
0 P‖ ≤ ‖L−1

0 ‖‖L0 − P‖

≤ γ‖[x(0), x(0) + βF(x(0)); F]− [α, α̃; F]‖

≤ γµ1(‖x(0) − α‖, ‖x(0) + βF(x(0))− α̃‖)

≤ γµ1(‖x(0) − α‖, ‖x(0) − α̃‖+ β‖F(x(0))‖)

≤ γµ1(‖x(0) − α‖, ‖x(0) − α̃‖+ βµ0(‖x(0) − α‖))
< γµ1(R, R + βµ0(R)) = 1.

In the last inequality, we used the hypothesis that there is at least one positive real root
of Equation (5) since this implies that at least one of the functions µ0(t) or µ1(t) is strictly
increasing. So, the uniqueness follows.

3. Numerical Experiments

In this section, we study numerically our family of methods (2) for different values of
β. In doing so, we highlight the best methods of the family from two essential points of
view in numerical analysis: semi-local and dynamic convergence.

For the calculations and dynamical planes, we used MATLAB R2022a with 100-digit
variable precision arithmetic.

3.1. Numerical Study of Semilocal Convergence

In this subsection, we apply the theoretical results obtained in previous sections for
obtaining the convergence and uniqueness domain of the solution of a nonlinear and
non-differentiable integral equation. These kinds of equations play an important role in the
study of nonlinear physical phenomena that appear in various scientific and engineering
fields, such as chemical physics, fluid mechanics, plasma physics, biology, etc.

We consider the equation

x(s) = f (s) +
1
2

∫ b

a
K(s, t)φ(x(t))dt, a ≤ s ≤ b, (6)

where K : [a, b] × [a, b] → R is the Green’s function. We transform the equation by
discretization into

F(x)(s) = x(s)− f (s)− 1
2

∫ b

a
K(s, t)φ(x(t))dt = 0. (7)

This problem is finite dimensional if we approximate the integral by the Gauss–
Legendre quadrature formula

∫ b

a
q(t)dt '

p

∑
i=1

ωiq(ti)

where the nodes ti and the weights ωi are known.
If we denote the approximations of x(ti) and f (ti) by xi and fi, respectively, with

i = 1, . . . , p, then Equation (7) is equivalent to the following nonlinear system:

xi = fi +
1
2

p

∑
j=1

aijφ(xj), j = 1, . . . , p, (8)

where

aij = ωjK(ti, tj) =

{
ωj

(b−ti)(tj−a)
b−a , j ≤ i

ωj
(b−tj)(ti−a)

b−a , j ≤ i.
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Now, the system (8) can be written as

F(x) ≡ x− f − 1
2

Az = 0, F : Rp → Rp, (9)

where

x = (x1, . . . , xp)
T , f = ( f1, . . . , fp)

T , A = (aij)
p
i,j=1, z = (φ(x1), . . . , φ(xp))

T .

We choose a = 0, b = 1, K(s, t) as the Green’s function in [0, 1]× [0, 1] and φ(x(t)) =
(x(t))3 + |x(t)| in (6). Then, the nonlinear equation system given in (9) is of the form

F(x) ≡ x− f − 1
2

A(x3
1 + |x1|, . . . , x3

p + |xp|) = 0. (10)

It is obvious that the function F defined in (10) is non-linear and non-differentiable.
Therefore, we can apply our method which dispenses with derivatives and uses divided
differences. We can consider the first-order divided differences that do not require F to be
differentiable (see [11]), defined by the following expression:

[u, v; F] =([u, v, F]ij)
p
i,j=1 ∈ L(R

p,Rp), where

[u, v, F]i,j =
1

uj − vj
(Fi(u1, . . . , uj, vj+1, . . . , vp)− Fi(u1, . . . , uj−1, vj, . . . , vp)), where

u = (u1, . . . , up)
T and v = (v1, . . . , vp)

T .

To simplify the problem, we consider f = 0 in (10). Obviously, in this case, α = 0 is a
solution of F(x) = 0, and it is the solution on which we study the semilocal convergence.
Although for this study it is not necessary to know the solution, we use this information to
take the Ω = B(0, ξ) as the domain.

Taking f = 0, the nonlinear equation system given by (10) is of the form

F(x) = x− 1
2

Az, zj = x3
j + |xj|, j = 1, . . . , p. (11)

We now calculate [x, y; F], first calculating [x, y, F]ij for i, j = 1, . . . , p:

[x, y, F]ij =
1

xj − yj

[
Fi(x1, . . . , xj, yj+1, . . . , yp)− Fi(x1, . . . , xj−1, yj, . . . , yp)

]
=− 1

2(xj − yj)
(ai1, . . . , ain)

(
x3

1 + |x1|, . . . , x3
j + |xj|, y3

j+1 + |yj+1|, . . . , y3
p + |yp|

)
+

1
2(xj − yj)

(ai1, . . . , ain)
(

x3
1 + |x1|, . . . , x3

j−1 + |xj−1|, y3
j + |yj|, . . . , y3

p + |yp|
)

Since j is the only component that does not cancel out,

[x, y, F]ij = −aij
1

2(xj − yj)

[(
x3

j + |xj|
)
−
(

y3
j + |yj|

)]
= −

aij

2

((
x3

j − y3
j

xj − yj

)
+

(
|xj| − |yj|

xj − yj

))

= −
aij

2

(
(x2

j + xjyj + y2
j ) +

|xj| − |yj|
xj − yj

)
.

Therefore,

[x, y, F] = I − 1
2

A · Diag


 x2

1 + x1y1 + y2
1

· · ·
x2

p + xpyp + y2
p

+


|x1|−|y1|

x1−y1

· · ·
|xp |−|yp |

xp−yp


.
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If we consider Ω = B(0, ξ), then

‖F(x)− F(y)‖ ≤ ‖x− y− 1
2

A(x3 − y3)− 1
2

A(|x| − |y|)‖ ≤ ‖x− y‖+ 1
2
‖A‖‖x3 − y3‖+ 1

2
‖A‖‖|x| − |y|‖. (12)

As we know that ‖x3 − y3‖ ≤ ‖x − y‖‖x2 + xy + y2‖ and ‖|x| − |y|‖ ≤ ‖x − y‖ is
satisfied, then

‖F(x)− F(y)‖ ≤ ‖x− y‖+ 1
2
‖A‖

(
‖x− y‖‖x2 + xy + y2‖+ ‖x− y‖

)
≤ ‖x− y‖+ 1

2
‖A‖

(
3ξ2‖x− y‖+ ‖x− y‖

)
≤ µ0(‖x− y‖),

with µ0(t) = t + 1
2‖A‖(3ξ2 + 1)t.

On the other hand, we develop

‖[x, y; F]− [u, v; F]‖ =
∥∥∥∥I − 1

2
A
(
(x2 + xy + y2) +

|x| − |y|
x− y

)
− I +

1
2

A
(
(u2 + uv + v2) +

|u| − |v|
u− v

)∥∥∥∥
≤ 1

2
‖A‖

(
‖x2 + xy + y2 − u2 − uv− v2‖+

∥∥∥∥ |x| − |y|x− y
− |u| − |v|

u− v

∥∥∥∥)
≤ 1

2
‖A‖

(
‖x2 − u2‖+ ‖y2 − v2‖+ ‖xy− uv‖

)
+ 2‖A‖

≤ 1
2
‖A‖(‖x− u‖‖x + u‖+ ‖y− v‖‖y + v‖+ ‖xy− xv + xv− uv‖) + 2‖A‖

≤ 1
2
‖A‖(2ξ‖x− u‖+ 2ξ|y− v‖+ ‖x‖‖y− v‖+ ‖v‖‖x− u‖) + 2‖A‖

≤ 1
2
‖A‖(2 + 3ξ(‖x− u‖+ ‖y− v‖)).

Therefore, we have

µ1(s, t) =
1
2
‖A‖(2 + 3ξ(s + t)). (13)

Under these conditions, α = 0 is a solution of the problem. Furthermore, assuming
that the dimension of the problem is p = 8, we have

‖I − L‖ ≤ ‖I − [w(0), x(0); F]‖ ≤ 1
2
‖A‖(3ξ2 + 1)

since

[w(0), x(0), F] = I − 1
2

A · Diag


 (x(0)1 )2 + x(0)1 w(0)

1 + (w(0)
1 )2

· · ·
(x(0)p )2 + x(0)p w(0)

p + (w(0)
p )2

+


|x(0)1 |−|w

(0)
1 |

x(0)1 −w(0)
1

· · ·
|x(0)p |−|w

(0)
p |

x(0)p −w(0)
p


.

and w(0), x(0) ∈ B(0, ξ). Then, if
1
2
‖A‖(3ξ2 + 1) < 1, by the Banach’s lemma, L−1 exists and

‖L−1‖ < 2
2− ‖A‖(3ξ2 + 1)

= γ.

For this experiment, we consider that ξ = 1 and, therefore, we take an initial estimate
belonging to the ball B(0, 1). For example,

x(0) = (0.1, . . . , 0.1)T .
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In this case, w(0) = x(0) + F(x(0)) also remains inside B(0, 1) because

‖w(0)‖ = ‖x(0)‖+ ‖F(x(0))‖ ≤ ‖x(0)‖+ ‖x(0)‖+ 1
2
‖A‖(‖x(0)‖3 + ‖x(0)‖) ≤ 0.2063.

In addition, in the previous bound, we used that

‖F(x(0))‖ ≤ ‖x(0)‖+ 1
2
‖A‖(‖x(0)‖3 + ‖x(0)‖),

which allows us to deduce the parameter η0 as ‖F(x(0))‖ ≤ 0.1063 = η0. The rest of the
bounds and parameters are deduced for particular β, and that is the reason that in the
following table, we present the radius of convergence and uniqueness that we obtain by
changing β, and, in turn, we check the values of m(r), λ(r), b and l(r)γ to verify that the
conditions of the semilocal convergence existence theorem are fulfilled.

As we can see in Table 1, the best semilocal convergence results are obtained for the
smallest values of β. Moreover, for this value of x0, we also obtain a larger uniqueness
radius than for the rest of the values, which implies that we can ensure the uniqueness of
the solution in a larger set. On the other hand, it is interesting to note that for β = 1, i.e., for
the Steffensen multistep method with second frozen divided difference, we do not obtain
the best results in terms of semilocal convergence, and this fact implies that we have better
options in this new family. Finally, it is important to point out that the optimal existence
and uniqueness radii are obtained when β −→ 0 since the symmetric divided difference
operators, [x(k), x(k); F] and [z(k)1 , z(k)1 ; F], are the best approximations to the derivatives in
the (2) scheme.

Table 1. Numerical results with different values of β.

β r R m(r) λ(r) b l(r)γ

0.01 0.2016 1.6563 0.2681 0.2970 0.1417 0.2173
0.02 0.2018 1.6461 0.2688 0.2977 0.1417 0.2177
0.03 0.2020 1.6360 0.2696 0.2984 0.1417 0.2180
· · · · · · · · · · · · · · · · · · · · ·
0.1 0.2036 1.5686 0.2748 0.3037 0.1417 0.2202
0.2 0.2059 1.4815 0.2825 0.3114 0.1417 0.2234
0.3 0.2083 1.4035 0.2903 0.3195 0.1417 0.2267
· · · · · · · · · · · · · · · · · · · · ·
1.0 0.2324 1.0256 0.3555 0.3899 0.1417 0.2513
1.1 0.2376 0.9877 0.3671 0.4034 0.1417 0.2553
1.2 0.2438 0.9524 0.3800 0.4185 0.1417 0.2595

3.2. Dynamical Planes for Different Steps

In this section, we compare the different dynamical planes that are generated by
varying the parameter β and the number of steps m of the family of numerical methods.
For dynamical planes, we choose a mesh of 400× 400 points, and what we do is apply our
family of methods to each of these points, taking the point as the method’s initial estimate
z. We consider z as a complex number, and represent their real part in the abscissa axis
and their imaginary part in the ordinate axis. We define that the maximum number of
iterations that we must carry out with each initial estimate is 50 and we consider that the
initial points of the mesh converge to one of the solutions of the function if the distance to
that solution is less than 10−3.

The function to which we apply the family of methods is

f (x) = x4 − 1.
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We represent in orange the initial points that converge to the root 1, in green the initial
points that converge to the root −1, in blue the initial points that converge to the root i,
in purple the initial points that converge to the root −i and in black the initial points that
do not converge to any root in fewer than 50 iterations.

As is illustrated in the dynamic planes, Figure 1, we observe a behavior similar to
what happened in the numerical example of the semilocal convergence since, as the value
of parameter β decreases, the basins of attraction of the roots increase. Note that when
β = 0.01, in the dynamic planes we can observe that the basins of attraction of the four
roots of the function present a symmetry, that is to say, the same amount of initial points
converge to the roots within the chosen mesh.

On the other hand, regarding the number of steps, using one or two steps does not
apparently change the number of points that converge to a solution but it does decrease
when the number of steps increases. However, by employing more steps, convergence is
realized in a smaller number of iterations as we see in the figures since the intensity of color
determines the number of iterations needed to satisfy the stopping criterion.

Therefore, if we had to choose between the illustrated methods, which of them is more
convenient in this simple polynomial case, dynamically speaking, we would choose the
method using m = 2 and β = 0.01 since it obtains a large number of points converging to
one of the solutions in a few iterations.

(a) m = 1 and β = 1 (b) m = 1 and β = 0.1 (c) m = 1 and β = 0.01

(d) m = 2 and β = 1 (e) m = 2 and β = 0.1 (f) m = 2 and β = 0.01

(g) m = 3 and β = 1 (h) m = 3 and β = 0.1 (i) m = 3 and β = 0.01

Figure 1. Dynamical planes for different m and β.
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4. Conclusions

In this work, a new family of Steffensen-type methods was introduced, and a semilocal
convergence study of this family was developed. Theoretical studies of the semilocal
convergence were verified by applying the method to a Hammerstein-type nonlinear
integral equation. Finally, we analyzed some dynamical planes of the method applied to
a nonlinear equation in order to conclude which number of steps and which β is more
convenient from the dynamic point of view.

In conclusion, it is important to emphasize that, although working with methods with
many steps is not convenient to study simple numerical examples, it is necessary to use
these methods for problems in which we work on very large systems. This is because
the more steps there are in the method used, the fewer iterations it performs to find the
solution, and, therefore, this means less execution time.
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