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Abstract: Self-similar cosmological solutions correspond to spacetimes that admit a homothetic
symmetry. The physical properties of self-similar solutions can describe important eras of the cosmo-
logical evolution. Recently, self-similar cosmological solutions were derived for symmetric teleparallel
f (Q)-theory with different types of connections. In this work, we study the stability properties of the
self-similar cosmological solutions in order to investigate the effects of the different connections on
the stability properties of the cosmic history. For the background geometry, we consider the isotropic
Friedmann–Lemaître–Robertson–Walker space and the anisotropic and homogeneous Bianchi I space,
for which we investigate the stability properties of Kasner-like universes.
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1. Introduction

On the cosmological scale, General Relativity (GR) fails to provide an explanation for the
observed phenomena [1–5]. At the present time, the universe is under in acceleration phase,
which is attributed to a matter source called dark energy. Dark energy has not been directly
observed until now, but new dynamical terms are attributed to it, which are necessarily
introduced into the field equations of GR in order to provide anti-gravitational effects and
explain the late-time acceleration. Because dark energy has been observed indirectly only,
the nature and the origin of the dark energy is unknown to cosmologists. There is a specific
approach adopted by cosmologists to explain the acceleration through the introduction of
geometric invariants in the gravitational Action Integral [6], from which as a result the dark
energy is a geometric effect of the gravitational theory. These new theories of gravity are
known as modified theories of gravity [7–10]. The plethora of different models in the literature,
which are based on the use of different geometric invariants for the modification of the
Action Integral, form a “zoology” of gravitational theories, f (R)-theory [11,12], Gauss–Bonnet
gravity [13,14], teleparallel theory of gravity [15–18] and others [19–21].

The fundamental invariant of GR is the curvature scalar R related to the Levi–Civita
connection of the metric tensor which describes the physical space. However, an arbitrary
connection can describe a manifold with a curvature scalar R, torsion scalar T and non-
metricity scalar Q. These three scalars, R, T and Q, are also known as the geometrical
trinity of gravity [22]. The Levi–Civita connection that is considered in GR is torsionless
and with zero metricity parts. Thus, only the curvature scalar is used for the definition
of the gravitational action. On the other hand, the existence of an unholonomic frame
leads to a connection with a non-zero torsion scalar. The Weitzenböck connection [23] is a
curvature-less connection, which leads to the Teleparallel Equivalent of General Relativity
(TEGR), for which the torsion plays the role of the gravitational force [24]. Moreover, it
has been found that a geometry with a torsion-free connection with non-zero scalar Q that
describes a flat geometry, that is, the Riemann tensor is zero, is equivalent to GR and it is
known as Symmetric Teleparallel General Relativity (STGR) [25].
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When the Gravitational Action Integral is constructed by the scalars R, T and Q,
the resulting three theories, GR, TEGR and STGR, are indeed equivalent. However, this
equivalency is lost when additional invariants are introduced into the gravitational Action
Integral in order to solve the dark energy problem. f (R)-gravity [9] is a fourth-order
theory and includes various important models, which have been used to describe various
epochs of the cosmological evolution such as the inflationary epoch [26,27] or the late-time
acceleration phase related to the dark energy [28–30]. In a similar way, in teleparallelism
a plethora of f (T)−gravitational models have been introduced for the description of
the observable phenomena. For a review of teleparallelism, we refer the reader to [31].
Furthermore, in [32], it is shown that in teleparallel gravity inflation can occur without the
existence of an inflaton field, while f (T) theory can mimic the dark energy model [33]. See
also [34–36] and references therein.

Recently, the f (Q)-gravity has drawn the attention of cosmologists. f (Q)-gravity can
provide answers to various observation phenomena in cosmology, so as to provide dynam-
ical terms in the field equations to explain the effects of dark energy, and to pass various
tests by using the current observational data. In [37], the authors applied cosmological
constraints for f (Q) models, which can reproduce the ΛCDM expansion history; it was
found that the f (Q) theory is in agreement with the observations and it is supported by
data over the ΛCDM model. A similar result was found dependently in [38]. The nonlinear
f (Q) = αQ + βQn theory studied in [39] as dark energy model and the cosmographic
parameters derived. In [40], the authors considered f (Q) models, for which the equation of
state parameter for the cosmological model can cross the phantom divine line. In [41–43] ex-
ternal and internal solutions of compact stars were studied. New cosmological asymptotic
solutions in f (Q) theory with initial singularity were derived in [44]. See also the results
presented in [45–47]. Bouncing cosmological scenarios in f (Q)-gravity were investigated
in [48]. Moreover, in [49], the method of statefinder diagnostics was applied in symmetric
teleparallel theory and it was found that for two nonlinear f (Q) models the field equations
provide an evolution, which describes acceleration in the late time due to the dark energy
component evolving from the non-metricity components. Finally, the ADM formulation
and Hamiltonian analysis of f (Q) theory are presented in [50].

Unlike GR, in f (Q)-gravity it is possible to separate gravity from the inertial
effects [51]. This is possible because we make use of a flat connection pertaining to the
existence of affine coordinates in the coincident gauge in which the covariant derivative
is reduced to the usual partial derivative. Indeed, because in STGR the curvature tensor
is zero, there always exists a coordinate system in which the connection becomes zero,
Γλ

µν = 0 [52].
The coincidence gauge can always be derived under a coordinate transformation. It

has been found that the use of different connections for the definition of the non-metricity
scalar, Q, affects the dynamics of f (Q)-gravity [53,54]. For the Friedmann–Lemaître–
Robertson–Walker (FLRW) cosmological model four different families of connections have
been found [55]. In [56], the existence of self-similar solutions was investigated in f (Q)-
theory for FLRW cosmology. Self-similar solutions are of huge interest, because they can
describe specific eras of the cosmological evolution. The self-similar solutions can be related
to the asymptotic behaviour of the general dynamics [44]. In addition, the existence of
the limit of solutions that are described by GR in f (Q)-theory is of special interest for the
viability of the theory.

In this study, we are interested in the stability properties of the self-similar solutions in
order to understand the effects of different connections during the different epochs of the
cosmological history. Moreover, we are interested to investigate the existence of asymptotic
scaling solutions that describe inflation to see if f (Q) symmetric teleparallel theory for
different kinds of connections can reproduce the inflationary epoch. Such analysis gives
constraints on the viability of the different kind of connections. The structure of the paper
is as follows:
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In Section 2, we present the basic properties and definitions for the f (Q) symmetric
teleparallel theory. Section 3 includes the main results of this work in which we investigate
the stability properties of self-similar cosmological solutions for the different connections in
the coincidence gauge which generate the cosmological field equations of FLRW geometry
in symmetric teleparallel theory. In Section 4, we discuss the existence of self-similar
solutions in an anisotropic and homogeneous Bianchi I geometry in the context of f (Q)-
theory. We find that a generalized Kasner solution is supported by f (Q)-theory in the
coincidence gauge. Finally, in Section 5 we draw our conclusions.

2. Basic Properties and Definitions for the f (Q) Symmetric Teleparallel Theory

Assume a four-dimensional manifold V4 with metric tensor gµν and generic connection
Γκ

µν. From the connection, we can define the Riemann tensor

Rκ
λµν =

∂Γκ
λν

∂xµ −
∂Γκ

λµ

∂xν
+ Γσ

λνΓκ
µσ − Γσ

λµΓκ
µσ,

the torsion tensor
Tλ

µν = Γλ
µν − Γλ

νµ

and the non-metricity tensor

Qλµν =
∂gµν

∂xλ
− Γσ

λµgσν − Γσ
λνgµσ.

In STGR, it follows that the torsion tensor vanishes, that is, Tλ
µν = 0, and that the

geometry is flat, i.e., Rκ
λµν = 0, while only the non-metricity tensor survives. The non-

metricity scalar is defined as
Q = QλµνPλµν,

where Pλ
µν is the non-metricity conjugate tensor expressed as

Pλ
µν = −1

4
Qλ

µν +
1
2

Q λ

(µ ν)
+

1
4

(
Qλ − Q̄λ

)
gµν −

1
4

δλ
(µQν)

are Qλ = Q µ
λ µ, Q̄λ = Qµ

λµ.
The gravitational Action Integral in In f (Q)-theory is as follows [57]

S =
1
2

∫
d4x
√
−g f (Q) +

∫
d4x
√
−gLM + λ

λµν
κ Rκ

λµν + τ
µν

λ Tλ
µν, (1)

in which g = det(gµν), LM is the Lagrangian density for the matter source and λ
λµν

κ , τ
µν

λ
are two Lagrange multipliers that impose the flatness of the connection, i.e., Rκ

λµν = 0, and

that the connection is symmetric, that is, Tλ
µν = 0.

The gravitational field equations are derived as

2√−g
∇λ

(√
−g f ′(Q)Pλ

µν

)
− 1

2
f (Q)gµν + f ′(Q)

(
PµρσQ ρσ

ν − 2QρσµPρσ
ν

)
= Tµν, (2)

where f ′(Q) = d f (Q)
dQ and Tµν = − 2√−g

∂(
√−gLM)

∂gµν is the energy-momentum tensor, which
describes the matter components of the gravitational fluid.

Moreover, variation of the Action Integral (1) with respect to the connection gives the
field equations

∇µ∇ν

(√
−g f ′(Q)Pµν

σ

)
= 0. (3)
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The field equations (2) can be written in the equivalent form

f ′(Q)Gµν +
1
2

gµν

(
f ′(Q)Q− f (Q)

)
+ 2 f ′′(Q)(∇λQ)Pλ

µν = Tµν, (4)

in which Gµν is the Einstein-tensor, where Gµν = R̃µν − 1
2 gµνR̃, with R̃µν and R̃ are the

Riemannian Ricci tensor and scalar, respectively, which are constructed by the Levi–Civita
connection.

We can easily define the effective energy-momentum tensor

Tµν = − 1
f ′(Q)

[
1
2

gµν

(
f ′(Q)Q− f (Q)

)
+ 2 f ′′(Q)(∇λQ)Pλ

µν

]
which contributes the geometrodynamical degrees of freedom. Therefore, with the latter
definition, the field equations can be written in the known form similar to that of general
relativity

Gµν = Tµν +
1

f ′(Q)
Tµν.

3. FLRW Cosmology

According to the cosmological principle, at a large scale the universe is isotropic and
homogeneous described by the FLRW line element

ds2 = −N(t)2dt2 + a(t)2
[

dr2

1− kr2 + r2
(

dθ2 + sin2 θdφ2
)]

,

where a(t) is the scale factor and N(t) is the lapse function. The Hubble function is defined
as H = 1

N
ȧ
a , where ȧ = da

dt . Parameter k is the spatial curvature and k = 0 corresponds to a
spatially flat space, k = 1 is a closed universe and k = −1 is an open universe. Another
important characteristic of the FLRW geometry is that the three-dimensional hypersurface
is maximally symmetric and it admits a six-dimensional Killing algebra.

All the compatible connections for the FLRW for the symmetric teleparallel theory by
enforcing on a generic connection the six Killing symmetries of the background geometry
and the requirement to be flat have been derived before in [53,54]. In the following, without
loss of generalitym, we assume N(t) = 1.

For k = 0, there are three compatible connections with common components

Γr
θθ = −r, Γr

φφ = −r sin2 θ,

Γθ
rθ = Γθ

θr = Γφ
rφ = Γφ

φr =
1
r

, Γθ
φφ = − sin θ cos θ, Γφ

θφ = Γφ
φθ = cot θ.

The first connection, Γ1, has the additional non-zero component

Γt
tt = γ(t),

where γ(t) is a function of the time variable t.
The second connection, Γ2, has the extra non-zero components

Γt
tt =

γ̇(t)
γ(t)

+ γ(t), Γr
tr = Γr

rt = Γθ
tθ = Γθ

θt = Γφ
tφ = Γφ

φt = γ(t),

while the third connection, Γ3, has the non-zero components for the connection

Γt
tt = −

γ̇(t)
γ(t)

, Γt
rr = γ(t), Γt

θθ = γ(t)r2, Γt
φφ = γ(t)r2 sin2 θ.
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For an FLRW geometry with non-zero spatial curvature, that is, k 6= 0, there exists
only one compatible connection, namely Γk

4 with non-zero coefficients

Γt
tt = −

k + γ̇(t)
γ(t)

, Γt
rr =

γ(t)
1− kr2 Γt

θθ = γ(t)r2, Γt
φφ = γ(t)r2 sin2(θ)

Γr
tr = Γr

rt = Γθ
tθ = Γθ

θt = Γφ
tφ = Γφ

φt = −
k

γ(t)
, Γr

rr =
kr

1− kr2 ,

Γr
θθ = −r

(
1− kr2

)
, Γr

φφ = −r sin2(θ)
(

1− kr2
)

, Γθ
rθ = Γθ

θr = Γφ
rφ = Γφ

φr =
1
r

,

Γθ
φφ = − sin θ cos θ, Γφ

θφ = Γφ
φθ = cot θ.

We remark that the latter connection in the limit k = 0 reduces to the third connection for
the flat case. That is an important observation because these two connections may relate
the field equations for the flat and non-flat spatial curvature cases.

Indeed, for each different connection the resulting cosmological field equations are
different. The existence of self-similar solutions was the subject of study in [56]. For
each connection, the functional form of the arbitrary function f (Q) is explicitly deter-
mined by the assumption that the background space and the connection admit a homoth-
etic symmetry vector related to the existence of the self-similar solution, similarly to the
case of GR.

Below, we present the self-similar solutions determined before and we investigate
the stability of the solutions. Such an analysis provides important information about the
evolution of the dynamical variables. Simultaneously, constraints can be constructed for
the free parameters of the model and for the initial conditions of the theory.

3.1. First Connection

For the first connection, Γ1, we derive the non-metricity scalar

Q = −6ȧ2

a2 = −6H2. (5)

Moreover, the gravitational field equations are (4)

3H2 f ′(Q) + 1
2 ( f (Q)−Q f ′(Q)) = ρ ,

− 2
N

d
dt ( f ′(Q)H)− 3H2 f ′(Q)− 1

2 ( f (Q)−Q f ′(Q)) = p.
(6)

The parameters ρ and p correspond to the energy density and pressure components of
the energy-momentum tensor for an external fluid. As it was found before in [56], there
does not exist any self-similar solution for the first-connection without an external matter
source.

Assume now that the energy-momentum tensor describes an ideal gas with a constant
equation of state parameter w, that is p = wρ, and the background geometry describes a
self-similar universe with a(t) = a0tλ. Then, from the conservation law of energy for the
energy-momentum tensor, it follows that ρ(t) = ρ0t−3λ(1+w), where ρ0 is a constant.

By substituting in the field equation we find

f (Q) = f0
√
−Q + f1(−Q)

3
2 λ(w+1), (7)

where f1 = 2λ−3λ(1+w)ρ0

6
3
2 λ(w+1)(1−3λ(1+w))

.

The first coefficient of (7) does not contribute to the field equations. Indeed, the
term

√
|gQ|is a total derivative and when it is replaced by (5) in the Action Integral

(1) it can be eliminated. Thus, the important coefficient is the second one, the power
f (Q) = f1(−Q)

3
2 λ(w+1). The effective cosmological fluid for the self-similar solution has a
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constant effective equation of the state parameter we f f = −1 + 2
3λ , which does not depend

upon the external fluid. That means that the gravitational effects of external fluid are
overlapped or neutralized by the f (Q) terms.

With the use of (7) it is easy to see that the scaling solution a(t) = a0tλ is the analytic
solution to the problem, which means that the solution is stable, because it is the unique
solution. We remark that the stability analysis presented in [44] is for f (Q) = Q + f1Qn

and the results there should not be confused with our conclusion for this work.

3.2. Second Connection

For the second connection we derive the non-metricity scalar

Q = −6H2 + 9γH + 3γ̇ (8)

in which the gauge function γ(t) is involved and it contributes to the cosmological dynamics.
The field equations in the case of a vacuum read

3H2 f ′(Q) +
1
2
(

f (Q)−Q f ′(Q)
)
+

3γQ̇ f ′′(Q)

2
= 0, (9)

2
d
dt
(

f ′(Q)H
)
− 3γQ̇ f ′′(Q) = 0, (10)

where there exists the constraint equation for the function f (Q) given by

Q̇2 f ′′′(Q) +
[
Q̈ + 3HQ̇

]
f ′′(Q) = 0. (11)

The self-similar solution [56] a(t) = a0t
1
3 m which describes a universe dominated

by stiff fluid, i.e., we f f = 1, exists for f (Q) = f1 Q + f2 Q ln(−Q), and the gauge function

γ(t) = C
t −

2
9t ln t, where C =

f1+ f2(3+ln( 4
3 ))

9 f2
. We remark that f (Q) = f1 Q + f2 Q ln(−Q)

for f2 = − f̄2 f1 and very small values of f̄2 it can be seen as the first term of the Taylor
expansion of the f (Q) = − f1(−Q)1+ f̄2 theory. This means that for small deviation from
GR, the resulting solution describes a stiff fluid source and not the Minkowski spacetime.
Recall that we do not consider the existence of an external matter source. This result differs
from that found in the similar case of f (R)-cosmology [58].

A more general self-similar scaling solution, a(t) = a0tλ, λ 6= 0, 1
3 , is supported by

the cosmological field equations for f (Q) = f1Q + f2Q
2

3(1−λ) and gauge function γ =

q0t3λ+12λ2t
6(3λ−1)t2 , where f2 = −6 f1(λ− 1)λq

2
3(λ−1)
0 .

Stability Properties

We proceed with the investigation of the stability properties for the self-similar solution
with λ 6= 0, 1

3 . We consider perturbations only on the scale factors and not on the gauge
function γ(t).

Thus, for the scale factor a(t) = a0tλ we derive the Hubble function H(t) = λ
t . We

assume now that H(t) = λ
t + εδH(t). We substitute into (9) and the first-order perturbations

give the first-order differential equation

0 = 3q2
0t6λ

((
8− 39λ + 36λ2

)
δH − tδḢ

)
+ 16t2λ3(3λ− 2)

(
(2− 3λ)δH + tδḢ

)
− 8q0t1+3λλ

(
(6λ− 1)δH + tδḢ

)
.

This has the analytic solution

δH(t) = δH0t8−9λ
(

3q0t3λ + 4t(2− 3λ)λ
)6λ−7(

q0t3λ + 4λ2t
)6λ−3

.
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Therefore, for λ > 1
3 and 8 + 36λ2 − 39λ < 0, the perturbations decay for large values

of t, i.e., limt→+∞ δH(t) = 0, which means that the self-similar solution a(t) = a0tλ is a
stable solution and it is an attractor. For these values of the free parameter λ, it follows
that −0.1754 < we f f < 1, that is, there is no stable self-similar solution which describes an
accelerated universe.

However, we have not considered the equation of motion (11) in the stability analysis.
We remark that we have not perturbed the gauge. In this case, the first order perturbations of
(11) decay when 4 + 18λ2 − 21λ. Thus, the field equations are stable when 1

3 < λ < 13+
√

41
24 .

3.3. Third Connection

For the third connection the non-metricity scalar is calculated to be

Q = −6H2 +
3γ

a2 H +
3γ̇

a2 , (12)

while cosmological field equations are

3H2 f ′(Q) +
1
2
(

f (Q)−Q f ′(Q)
)
− 3γQ̇ f ′′(Q)

2a2 = 0, (13)

2
d
dt
(

f ′(Q)H
)
+

γQ̇ f ′′(Q)

a2 = 0, (14)

with the constraint

Q̇2 f ′′′(Q) +

[
Q̈ + Q̇

(
H +

2γ̇

γ

)]
f ′′(Q) = 0. (15)

For the field equations of the third connection, we found that they support a self-
similar universe with a(t) = a0tλ, for which the connection is also self-similar under a
homothetic transformation, when γ(t) = γ0t2λ−1, for the function [56]

f (Q) = f1Q
5λ−1

2 , (16)

with the constraint equation γ0 = 2λ(2−5λ)
5λ−3 and λ 6= 1

5 , 3
5 or γ0 = 2λ

3λ−1 and λ > 3
5 .

We proceed with the study of the perturbations for the two exact scaling solutions.

Stability Properties

Similarly to the previous connection, we performed a perturbation on the Hubble
function, H(t) = λ

t + εδH(t) and we substitute in (13) for the power-law function (16).

For γ0 = 2λ(2−5λ)
5λ−3 , the first-order perturbations provide the ordinary differential

equation
t(8− 15λ)δḢ + 32 + λ(30λ− 77)δH = 0,

with analytic solution δH(t) = δH0t
32−77λ+30λ2

15λ−8 , from which it follows that the perturbations
decay and the self-similar solution is stable for 32−77λ+30λ2

15λ−8 < 0, i.e., λ < 0.52 and 0.53 <
λ < 2.04.

For the second case with γ0 = 2λ
3λ−1 the first-order perturbations are always zero

which means that the self-similar solution is always stable.
For the first case and the perturbations of the constraint equation, (15) we find

that the field equations admit the self-similar solution a(t) = a0tλ as an attractor when
32−77λ+30λ2

15λ−8 < 0 and 16−λ(7+45λ)
15λ−8 < 0, that is, −0.68 < λ < 0.52 and 0.53 < λ < 2.04.
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3.4. Fourth Connection

For a non-zero spatial curvature, k, the non-metricity scalar becomes

Q = −6H2 +
3γ

a2 H +
3γ̇

a2 + k
[

6
a2 +

3
γ

(
γ̇

γ
− 3H

)]
. (17)

The gravitational field equations in a vacuum are

3H2 f ′(Q) +
1
2
(

f (Q)−Q f ′(Q)
)
− 3γQ̇ f ′′(Q)

2a2 + 3k
(

f ′(Q)

a2 − Q̇ f ′′(Q)

2γ

)
= 0, (18)

2
d
dt
(

f ′(Q)H
)
+

γQ̇ f ′′(Q)

a2 + 4
k
a2 f ′(Q) = 0

and the equation of motion for the connection is written as

Q̇2 f ′′′(Q)

(
1 +

ka2

γ2

)
+

[
Q̈
(

1 +
ka2

γ2

)
+ Q̇

((
1 +

3ka2

γ2

)
H +

2γ̇

γ

)]
f ′′(Q) = 0. (19)

For the last connection, which describes an FLRW universe with non-zero spatial curva-
ture, for an arbitrary curvature the self-similar solution was found to be a(t) = a0t [56] for the
gauge function γ(t) = γ0t, and

f (Q) = Q2,

with the constraint equation γ0 = −3a2
0.

On the other hand, for the open universe, i.e., k = −1, there exists the additional
power theory

f (Q) = q0Q
a0∓1
2a0 ,

where q0 is a constant and it is required in order a0 6= ±1 and γ(t) = ±a0t. The case a2
0 = 1

describes the Milne spacetime while the latter function, f (Q), is reduced to that of STGR,
i.e., f (Q) = Q.

Stability Properties

We now study the stability properties of the scaling-solution a(t) = a0t for the
quadratic f (Q) = Q2 model. In a similar approach to the previous one, we do not change
the gauge γ(t). Thus, we substitute H = 1

t + εδH(t) into (18) and from the first-order
perturbations we define the ordinary differential equation

3tδḢ − 5δH = 0,

that is, δH(t) = δH0t
5
3 . Hence, the scaling solution is always unstable.

For the open universe and the power-law theory f (Q) = q0Q
a0∓1
2a0 it follows that

the first-order perturbations of Equation (18) do not decay, that is, the Milne-line scaling
solution is always unstable.

4. Existence of Self-Similar Solutions in an Anisotropic Bianchi I Cosmology in the
Context of f (Q)-Gravity

Consider now the Bianchi I line element

ds2 = −N(t)2dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2, (20)

in which a, b and c are the three scale factors. When a = b and a = c, the Bianchi I line-
element reduces to that of the spatially flat FLRW cosmology. Without loss of generality we
have selected a constant lapse function, i.e., N(t) = 1 .
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For the Bianchi I geometry we follow [59] and in the coincidence gauge we assume
the following metricity scalar

Q = −2
(

ȧḃ
ab

+
ȧċ
ab

+
ḃċ
bc

)
,

where in the limit of isotropization the metricity scalar for the connection Γ1 of FLRW
spacetime is recovered. In [41] the isotropization of the Bianchi I spacetime in f (Q) theory
was investigated; specifically, it was found that due to inflation which is related with the
non-metricity components the Bianchi I spacetime can become isotropic. However, in this
study, we are interested in a Kasner-like solution which always describes an anisotropic
universe.

In the case in which there is no additional matter source, the gravitational field
equations are (

ȧḃ
ab

+
ȧċ
ac

+
ḃċ
bc

)
f ′(Q) +

1
2
(

f (Q)−Q f ′(Q)
)
= 0, (21)

2
d
dt
(

f ′(Q)
(
ḃc + ċ

))
+ bc

(
f (Q)−Q f ′(Q)

)
= 0, (22)

2
d
dt
(

f ′(Q)(ȧc + ċ)
)
+ ac

(
f (Q)−Q f ′(Q)

)
= 0, (23)

2
d
dt
(

f ′(Q)
(
ȧḃ + ȧ

))
+ ab

(
f (Q)−Q f ′(Q)

)
= 0. (24)

Consider now the self-similar Kasner-like spacetime with scale-factors

a(t) = tp1 , b(t) = tp2 and c(t) = tp3 , (25)

for the lapse function N(t) = 1.
For these scale-factors the Bianchi I spacetime (20) admits the proper homothetic

vector field [60]

X = t∂t + (p1 − 1)x∂x + (p2 − 1)y∂y + (p3 − 1)z∂z.

In the case of General Relativity, the exponents p1, p2 and p3 satisfy the Kasner
relations. They are [61]

p1 + p2 + p3 = 1

and
(p1)

2 + (p2)
2 + (p3)

2 = 1

For a discussion and the importance of the Kasner spacetime we refer the reader to [62].
Hence, by replacing the scale factors (25) in the field Equations (21)–(24) and the

power-law theory f (Q) = f0Qµ, it follows that the exponents p1, p2 and p3 satisfy the
generalized Kasner relations

p1 + p2 + p3 = 2µ− 1,

and
(p1)

2 + (p2)
2 + (p3)

2 = (2µ− 1)2.

However, in that case Q = 0. Indeed, for any non-singular function f (Q), where
f (Q→ 0) = 0, this Kasner-like solution solves the field equations. For the power-law
f (Q) = f0Qµ theory, the Kasner-like solution is the analytic solution. Hence there is no
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reason to study the stability of the self-similar solution. We remark that the generalized
Kasner relations can be written in the form of the Kasner relations

P1 + P2 + P3 = 1

(P1)
2 + (P2)

2 + (P3)
3 = 1,

where P1 = p1
2µ−1 , P2 = p2

2µ−1 and P3 = p3
2µ−1 .

It is important to mention that in terms of dynamics the field Equations (21)–(24) are of
the same form as those of f (T) teleparallel theory of gravity which means that the algebraic
results for the stability analysis presented in [63] are valid.

In a future work it will be of special interest to investigate the effects of different
connections in Bianchi geometries.

5. Discussion

In this study, we investigated the stability properties of some self-similar cosmological
solutions in symmetric teleparallel gravity. In particular, for the case of isotropic FLRW
geometry we derived the field equations and self-similar solutions for the four different
connections of the coincidence gauge. Three of the different corrections describe a spatially
flat FLRW geometry, while the fourth connection describes an FLRW geometry with non-
zero spatial curvature. The families of the connections introduce a gauge function, which
affects the dynamics of the gravitational field equations for a non-linear f (Q)-theory.

We considered self-similar solutions that describe ideal gas solutions in the case of
spatially flat FLRW geometry, and Milne-like geometries for non-zero spatially FLRW
spacetime. The solutions exist for specific functions f (Q) and gauge functions for the
corresponding connection. The self-similar solutions do not describe the full degrees of
freedom of the field equations which means that they are special solutions and not the
general solutions. In particular, they are asymptotic exact solutions of the generic solutions
in each case.

Because of the complexity of the field equations, we were not able to study the phase-
space by using dimensionless variables in the H-normalization approach. Instead, we
took the standard approach to consider small perturbations of the scale factor, i.e., of the
Hubble function, in the region of the similarity solutions. For each connection, we derived
the differential equation for the perturbations and we solved each one of them. It was
found that the behaviour of the perturbations depends upon the free parameters of the self-
similar solution. Hence, the free parameter for the f (Q)-theory was a constraint for each
connection with the requirement that the self-similar solution be an attractor for the field
equations. The case for which the asymptotic self-similar solutions describe accelerated
universes was studied.

Finally, we consider the anisotropic and homogeneous Bianchi I geometry and for
the connection in the coincidence gauge we proved that Kasner-like solutions exist for a
power-law theory f (Q) = Qµ, and for any non-singular function f (Q) with f (Q→ 0) = 0.
Finally, the field equations for the background space are dynamically equivalent with the
field equation with that of f (T)-theory in teleparallelism. Thus, the stability properties of
the Kasner-like solutions are similar to those of the study [63].

In a future study, we plan to investigate further the self-similar solutions for anisotropic
and homogeneous cosmological spacetimes.
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