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Abstract: One of the main objectives of theoretical ecologists involves finding mechanisms to control
the chaos in ecological models to maintain positive densities of the species. Numerous researchers
have suggested that, apart from the direct killing in the prey–predator relationship, there are some
indirect effects, such as fear of predation. Induced fear can lead to slowing down the growth rate of
the prey species, and this non-chemical strategy can be carried over to successive seasons or upcoming
generations. In this work, we explore the impact of fear due to predation and its carry-over effect
(COE) in a delayed tri-trophic food chain model, whereas the Holling type-II functional response
is used to determine the interference among the species. The proposed model is an asymmetric
interaction food chain model since the species in this model only kills other species. The growth
rate of prey and middle predators is affected due to the respective fear of predation by middle and
special predators. The non-delayed model considered in this paper generalizes the models developed
by Hastings–Powell and Panday et al. The gestation delay in the special predator’s growth term
is incorporated into the proposed model. We determined the essential conditions for the existence
of ecologically feasible equilibrium points and their local and global stability. Furthermore, we
developed the conditions for the occurrence of the Hopf bifurcation around an interior equilibrium to
seek periodic behaviors of delayed and non-delayed models. Numerical examples were performed to
justify the proposed theoretical findings and to show the impacts of fear and its COE parameters on
the system dynamics through phase portraits, the time series of solutions, and bifurcation diagrams.
We discovered that the chaotic behavior of the food chain model can be controlled by using the fear
effect and its COE parameters. The dynamics of the delayed food chain model with the fear effect and
its COEs are further explored in our findings. Our theoretical findings clearly provide a mechanism
to protect and control species populations in ecological systems. It is also essential for developing
optimized harvesting strategies in fisheries and pest management in agriculture.

Keywords: delayed food chain model; fear effect; carry-over effect; chaos control; Hopf bifurcation

1. Introduction

Theoretical ecologists are focusing on the study of interactions between living or-
ganisms and their environments; this is because the study is important in the formation
of an ecosystem. In the 1920s, Lotka and Volterra individually developed first-order or-
dinary differential equations to report on the interactions between two species. Since
then, researchers have been interested in modeling and analyzing interactions between
species; see [1,2] and references therein. Different types of mathematical models, including
ordinary [2], partial [3], non-integer order [4], and difference equation [5,6], have been
developed in order to make use of different environmental factors in predator–prey models,
such as Allee effects, prey refuges, stage structure, harvesting, toxic effects, and environ-
mental fluctuations. On the other hand, the existence of chaos in dynamical systems is
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quite obvious due to the presence of nonlinear terms. Predicting the future evolution of
chaotic systems remains a difficult task due to its sensitivity to the initial condition and
system parameters. In order to narrow this gap, the problem of chaos control has become a
hot topic among researchers in various fields, such as biomedical systems [7], ecological
models [8], convection models [9], etc. The chaos control approach leads a chaotic system
to a limit cycle or an asymptotically stable state. In contrast, the problem of chaotification is
becoming more popular because of its applications in the fields of secure communication,
encryption, description, signal processing, etc., where chaotic behavior is a desired phe-
nomenon; see [10–12] for more details. In ecological systems, chaotic phenomena need to
be controlled in order to predict how species will evolve in the future. The chaotic behaviors
in the three-species food chain were initially noticed by Hastings and Powell [13]. Since
then, many academics have attempted to address the issue of how to use ecological factors
to regulate chaos in food chain models (see [14–20]). The authors of [15] demonstrated
that the food chain model exhibited chaos due to the parameters of prey growth rate and
predator interference. Nath et al. [17] showed that chaos can be controlled through prey
refuge and the Allee effect in a food chain model. To regulate the system, the intermediate
predator harvesting strategy was introduced in reference [18]. The chaotic behavior of the
prey–predator–parasite model can be controlled through a prey-harvesting strategy [19].
Recently, Nitu and Vikas [20] considered the tri-trophic food model, where the cannibalism
effect was applied to middle predators to control the system dynamics.

From a biological perspective, interspecific killing among carnivores is a much more
frequent issue. The interaction among species is symmetrical if both species kill each
other, and the interaction is asymmetrical if one species kills another [21]. On the other
hand, the relationship between predator and prey is impacted not only by the method
of direct encounters but also by an indirect effect (such as fear), which also alters the
prey’s usual characteristics [22,23]. The altered characteristics could be associated with
the prey’s nature, morphology, and habitat. To escape from the predation risk, the prey
always attempts to change its usual habitat to a safer location [24]. As a consequence, the
short-term survivability of the prey is increasing; it has started to decrease in the long
term. Numerous theoretical and experimental studies indicate that indirect effects can have
notable impacts on the dynamics of predator–prey interactions [25–33]. The growth rate
of elk in the Greater Yellowstone Ecosystem is affected by their fear of wolves [25], while
mule deer shorten their feeding activity due to the risk of mountain lion predation. The
authors of [22] discovered that predator fear of song sparrows resulted in a 40% reduction
in the number of offspring produced, even in the absence of direct contact with predators.
Suraci et al. [27] experimented for over a month on mesocarnivores (raccoons) by creating
fear through the sounds of their predators and found that the fear of large carnivores
reduced the raccoon’s foraging behavior by 66% and increased awareness. Based on the
aforementioned ideas, Wang et al. [23] mathematically modeled the impact of fear on the
growth of the prey and observed that the cost of fear had a considerable impact on the
dynamics of predator–prey interactions. Moreover, they noticed that fear can have a
stabilizing effect on system dynamics. Panday et al. [31] examined the dynamics of a
food chain model with predation fear and they concluded that suitable fear effects can
regularize the system from chaotic oscillation to stable. They also noticed that the top
predator can lead to an extinction stage if the cost of fear of intermediate predators goes
up. In [29], Sasmal et al. dealt with the dynamics of the food chain model with the fear
effect and group defense strategy among prey. In [34], Mishra et al. studied the effect of
fear in the agroecosystem. By utilizing the B-D functional response, Debnath et al. [35]
investigated the dynamics of a food chain model, and found that fear effects as well as
mutual interference parameters among species can control the system dynamics.

The term “COE” often emerges from repetitive measures in clinical investigations. It
has been recently applied to ecological and evolutionary concerns and applies to a wide
range of circumstances. From an ecological point of view, COEs measure an individual
species’ past learning, and can influence the current performance [36]. The COE has a
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positive influence on the species community when past habitation is lost because some
fatal or non-fatal effects are of poor quality, and it has a negative influence when the
lost habitation is of high quality [37]. COEs can occur over several seasons or even one
season (i.e., changes in physiological behavior within a season). Experiments conducted in
previous works [38–40] show that amphibians, fish, marine insects, marine invertebrates,
and other animals can experience carry-over effects in short periods of time and within
a single season. Thus, emerging perspectives among ecologists show the importance of
COEs in mathematical modeling; see [37,41–43]. Sasmal and Takeuchi [42] incorporated
predation fear and its COEs into models of prey–predator interactions and showed that
fear and COE parameters can have significant impacts on system stability. Dubey and
Sasmal [43] considered a phytoplankton–zooplankton fish system, where zooplankton
growth rates are influenced by fish-induced fear and the COEs. In addition, they pointed
out that the system exhibited chaotic behavior for medium values of COE parameters, and
the system became stable or periodic dynamics occurred for lower and higher values. Thus,
incorporating COEs into an ecological model showed more insight into the factors that
affected the species in the ecosystem.

Time delays in ecology are unavoidable because of some lags observed in ecological
processes, such as maturation time, gestation, and handling time. Such time lags in
ecological systems may produce more complex system dynamics. Thus, studying the
dynamical features of ecological models with time lags has become an important topic
among theoretical ecologists in the last decade, (see [32,44–49] and references therein).
To explore the dynamics of a food chain model, Pal et al. [45] and Upadhyay et al. [46],
respectively, have taken the gestation delays of top predators only and both predators into
account; they pointed out that delays significantly affected system stability. Recently, two
different delays were established and analyzed in a tri-trophic food chain model by Surosh
et al. in reference [48]. To construct a more appropriate ecological model, it is important to
include time lag in it.

Population ecologists are usually interested in forecasting the future population den-
sity of a species in an ecological system to maintain a healthy ecosystem. Most ecological
systems are nonlinear, resulting in chaotic behaviors that need to be controlled in order to
predict how the ecological systems will evolve in the future. In this connection, researchers
have attempted to control chaos in ecological systems through various control methods.
Controlling chaotic behavior in an ecological system must involve methods that are easy
to use and have no negative influence on the real ecosystem. The artificial induction of
fear among prey species by utilizing the sounds or vocal cues of the appropriate predators
in real ecological systems is a control strategy that is crucial in preventing the extinction
stage of interacting species. This fear lets the prey know to stay away from the predator
and protects the prey species, as well as causes changes in its own characteristics. However,
the prey learns about the fear induced and carries this information into future generations
or upcoming generations, which makes it act again with its usual characteristics. As a
result, induced fear among prey species fails to control the system’s chaotic dynamics. To
overcome this situation, a non-chemical method, the concept of fear and fear-induced COE,
is incorporated into ecological models. Moreover, there is still enough room to explore the
dynamics of ecological models by introducing various ecological factors. To the best of our
knowledge, there has been no work devoted to the three-species food chain model with
fear-induced COEs in the growth terms of both prey and middle predators. This prompted
our current investigation.

Inspired by the ideas of a fear-induced COE given in reference [42,43], we considered
the chaos control of a tri-trophic food chain model in which the growth terms of prey and
the middle predator were influenced by a fear-induced COE due to the predation risk. The
relationships between the species followed the Holling type-II functional response. The
developed model is an asymmetric food chain model since middle predators kill only prey
and special predators kill only middle predators. To control the chaotic dynamics of the
proposed system, a novel non-chemical method was imposed through varying fear and
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fear-induced COE parameters. The proposed method is based on the idea that vocal cues or
sounds can be used to induce fear and that this process is carried over by prey species to the
upcoming season or generation. Furthermore, we consider gestation delay in the growth
terms of special predators. We derived local and global stability criteria and the Hopf
bifurcation analysis of the integrated model. In addition, we incorporated gestation delay
into the proposed and analyzed the local stability and bifurcation of the delayed model.
The numerical results demonstrate the effectiveness of the novel method and confirm the
theoretical results. The main contributions of this paper are as follows:

i. We propose a chaos control strategy based on inducing fear and its COEs in the prey
and middle predator growth terms.

ii. We analyze how induced fear and its COE parameters affect the population densities
of the species involved in the proposed model.

iii. Fear-induced COEs in the growth terms of both prey and middle predators are taken
into account in this paper. This approach is different from other works in the literature.

iv. We determine the impact of the gestation delay of a special predator on the dynamics
of the system.

The model considered in this paper generalizes the models investigated in reference [13,31,45].
If the prey can learn about artificial vocal cues, then our theoretical findings clearly provide
mechanisms to protect species in ecological systems. Moreover, the model suggested in this
paper works better in places where there are three levels of food chains. It is also essential for
developing optimized harvesting strategies in fisheries and pest management in agriculture.

The structure of the article is as follows. We provide a three-species food chain model
with fear and its COEs in Section 2. Section 3 derives the preliminaries of a nonlinear
food chain model. The chaos control of the tri-trophic food chain model is covered in
Section 4. In Section 5, the food chain model is modified and examined with time delay.
Selected numerical results are presented in Section 6 to support our proposed theoretical
findings. Finally, in Section 7, we present the conclusions of the proposed study and suggest
future research.

2. Description of the Tri-Trophic Food Chain Model

Mathematical models that describe the dynamics of a population can be categorized
according to a continuous-time domain or a discrete-time domain. A continuous-time
model is typically more appropriate if the species involved in the system have generations
that overlap and births that are spaced throughout the year. Hastings–Powell [13] initially
discovered chaos control in a continuous food chain model, and since then, several authors
have attempted to control chaos by introducing new strategies [16,31,35]. In general, tri-
trophic food chains consist of prey, middle, and special predators at the bottom, middle,
and top trophic levels. Hastings–Powell [13] developed a food chain model in the form:

dU(T)
dT

= R0U(T)
(

1− U(T)
K

)
− C1 A1U(T)V(T)

B1 + U(T)
,

dV(T)
dT

=
A1U(T)V(T)

B1 + U(T)
− D1V(T)− A2V(T)W(T)

B2 + V(T)
,

dW(T)
dT

=
C2 A2V(T)W(T)

B2 + V(T)
− D2W(T),

(1)

where U(T), V(T), and W(T) are the respective densities of prey, middle, and special
predators at time T. The system parameters are all considered to be positive [13]. R0 and
K are the growth rates of the prey and environmental support capacity. A1 (or A2) is the
maximum attack rate of the middle (or special) predator. B1 (or B2) represents the half-
saturation coefficient of the prey (or middle predator). C−1

1 (or C2) indicates the conversion
efficiencies of the middle (or special) predator. D1 (or D2) is the death rate of the middle
(or special) predator. To simplify the notation, the state variables U(T), V(T), and W(T)
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are denoted by U, V, and W, respectively. By introducing the effect of fear in model (1),
Panday et al. [31] extended the model given (1) into the following form

dU
dT

= R0U
(

1− U
K

)
· 1

1 + F1V
− C1 A1UV

B1 + U
,

dV
dT

=
A1UV
B1 + U

· 1
1 + F2W

− D1V − A2VW
B2 + V

,

dW
dT

=
C2 A2VW

B2 + V
− D2W,

(2)

where F1 and F2 represent the intensity of fear in the prey and middle predator population,
respectively. However, the prey carries over some information from previous predation
attacks to subsequent generations. The carry-over information affects the growth rate of
the species [42,43]. Taking into account the above viewpoints, we extend model (2) by
introducing fear-induced COEs. Then the system is given as follows:

dU
dT

= R0U
(

1− U
K

)
· 1 + E1U

1 + E1U + F1V
− C1 A1UV

B1 + U
,

dV
dT

=
A1UV
B1 + U

· 1 + E2V
1 + E2V + F2W

− D1V − A2VW
B2 + V

,

dW
dT

=
C2 A2VW

B2 + V
− D2W,

(3)

where E1 and E2 are the carry-over effect parameters due to the fear F1 and F2, respec-
tively. In model (3), we introduce the functions Φ(E1, F1, U, V) = 1 + E1U

1 + E1U + F1V and

Ψ(E2, F2, V, W) = 1 + E2V
1 + E2V + F2W , which represent fear and its COE in the interaction be-

tween the species. The functions Φ and Ψ satisfy the following characteristics associated
with fear and its COE [42]:

• Φ(E1, 0, U, V) = 1 and Ψ(E2, 0, V, W) = 1,
• Φ(E1, F1, U, 0) = 1 and Ψ(E2, F2, V, 0) = 1,
• limF1→∞ Φ = 0 and limF2→∞ Ψ = 0,
• limV→∞ Φ = 0 and limW→∞ Ψ = 0,
• ∂Φ

∂F1
< 0, ∂Φ

∂V < 0 and ∂Ψ
∂F2

< 0, ∂Ψ
∂W < 0.

Further, Φ and Ψ satisfy the following characteristics associated with COE:

• ∂Φ
∂E1

= F1UV
(1 + E1U + F1V)2 > 0 and ∂Ψ

∂E2
= F2VW

(1 + E2V + F2W)2 > 0, which indicates the
positive effects of COE as a result of lessons learned from earlier seasons or experiences.

• ∂Φ
∂U = F1E1V

(1 + E1U + F1V)2 > 0 and ∂Ψ
∂V = F2E2W

(1 + E2V + F2W)2 > 0, as the population densities
of the prey and middle predator increase, respectively, increasing their growth rates.

• limU→∞ Φ = 1 and limE1→∞ Φ = 1, i.e., if the density of the prey’s population or COE
becomes large, then there is no change in its growth rate.

• limV→∞ Ψ = 1 and limE2→∞ Ψ = 1, i.e., if the density of the middle predator’s
population or COE becomes large, then there is no change in its growth rate.

• If COE parameters E1 and E2 are zero, then the functions Φ and Ψ only reveal
the fear effect.

Based on the ideas given in reference [13], to minimize the complexity of model (3),
we devise a non-dimensional scheme as follows: U = Ku, V = K

C1
v, W = C2K

C1
w, T = 1

R0
t
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and let α1 = A1K
R0B1

, α2 = A2C2K
R0B2C1

, β1 = K
B1

, β2 = K
C1B2

, δ1 = D1
R0

, δ2 = D3
R0

, f1 = F1K
C1

, f2 = F2C2K
C1

,

e1 = E1K and e2 = E2K
C1

Then system (3) becomes

du
dt

= u
(
(1− u) · 1 + e1u

1 + e1u + f1v
− α1v

1 + β1u

)
,

dv
dt

= v
(

α1u
1 + β1u

· 1 + e2v
1 + e2v + f2w

− α2w
1 + β2v

− δ1

)
,

dw
dt

= w
(

α2v
1 + β2v

− δ2

) (4)

subject to the initial conditions 0 < u0 = u(0), v0 = v(0), w0 = w(0) < ∞. A conceptual
diagram of model (4) is represented in Figure 1.

  u   v   w 

�(1 − �) 1 + ���

1 + ��� + ���
 

1 vd  ��� 

����

1 + ���
 

����

1 + ���
 

1 + ���

1 + ��� + ���
 

Figure 1. A conceptual diagram indicates the interaction between the species given in model (4).
Here, green lines represent the fear and fear-induced COE on the species.

Remark 1. In this paper, we consider the delayed three-species food chain model with fear due to
predation and its carry-over effect. If there is no fear-induced carry-over effect (i.e., e1 = e2 = 0)
in the proposed non-delayed model, then the model is reduced to the model studied by Pandey et al.
in reference [31]. If there is no fear (i.e., f1 = f2 = 0) in the proposed non-delayed model, then
the model is reduced to the model dealt with by Hastings and Powell [13]. The proposed delayed
model was the model discussed by the authors in reference [45] when there is no fear effect on
predation growth. The results derived in this paper are general cases of the models investigated
in reference [13,31,45]. Panday et al. [33] considered the problem of chaos control in a three-
species food chain model by introducing fear to the middle predator only. The chaotic dynamics of
the food chain model can be controlled through fear of predation and mutual interference among
species [35]. It should be noted that artificially introduced fear plays a crucial role in controllin
chaotic dynamics [13,33,35,45]. However, in [13,33,35,45], fear-induced COE is missing, which
stimulated the present study. The model proposed in this paper is more applicable in places where
there are three-level food chains. Moreover, the model is appropriate to food chain fisheries where
the prey includes species, such as yellow perch, sunfish, and herring; the middle predators include
species, such as walleye, tuna, and catfish; and the special predators are species, such as sharks,
whales, and dolphins.

Remark 2. The model proposed in this paper is based on the continuous-time model because the
species involved in the system have generations that overlap and births that are spaced throughout
the year. By using the standard finite difference schemes, one can obtain discrete-time models
from the continuous ones, where the step size represents the generation time. In the absence of
middle and special predators in model (4), the prey species grows logistically and the model takes the
following form

dU
dT = R0U

(
1− U

K

)
. (5)
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Equation (5) represents a single-species growth model (a logistic model). The discrete version of
model (5) tends to be the logistic map, which exhibits a variety of complex behaviors, including
unstable, stable, period-doubling, and chaotic oscillations. Chaotic dynamics can be seen in discrete-
time models with only one species, but at least three species are needed for continuous-time systems.
There has been a lot of research on the dynamical properties, including stability and bifurcation, of
both continuous-time models [13,31,43] and discrete-time models [5,6] in independent ways.

3. Preliminaries

Positivity: The positivity of the solution of an ecological model indicates that the
density of a population is non-negative at any time.

Theorem 1. The solutions of model (4) are positively invariant.

Proof. From (4), we have

u(t) = u(0) exp
{∫ t

0

[
(1− u(s))

1 + e1u(s)
1 + e1u(s) + f1v(s)

− α1v(s)
1 + β1u(s)

]
ds
}

,

v(t) = v(0) exp
{∫ t

0

[
α1u(s)

1 + β1u(s)
1 + e2v(s)

1 + e2v(s) + f2w(s)
− α2w(s)

1 + β2v(s)
− δ1

]
ds
}

,

w(t) = w(0) exp
{∫ t

0

[
α2v(s)

1 + β2v(s)
− δ2

]
ds
}

.

It should be noted that if any solution is initiated in R3
+, then u(t), v(t), and w(t) remain

non-negative for all times t. Therefore, R3
+ is a positively invariant space for system (4).

Boundedness: The boundedness of the solution of an ecological model suggests that
the model is biologically well-mannered. Additionally, this shows that no species in the
biological system experiences sudden or sustained exponential growth. The density of all
species is constrained due to the limitation of natural resources.

Theorem 2. The solutions (u(t), v(t), w(t)) of model (4), which start in the invariant space, are
uniformly-bounded.

Proof. We define ∆(t) as follows

∆(t) = u(t) + v(t) + w(t).

Time-derivative of ∆(t) along with the solutions of model (4); we have

d∆
dt

=
du
dt

+
dv
dt

+
dw
dt
≤ u(1− u)− δ1v− δ2w.

Then, for any arbitrary constant k, we have

d∆
dt

+ k∆ ≤u(1− u + k)− (δ1 − k)v− (δ2 − k)w ≤ (1 + k)2

4
= Γ(say),

where k = min{δ1, δ2}. With the help of the differential inequality theory, we have

0 ≤ ∆ ≤ Γ(1− e−kt)

k
+ ∆(u(0), v(0), w(0))e−kt.

Thus, as t→ ∞, we obtain 0 ≤ ∆ ≤ Γ
k . Thus, solutions (u(t), v(t), w(t)) of model (4) that begin

in R3
+ − {0} are confined in the setW =

{
(u, v, w) ∈ R3

+ : ∆ ≤ Γ
k + ε, for any ε > 0

}
.
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Persistence: Persistence ensures that all interacting species will always coexist at any time,
irrespective of the initial population density. Mathematically, it ensures that the population
densities of all interacting species are far from zero, and it is defined in the following definition.

Definition 1. Model (4) is said to be uniformly persistent if there exist constants li > 0, Ui >
0, i = 1, 2, 3, which do not depend on the initial population, and any solution (u(t), v(t), w(t)) of
model (4) satisfies the following condition:

0 < l1 ≤ lim
t→∞

inf u(t) ≤ lim
t→∞

sup u(t) ≤ U1,

0 < l2 ≤ lim
t→∞

inf v(t) ≤ lim
t→∞

sup v(t) ≤ U2,

0 < l3 ≤ lim
t→∞

inf w(t) ≤ lim
t→∞

sup w(t) ≤ U3.

Theorem 3. Model (4) is uniformly persistent if α1 > δ1, δ1(1 + β1l1) < α1l1 and 1− 1
e1

<

(>)α1l2 < (>)1− α1 f1l2
2 .

Proof. From Equation (4), we can obtain

du
dt
≤ u(1− u),

dv
dt
≤ v

(
α1u− α2w

1 + β2v
− δ1

)
,

dw
dt
≤ w(α2v− δ2).

Let U1, U2 and U3 be real positive roots of the following equations 1 − u = 0, α1u −
α2w

1 + β2v
− δ1 = 0 and α2v − δ2 = 0, respectively. Solving the above equations, we ob-

tain U1 = 1, U2 = δ2
α2

and U3 = (α1 − δ1)(α2 + β2δ2)

α2
2

. Utilizing the standard comparison

theorem [50], the above inequality gives

lim
t→∞

sup u(t) ≤ U1, lim
t→∞

sup v(t) ≤ U2, lim
t→∞

sup w(t) ≤ U3. (6)

Here, U1, U2, U3 will be positive if α1 > δ1. Similarly, from Equation (4), one can have

du
dt
≥ u

(
(1− u)(1 + e1u)

1 + e1u + f1v
− α1v

)
,

dv
dt
≥ v

(
α1u

1 + β1u
1 + e2v

1 + e2v + f2w
− α2w− δ1

)
,

dw
dt
≥ w

(
α2v

1 + β2U2
− δ2

)
.

Let l1, l2, l3 be real positive roots of the following equations (1 − u)(1 + e1u)
1 + e1u + f1v − α1v = 0,

α1u
1 + β1u ×

1 + e2v
1 + e2v + f2w − α2w− δ1 = 0, α2v

1+β2U2
− δ2 = 0. Solving the above equation, we

obtain that l2 = δ2(1 + β2U2)
α2

, l1 is the positive root of e1u2 + (α1l2e1 + 1− e1)u + α1l2(1 +

f1l2)− 1 = 0 and l3 is the positive root of α2 f2w2 +(α2(1 + e2l2)+ δ1 f2)w+ δ1(1 + e2l2)−
α1l1(1 + e2l2)

1 + β1l1
= 0. Utilizing the standard comparison theorem [50], the above inequality

gives that

lim
t→∞

inf u(t) ≥ l1, lim
t→∞

inf v(t) ≥ l2, lim
t→∞

inf w(t) ≥ l3. (7)

Here, l1, l2, l3 will be positive if either 1 − 1
e1

< α1l2 < 1 − α1 f1l2
2 or 1 − 1

e1
> α1l2 >

1 − α1 f1l2
2 and δ1(1 + β1l1) < α1l1. Then, by Definition 1 and the inequalities (6)–(7),

model (4) is uniformly persistent.
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4. Chaos Control of the Tri-Trophic Food Chain Model
4.1. Existence of Equilibrium Points

We are only interested in feasible equilibrium points because we are investigating an
ecological system. The following are possible equilibrium points of model (4).

(i) The species-free equilibrium P0 = (0, 0, 0) occurs all of the time.
(ii) The predator-free equilibrium P1 = (1, 0, 0) occurs all of the time.
(iii) The special predator-free equilibrium point P2 = (u2, v2, 0), where

u2 =
δ1

α1 − δ1β1
and

v2 =
−(1 + e1u2) +

√
(1 + e1u2)2 + 4α−1

1 f1(1− u2)(1 + e1u2)(1 + β1u2)

2 f1
.

It is clear that P2 exists only when 0 < δ1 < α1
1 + β1

.

(iv) The coexistence equilibrium P∗ = (u∗, v∗, w∗), where u∗, v∗ and w∗ are the positive
solution(s) of the equations:

(1− u)(1 + e1u)
1 + e1u + f1v

− α1v
1 + β1u

= 0,

α1u
1 + β1u

1 + e2v
1 + e2v + f2w

− α2w
1 + β2v

− δ1 = 0,
α2v

1 + β2v
− δ2 = 0.

(8)

Solving the above equation, we have

v∗ =
δ2

α2 − δ2β2
,

which is positive when α2 > δ2β2. Prey coordinate u∗ is the positive root(s) of the equation

e1β1u3 + ∆1u2 + ∆2u + ∆3 = 0, (9)

where ∆1 = e1 + β1 − e1β1, ∆2 = α1e1v∗ + 1 − e1 − β1 and ∆3 = α1v∗(1 + f1v∗) − 1.
Thus, (9) has no positive roots when ∆i > 0, i = 1, 2, 3, and has at least one positive root
if any one of ∆

′
i is negative. The special predator coordinate w∗ is the positive root(s) of

the equation

α2 f2

1 + β2v∗
w2 +

(
α2(1 + e2v∗)

1 + β2v∗
+ δ1 f2

)
w− (1 + e2v∗)

(
α1u∗

1 + β1u∗
− δ1

)
= 0. (10)

It is clear from (10) that the sufficient condition for the positive real root of (10) is
α1u∗

1 + β1u∗ > δ1. This infers that for the survival of the special predator, the number of natural
deaths of the middle predators must be less than the critical value.

4.2. Local Stability Analysis

To study the local stability of the equilibrium point, the Jacobian matrix of system (4)
at any point (u, v, w) is given by:

J(u, v, w) =

 j11 j12 0
j21 j22 j23
0 j32 j33

,



Symmetry 2023, 15, 484 10 of 28

where

j11 =
1− 2u + 2e1u− 3e1u2

1 + e1u + f1v
− e1u(1− u)(1 + e1u)

(1 + e1u + f1v)2 − α1v
(1 + β1u)2 ,

j12 = − f1u(1− u)(1 + e1u)
(1 + e1u + f1v)2 − α1u

1 + β1u
, j21 =

α1(1 + e2v)v
(1 + e2v + f2w)(1 + β1u)2 ,

j22 =
α1u((1 + e2v)2 + f2w(1 + 2e2v))

(1 + β1u)(1 + e2v + f2w)
− α2w

(1 + β2v)2 − δ1,

j23 =− α1 f2(1 + e2v)uv
(1 + β1u)(1 + e2v + f2w)2 −

α2v
(1 + β2v)

, j32 =
α2w

(1 + β2v)2 , j33 =
α2v

1 + β2v
− δ2.

Theorem 4. The species-free equilibrium P0(0, 0, 0) is always not stable.

Proof. The eigenvalues of the Jacobian matrix J evaluated at (0, 0, 0) are 1, −δ1 and −δ2.
Clearly, 1 is always positive, and −δ1 and −δ2 are always negative. Therefore, the species-
free equilibrium P0 is unstable. This result biologically implies long-term surveillance. It
means that none of the species will become extinct at the same time.

Theorem 5. The predator-free equilibrium P1(1, 0, 0) is LAS if α1
1+β1

< δ1.

Proof. The eigenvalues of J evaluated at (1, 0, 0) are −1, α1
1 + β1

− δ1 and −δ2. Clearly, −1
and −δ2 are always negative and the remaining eigenvalue is negative if α1

1 + β1
< δ1 holds.

Therefore, the predator-free equilibrium point P1 is stable if α1
1 + β1

< δ1, otherwise P1 is
unstable. It should be noted that if the death rate of the middle predator crosses its critical
value δc

1 = α1
1 + β1

, then predators enter into the extinction stage, and the prey species only
survive in the considered model.

The Jacobian matrix J evaluated at (u2, v2, 0) is

J(u2, v2, 0) =

 j̄1 − j̄2 0
j̄3 0 − j̄4
0 0 j̄5

, (11)

where

j̄1 =
1− 2u2 + 2e1u2 − 3e1u2

1
1 + e1u2 + f1v2

− e1u2(1− u2)(1 + e1u2)

(1 + e1u2 + f1v2)2 − α1v2

(1 + β1u2)2 ,

j̄2 =
f1u2(1− u2)(1 + e1u2)

(1 + e1u2 + f1v2)2 +
α1u2

1 + β1u2
, j̄3 =

α1v2

(1 + β1u2)2 ,

j̄4 =
α1 f2u2v2

(1 + β1u2)(1 + e2v2)
+

α2v2

(1 + β2v2)
, j̄5 =

α2v2

1 + β2v2
− δ2.

The characteristic equation of the Jacobian matrix (11) is given by(
λ2 − j̄1λ + j̄2 j̄3

)
( j̄5 − λ) = 0. (12)

Theorem 6. The special predator-free equilibrium point P2(u2, v2, 0) is LAS if j̄1 < 0 and j̄5 < 0.

Proof. Note that the roots of the characteristic Equation (12) either have negative or neg-
ative real parts if j̄1 < 0 and j̄5 < 0. The special predator-free equilibrium P2 is stable if
conditions j̄1 < 0 and j̄5 < 0 hold.
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The Jacobian matrix J at (u∗, v∗, w∗) is given by

J(P∗) =

 j1 −j2 0
j3 j4 −j5
0 j6 0

, (13)

where

j1 =
1− 2u∗ + 2e1u∗ − 3e1u∗2

1 + e1u∗ + f1v∗
− e1u∗(1− u∗)(1 + e1u∗)

(1 + e1u∗ + f1v∗)2 − α1v∗

(1 + β1u∗)2 ,

j2 =
f1u∗(1− u∗)(1 + e1u∗)
(1 + e1u∗ + f1v∗)2 +

α1u∗

1 + β1u∗
, j3 =

α1(1 + e2v∗)v∗

(1 + e2v∗ + f2w∗)(1 + β1u∗)2 ,

j4 =
α1e2 f2u∗v∗w∗

(1 + β1u∗)(1 + e2v∗ + f2w∗)2 +
α2β2v∗w∗

(1 + β2v∗)2 ,

j5 =
α1 f2(1 + e2v∗)u∗v∗

(1 + β1u∗)(1 + e2v∗ + f2w∗)2 +
α2v∗

(1 + β2v∗)
, j6 =

α2w∗

(1 + β2v∗)2 .

The characteristic equation of (13) is

λ3 + N1λ2 + N2λ + N3 = 0, (14)

where

N1 = −(j1 + j4), N2 = j1 j4 + j2 j3 + j5 j6, N3 = −j1 j5 j6.

Theorem 7. The coexistence equilibrium P∗(u∗, v∗, w∗) is LAS if N1 > 0, N3 > 0, and N1N2 > N3.

Proof. We make use of the Routh–Hurwitz (R-H) criterion [51], the equilibrium point P∗ is
LAS if N1 > 0, N3 > 0 and N1N2 > N3.

Note that when N1N2 = N3, the system loses its stability around P∗, and the Hopf
bifurcation occurs.

4.3. Global Stability Analysis

The Lyapunov function plays a vital role in deriving globally asymptotically stable
(GAS) criteria of dynamical systems. Global stability ensures that the state solution will
always reach the equilibrium state, regardless of where the initial population begins. We
assume that the conditions given in Theorem 3 are well satisfied, which assure the long-term
existence of all species involved in system (4). By utilizing Theorems 1 and 2, we define
∆̄ = ∆

k as a positive constant satisfying u(t), v(t), w(t) < ∆̄, where 0 < k ≤ min{δ1, δ2}
and Γ = (1+k)2

4 . To prove the global stability of P∗, we construct a Lyapunov function L
as follows:

L =
(

u− u∗ − u∗ log
u
u∗
)
+
(

v− v∗ − v∗ log
v
v∗
)
+
(

w− w∗ − w∗ log
w
w∗
)

.

Theorem 8. The coexistence equilibrium P∗(u∗, v∗, w∗) is GAS if the condition

∆̄(α1u∗ + α2v∗) + δ1v∗ + δ2w∗ +
(

1 + u∗

2

)2
≤

(1 + e1l1)u∗

1 + (e1 + f1)∆̄
+

α1l1v∗(1 + e2l2)
(1 + β1∆̄)(1 + (e2 + f2)∆̄)

+
α2l2w∗

1 + β2∆̄
(15)

holds.
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Proof. The time derivative of L along the solution of (4) is given by

dL
dt

=
u− u∗

u
du
dt

+
v− v∗

v
dv
dt

+
w− w∗

w
dw
dt

. (16)

From Equation (4), dL
dt becomes

dL
dt

= (u− u∗)
(
(1− u)(1 + e1u)

1 + e1u + f1v
− α1v

1 + β1u

)
+ (v− v∗)

(
α1u

1 + β1u
1 + e2v

1 + e2v + f2w
− α2w

1 + β2v
− δ1

)
+ (w− w∗)

(
α2v

1 + β2v
− δ2

)
≤ (u− u2 − u∗ + uu∗)(1 + e1u)

1 + e1u + f1v
− α1uv

1 + β1u
+

α1uv∗

1 + β1u

+
α1uv(1 + e2v)

(1 + β1u)(1 + e2v + f2w)
− α1uv∗(1 + e2v)

(1 + β1u)(1 + e2v + f2w)
− α2vw

1 + β2v

+
α2v∗w

1 + β2v
− δ1v + δ1v∗ +

α2vw
1 + β2v

− α2vw∗

1 + β2v
− δ2w + δ2w∗

≤− 1 + e1l1
1 + (e1 + f1)∆̄

(
u− 1 + u∗

2

)2
+

(
1 + u∗

2

)2
− (1 + e1l1)u∗

1 + (e1 + f1)∆̄
+ α1∆̄u∗

+ α2∆̄v∗ − α1l1v∗(1 + e2l2)
(1 + β1∆̄)(1 + (e2 + f2)∆̄)

− α2l2w∗

1 + β2∆̄
+ δ1v∗ + δ2w∗.

We observe from the above that dL
dt ≤ 0 if(

1 + u∗

2

)2
− (1 + e1l1)u∗

1 + (e1 + f1)∆̄
+ α1∆̄u∗ + α2∆̄v∗ − α2l2w∗

1 + β2∆̄

− α1l1v∗(1 + e2l2)
(1 + β1∆̄)(1 + (e2 + f2)∆̄)

+ δ1v∗ + δ2w∗ ≤ 0.

That is

∆̄(α1u∗ + α2v∗) + δ1v∗ + δ2w∗ +
(

1 + u∗

2

)2
≤

(1 + e1l1)u∗

1 + (e1 + f1)∆̄
+

α1l1v∗(1 + e2l2)
(1 + β1∆̄)(1 + (e2 + f2)∆̄)

+
α2l2w∗

1 + β2∆̄
.

We also have dL
dt = 0 at P∗. As a result of the invariance principle [52], we can conclude

that the coexistence equilibrium P∗ is GAS if condition (15) holds.

The global stability condition of the coexistence equilibrium P∗ given in the above
theorem is challenging to infer any ecological justification and, thus, we will verify these
results numerically.

4.4. Existence of the Hopf Bifurcation

Here, we establish the conditions of the occurrence of the Hopf bifurcation at equilib-
rium P∗ by taking e2 as a bifurcation parameter, while other parameters are fixed.

Theorem 9. Model (4) experiences the Hopf bifurcation around the interior equilibrium P∗ if there
exists a critical value of e2, say e∗2 , such that

1. N1(e∗2)N2(e∗2)− N3(e∗2) = 0,
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2.
[

d
de2

(N1N2)

]
e2=e∗2

6=
[

d
de2

(N3)

]
e2=e∗2

.

Proof. Let e∗2 be the critical value of e2, such that

N1(e∗2)N2(e∗2)− N3(e∗2) = 0. (17)

At e2 = e∗2 , we can rewrite the characteristic Equation (14) as

(λ2 + N2)(λ + N1) = 0. (18)

Note that Equation (18) has root −N1 and purely imaginary roots ±i
√

N2, which lead to
the existence of the Hopf bifurcation.

We take a point e2 in (e∗2 − ε, e∗2 + ε). Hence, all roots of (16) depend on δ2, namely
p(e2)± iq(e2). Some simple calculations yield

p3 − 3pq2 + N1(p2 − q2) + N2 p + N3 = 0,
3p2q− q3 + 2N1 pq + N2q = 0.

(19)

As q(e2) 6= 0, from the second equation of (19), it follows that

q2 = 3p2 + 2N1 p + N2.

Substituting value q2 into the first equation of (19), we obtain

8p3 + 8N1 p2 + 2p(N2
1 + N2) + N1N2 − N3 = 0. (20)

As p(e∗2) = 0, from the above equation, we obtain[
dλ

de2

]
e2=e∗2

= −
[

1
2(N2

1 + N2)

d
de2

(N1N2 − N3)

]
e2=e∗2

.

It is clear from
[

dλ
de2

]
e2=e∗2

6= 0 that the following condition holds.

[
d

de2
(N1N2 − N3)

]
e2=e∗2

6= 0.

Hence, the transversality condition for the existence of the Hopf bifurcation is satisfied.
This completes the proof.

From Theorem 9, it is clear that system (4) undergoes a periodic solution through
parameter e2. Now we will explore the chaos control and direction of the Hopf bifurcating
periodic solution by using the theory as discussed in reference [53]. The eigenvectors ν1, ν3
of the Jacobian matrix J(P∗) associated to the eigenvalues λ1,2 = ±iω and λ3 = −N1,
respectively, at e2 = e∗2 , where ω =

√
N2, are

ν1 =

 s11 − is12
s21 − is22
s31 − is32

, ν3 =

 s13
s23
s33

.

where

s11 = s13 = 1, s12 = 0, s21 =
j1
j2

, s22 =
ω

j2
, s23 =

j1 + N1

j2
,

s31 =
j2 j3 −ω2 + j1 j4

j2 j5
, s32 =

ω(j1 + j4)
j2 j5

, s33 = − j6(j1 + N1)

j2N1
.
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Now, we make the following transformation u = u∗ + s11x + s12y + s13z, v = v∗ + s21x +
s22y + s23z, w = w∗ + s31x + s32y + s33z; then system (4) reduces to

dx
dt

=
(s32s23 − s22s33)Ψ1 − s32Ψ2 + s22Ψ3

Ψ
≡ Γ1,

dy
dt

=
(s21s33 − s23s31)Ψ1 + (s31 − s33)Ψ2 + (s23 − s21)Ψ3

Ψ
≡ Γ2,

dz
dt

=
(s22s31 − s32s21)Ψ1 + s32Ψ2 − s22Ψ3

Ψ
≡ Γ3,

(21)

where

Ψ = s32s23 − s22s33 − s32s21 + s22s31,

Ψ1 = (u∗ + s11x + s12y + s13z)(1− u∗ − s11x− s12y− s13z)

× 1 + e1(u∗ + s11x + s12y + s13z)
1 + e1(u∗ + s11x + s12y + s13z) + f1(v∗ + s21x + s22y + s23z)

− α1(u∗ + s11x + s12y + s13z)(v∗ + s21x + s22y + s23z)
1 + β1(u∗ + s11x + s12y + s13z)

,

Ψ2 =
α1(u∗ + s11x + s12y + s13z)(v∗ + s21x + s22y + s23z)

1 + β1(u∗ + s11x + s12y + s13z)

× 1 + e2(v∗ + s21x + s22y + s23z)
1 + e2(v∗ + s21x + s22y + s23z) + f2(w∗ + s31x + s32y + s33z)

− α2(v∗ + s21x + s22y + s23z)(w∗ + s31x + s32y + s33z)
1 + β2(v∗ + s21x + s22y + s23z)

− δ1(v∗ + s21x + s22y + s23z),

Ψ3 =
α2(v∗ + s21x + s22y + s23z)(w∗ + s31x + s32y + s33z)

1 + β2(v∗ + s21x + s22y + s23z)

− δ2(w∗ + s31x + s32y + s33z).

The Jacobian matrix of system (21) at (0, 0, 0) reduces to

J(0,0,0) =

 0 −ω 0
ω 0 0
0 0 N

,

where N = ∂Γ3
∂z . At δ2 = δ∗2 and (0, 0, 0), we calculate the values of g11, g02, g20, G21, e11,

H101, H110 e20, ω, w20, w11 and g21 by using following relations:

g11 =
1
4

[
∂2Γ1

∂x2 +
∂2Γ2

∂y2 + i
(

∂2Γ2

∂x2 +
∂2Γ1

∂y2

)]
,

g02 =
1
4

[
∂2Γ1

∂x2 −
∂2Γ1

∂y2 − 2
∂2Γ2

∂x∂y
+ i
(

∂2Γ2

∂x2 −
∂2Γ2

∂y2 + 2
∂2Γ1

∂x∂y

)]
,

g20 =
1
4

[
∂2Γ1

∂x2 −
∂2Γ1

∂y2 + 2
∂2Γ2

∂x∂y
+ i
(

∂2Γ2

∂x2 −
∂2Γ2

∂y2 − 2
∂2Γ1

∂x∂y

)]
,

G21 =
1
8

[
∂3Γ1

∂x3 +
∂3Γ1

∂x∂y2 +
∂3Γ2

∂x2∂y
+

∂3Γ2

∂y3 + i
(

∂3Γ2

∂x3 +
∂3Γ2

∂x∂y2 −
∂3Γ1

∂x2∂y
+

∂3Γ2

∂y3

)]
,

ω =− ∂Γ1

∂y
, e11 =

1
4

(
∂2Γ3

∂x2 +
∂2Γ3

∂y2

)
, e20 =

1
4

(
∂2Γ3

∂x2 −
∂2Γ3

∂y2 − 2i
∂2Γ3

∂x∂y

)
.
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We can obtain w11 and w20 by solving the equations (Ψ− 2iω)w20 = −e20 and Nw11 =
−e11. Moreover, we have

H110 =
1
2

[
∂2Γ1

∂x∂z
+

∂2Γ2

∂y∂z
+ i
(

∂2Γ2

∂x∂z
− ∂2Γ1

∂y∂z

)]
,

H101 =
1
2

[
∂2Γ1

∂x∂z
− ∂2Γ2

∂y∂z
+ i
(

∂2Γ2

∂x∂z
+

∂2Γ1

∂y∂z

)]
,

g21 = G21 + 2H110w11 + H101w20.

The following quantities are used to find the direction of the Hopf bifurcation:

C1(0) =
i

2ω

(
g20g11 − 2|g11|2 −

|g02|2

3

)
+

g21

2
,

µ = − Re{C1(0)}
d
de [Re(λ1(δ2))]e2=e∗2

,

β = 2Re{C1(0)} ,

T = −
Im{C1(0)}+ µ2

d
de2

[Im(λ1(δ2))]e2=e∗2
ω

.

Note that the sign of µ indicates the direction of the Hopf bifurcation. If µ > 0 (or
µ < 0), then the Hopf bifurcation is supercritical (or subcritical). The bifurcating periodic
solutions are stable (or unstable) if β < 0 (or β > 0). The periods increase (or decrease) if
T > 0 (or T < 0).

5. Dynamics of the Delayed Food Chain Model

It is well known that to derive a more appropriate real ecological model, time delay is
needed. As a result, we modify our proposed model (4) by incorporating the discrete-time
lag, τ, which represents the time lag involved in the special predator’s gestation effect.
Then, the food chain model becomes

du
dt

= u(1− u) · 1 + e1u
1 + e1u + f1v

− α1uv
1 + β1u

,

dv
dt

=
α1uv

1 + β1u
· 1 + e2v

1 + e2v + f2w
− α2vw

1 + β2v
− δ1v,

dw
dt

=
α2v(t− τ)w(t− τ)

1 + β2v(t− τ)
− δ2w.

(22)

To analyze the stability of system (22), we linearize system (22) around P∗ and obtain

dY
dt

=

 j1 −j2 0
j3 j4 −j5
0 0 −j7

Y(t) +

 0 0 0
0 0 0
0 k1 k2

Y(t− τ), (23)

where

Y = [x y z]T , j7 = −δ2, k1 =
α2w∗

(1 + β2v∗)2 , k2 =
α2v∗

1 + β2v∗
,

and the remaining ji’s are the same as defined in Theorem 7. We can write the characteristic
equation of (23) as follows:

D̄(λ, τ) = λ3 + θ1λ2 + θ2λ + θ3+e−λτ(θ4λ2 + θ5λ + θ6) = 0, (24)
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where

θ1 = j7 − j1 − j4, θ2 = j1 j4 + j2 j3 − j1 j7 − j4 j7, θ3 = (j1 j4 + j2 j3)j7,

θ4 =− k2, θ5 = j1k2 + j4k2 + j5k1, θ6 = −(j1 j4 + j2 j3)k2 − j1 j5k1.

For τ > 0, the above equation has infinitely many roots. Putting λ = iω(ω > 0) in
Equation (24), we have

(θ1ω2 − θ3) = (θ6 − θ4ω2) cos (ωτ) + θ5ω sin (ωτ),

ω3 − θ2ω = θ5ω cos (ωτ)− (θ6 − θ4ω2) sin (ωτ).

Squaring the above equations and then adding them, we have

ω6 + (θ2
1 − θ2

4 − 2θ2)ω
4 + (θ2

2 − 2θ1θ3 + 2θ4θ6 − θ2
5)ω

2 + (θ2
3 − θ2

6) = 0. (25)

Substituting ω2 = ζ in Equation (25), we obtain the following equation:

h(ζ) = ζ3 + a1ζ2 + a2ζ + a3, (26)

where a1 = θ2
1 − θ2

4 − 2θ2, a2 = θ2
2 − 2θ1θ3 + 2θ4θ6 − θ2

5 , a3 = θ2
3 − θ2

6 . We conclude from
Descartes’ rule of sign that if a1 and a3 are of opposite signs, then at least one positive root
exists in Equation (26). The condition for the stability switching behavior of P∗ with respect
to the delay parameter is given in the following theorem.

Theorem 10. Suppose that the equilibrium P∗ is LAS for τ = 0. Let ω2
0 = ζ0 be the positive root

of (26). Then, there exists τ = τ0, such that P∗ is stable for τ < τ0, and unstable for τ > τ0. The
system (22) possesses a Hopf bifurcation at P∗ when τ = τ0 provided h

′
(ζ) 6= 0.

Proof. We assume that (26) has ζk, k = 1, 2, 3 as its roots. Then we have ωk =
√

ζk, k =

1, 2, 3, and the respective threshold value of the time delay τ
j
k is

τ
j
k =

1
ωk

arccos

{
(θ5 − θ1θ4)ω

4
k + (θ3θ4 − θ2θ5 + θ1θ6)ω

2
k − θ3θ6

θ4ω4
k + (θ2

5 − 2θ4θ6)ω
2
k + θ2

6
+ 2π j

}
, (27)

where k = 1, 2, 3, j = 0, 1, · · · , and define τ0 = min
k=1,2,3

τ0
k . Then, τ0 is the first value of τ,

such that (24) has a pair of imaginary roots.
In order to utilize the Hopf bifurcation theorem, we need to verify the transversality

condition sgn
[

d<(λ)
dτ

]
τ=τ0

. Differentiate Equation (24) with respect to τ, we have

dλ

dτ
=

λ(θ4λ2 + θ5λ + θ6)e−λτ

3λ2 + 2θ1λ + θ2 + (2θ4λ + θ5)e−λτ − τ(θ4λ2 + θ5λ + θ6)e−λτ
,

which gives (
dλ

dτ

)−1
=

3λ2 + 2θ1λ + θ2 + (2θ4λ + θ5)e−λτ

λ(θ4λ2 + θ5λ + θ6)e−λτ
− τ

λ
. (28)

Now, we have

sgn
[

d<(λ)
dτ

]
τ=τ0, λ=iω0

= sgn
[
<
(

dλ

dτ

)]−1

τ=τ0, λ=iω0

= sgn

[
h
′
(ζ0)

θ2
5ω2

0 + (θ6 − θ4ω2
0)

2

]
.
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Note that θ2
5ω2

0 + (θ6 − θ4ω2
0)

2 is always positive. Then
[

d<(λ)
dτ

]
and h

′
(ζ0) have the same

signs. We should note that h
′
(ζ0) 6= 0 if Equation (26) has at least one positive root. Hence,

the transversality condition is verified. This completes the proof.

6. Numerical Simulations

In this section, we conduct numerical simulations by using MATLAB and XPPAUT
to explore various complex dynamics, including stable, unstable, periodic, and chaotic
solutions of the derived model by varying the system parameters. The growth rates of
the prey and middle predators will be influenced by the fear and COEs of their predators,
which will result in complex dynamics of the food chain model. We should note that the
model without the impact of COEs in system (4) is considered in reference [31]. In order
to visualize the complex dynamics of the proposed model (4), we present a bifurcation
diagram, time trajectories, the largest Lyapunov exponent (LLE), and a phase portrait of the
species. The algorithm for calculating LLE is given in Appendix A. All of the parameters
except fear and fear-induced COE are chosen from the reference [13]. The ranges for the
fear parameter and the fear-induced COE parameter are chosen from [31,43]. We consider
the empirical values of the system parameters as follows.

α1 = 5, α2 = 0.1, β1 = 3, β2 = 2, δ1 = 0.4, δ2 = 0.01, f1 = 3.5, f2 = 0.1, e1 = 1.0, e2 = 1.0. (29)

With the parameters given in (29), system (4) having P0 = (0, 0, 0), P1 = (1, 0, 0), P2 =
(0.1052, 0.1572, 0) and P∗ = (0.7627, 0.125, 5.0228). The figures for system (4) are drawn
using the initial populations (0.7, 0.1, 6). Among them, the only coexistence equilibrium
point P∗ is stable. Figure 2 displays the phase space diagram and time-series solutions
of model (4). They show that solution trajectories converge asymptotically to the stable
equilibrium point P∗. Further, we observe that the equilibrium P∗ is LAS for e2 = [0, 1.361).
At the critical value of parameters e2, e∗2 = 1.361, the equilibrium point P∗ loses its stability
and the system experiences a Hopf bifurcation. The conditions given in Theorem 9 are
well satisfied, as

[
d

de2
(N1N2)

]
e2=e∗2

6=
[

d
de2

(N3)
]

e2=e∗2
. In Figure 3, we draw the phase space

diagram and time-series solutions of model (4) with e2 = 1.4 and other parameters as given
in Equation (29). Furthermore, we examine the direction and stability properties of positive
periodic solutions emerging from the coexistence equilibrium P∗. Applying the results
obtained in Section 4.4, we obtain that an occurrence of the Hopf bifurcation is subcritical
and the corresponding bifurcating periodic solution is unstable.
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)

Figure 2. Model (4) exhibits stable behavior around the equilibrium point P∗ with the set of values
given in (29): (a) phase-space diagram and (b) time trajectories of the solution.
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Figure 3. Model (4) exhibits periodic oscillations around the equilibrium point P∗ with the set of
values given in (29) except e2 = 1.4 > e∗2 : (a) phase-space diagram and (b) time trajectories of
the solution.

6.1. Impacts of Fear-Induced COEs

First, we explore the influence of fear in the absence of COEs. The bifurcation diagram
of system (4) with respect to f1 in the absence of f2 is presented in Figure 4a, while the
bifurcation diagram with respect to f2 in the absence of f1 is given in Figure 4b. It is
observed from Figure 4a,b that the system, respectively, approaches a stable state from
the chaotic nature through period-halving as fear parameters f1 and f2 increase. When
both fear parameters are present, we plot a two-parameter bifurcation diagram in the
f1 − f2 parametric plane; see Figure 5. As we can see, for lower values of the f1 and f2
systems, (4) exhibits chaotic behavior and then the system becomes stable for higher values.
In an ecological sense, as fear parameters f1 and f2 increase, the growth rate of prey and
middle predators decreases, resulting in less prey/middle predators being consumed by
middle/special predators. As a result, all three species cannot become extinct in the system
but they maintain the positive density. From the above discussions, fear parameters are
extremely important in ecology because they may regulate the chaotic nature of the model
and make it a stable one. However, the fear of predators also has some COE, which affects
the growth rate of respective prey [42].
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Figure 4. The bifurcation diagram of the middle predator for model (4): (a) a with respect to f1 when
f2 = 0; (b) with respect to f2 when f1 = 0. The rest of the system parameters are the same as in
Equation (29) except e1 = 0, e2 = 0.
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𝑒 = 0 
𝑒 = 0 

                Stable Behaviour 

 Limit cycle oscillations 

 Period doubling oscillations 

 Higher periodic or chaotic oscillations 

Figure 5. The two-parameter bifurcation diagram for model (4) in the f1− f2 parametric plane; where
the system displays stable behavior in the green region, limit cycle oscillations are in the purple
region, period-doubling oscillations are in the yellow region, and chaotic oscillations are in the red
region. The rest of the system parameters are the same as in Equation (29) except e1 = e2 = 0.

Next, we explore how fear-induced COE parameters are reflected in the system dy-
namics. First, we analyze the impact of the middle predator induced fear on the prey’s
growth and its COE, while the fear of the special predator on the middle predator is absent
( f2 = 0). The bifurcation diagram and fluctuations of LLE of system (4) with respect to e1
when f2 = e2 = 0 are, respectively, presented in Figure 6a,b. It can be seen in Figure 6a
that the system remains stable for the lower values of e1, then the system turns chaotic
through period-doubling as e1 increases. Figure 6a illustrates that the system dynamics
demonstrate stable behavior for e1 < 1.27; limit cycle oscillations for 1.27 ≤ e1 < 2.39, and
display higher periodic or chaotic oscillations for e1 ≥ 2.39. In addition, we observe that the
system remains chaotic for larger values of e1. To verify the chaotic behavior of system (4),
we draw the fluctuation of the LLE with respect to e1 in Figure 6b. For different values of e1,
the phase space diagrams of model (4) are given in Figure 7, where the system is LAS for
e1 = 1.2, periodic oscillation for e1 = 2.1, and chaotic oscillation for e1 = 3.8. In Figure 8,
we draw a two-parameter bifurcation diagram between fear f1 and its COE parameter e1.
For smaller values of e1, we observe that the system changes its state from chaotic oscillation
to a stable one through period-halving with f1 increasing, while for higher values, the
system remains chaotic. The chaotic phenomena can also be controlled by increasing fear
parameter f1. Similarly, we analyze the impact of the special predator-induced fear on
the middle predator’s growth and its COE, while the fear of the middle predator on the
prey is absent ( f1 = 0). In this case, Figure 9 displays the bifurcation diagram and LLE
of system (4) with respect to e2 when f2 = 1.0. We should note that the system becomes
chaotic from stable oscillation through period-doubling as COE parameter e2 increases
from 0 to 3. The phase space diagrams of model (4) are drawn in Figure 10 for different
values of e2, where the system is LAS for e2 = 0.4, the periodic oscillation is for e2 = 1.0,
and the chaotic oscillation is for e2 = 2.85. Moreover, we notice that as e2 further increases,
the system enters into periodic oscillation from chaotic oscillation.
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Figure 6. For model (4): (a) a bifurcation diagram of the middle predator with respect to e1; (b) fluctu-
ation of the LLE with respect to e1. The rest of the system parameters are the same as in Equation (29)
except f2 = 0, c2 = 0.

Figure 7. The phase space diagram of model (4) for different values of e1: (a) LAS for e1 = 1.2,
(b) periodic oscillation for e1 = 2.1, and (c) chaotic oscillations for e1 = 3.8. The rest of the system
parameters are the same as in Equation (29) except f2 = 0, c2 = 0.
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Figure 8. The two-parameter bifurcation diagram for model (4) in the e1− f1 parametric plane; where
the system displays stable behavior in the green region, limit cycle oscillations are in the purple
region, period-doubling oscillations are in the yellow region, and chaotic oscillations are in the red
region. The rest of the system parameters are the same as in Equation (29) except f2 = e2 = 0.
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Figure 9. For model (4): (a) a bifurcation diagram of the middle predator with respect to e2; (b) fluctu-
ation of the LLE with respect to e2. The rest of the system parameters are the same as in Equation (29)
except f1 = 0, e1 = 0, f2 = 1.0.

Figure 10. The phase space diagram of model (4) for different values of e2: (a) LAS for e2 = 0.4,
(b) periodic oscillation for e2 = 1.0, and (c) chaotic oscillations for e2 = 2.85. The rest of the system
parameters are the same as in Equation (29) except f1 = 0, c1 = 0, f2 = 1.0.

Next, we examine how the system dynamics are influenced when both fear-induced
COE factors are present. To emphasize this, we draw the two-parameter bifurcation
diagram in the e1 − e2 parametric plane of system (4) in the presence of the fear-induced
COE in the prey species as well as in the middle predator, see Figure 11a. We observe
that for lower values of COE parameters, e1 and e2, system (4) shows stable behavior and
it becomes chaotic through period-doubling as e1 (e2) increases, i.e., both e1 and e2 have
destabilizing effects for fixed fear parameters f1 = 3.5, f2 = 0.1. Figure 11b,c display
the two-parameter bifurcation diagram in the f1 − f2 parametric plane of system (4) with
e1 = e2 = 0.5 and e1 = e2 = 1.5, respectively. The figure clearly shows that as e1 or e2
increases, the stability region in the f1− f2 parametric plane gradually decreases. To protect
biodiversity, artificially introduced fear through vocalization plays a crucial role. In reality,
species learn about the introduced artificial fear from past experiences and pass it on to
future generations as fear-induced COE parameters e1, e2, increase, and as a result, a greater
amount of prey and middle predators are consumed by middle and special predators,
respectively, in the ecosystem. This situation leads a species population to an extinction
stage. It is clear that the system exhibits chaos for higher values of e1, e2, and it can be
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controlled by increasing the fear parameter. For a better understanding of the impacts of
e1 and e2 on the dynamics of system (4), we plot the bifurcation diagram with respect to
e1 and e2 in Figure 12. It can be observed from Figure 12 that an increase in parameter
e1 (e2) makes the system chaotic from stable through period-doubling. If e2 = 1.5, we
observe that the system exhibits stable behavior for e1 < 0.75, limits cycle oscillations for
0.75 ≤ e1 < 1.75, and higher periodic or chaotic oscillations for e1 ≥ 1.75. Similarly, if
e1 = 1.5, we observe that the system exhibits stable behavior for e1 < 0.75, limits cycle
oscillations for 0.75 ≤ e1 < 1.75, and higher periodic or chaotic oscillations for e1 ≥ 1.75.
The chaotic behaviors occurring in Figure 12 can be confirmed by the positive LLE values
shown in Figure 13. To show the impacts of parameters e1 and e2 on the system dynamics,
we draw the phase space diagrams of model (4) for different values of e1 in Figure 14. The
values of LLE presented in Figures 6b, 9b and 13 are summarized in Table 1, where the
positive values confirm the chaotic dynamics of model (4).
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Figure 11. The two-parameter bifurcation diagram for model (4): (a) e1 − e2 parametric plane;
(b,c) f1 − f2 parametric plane; where the system displays stable behavior in the green region, limits
cycle oscillations in the purple region, with period-doubling oscillations in the yellow region and
chaotic oscillations in the red region. The rest of the system parameters are the same as in Equation (29)
except in (a) f1 = 3.5, f2 = 0.1, (b) e1 = e2 = 0.5, (c) e1 = e2 = 1.5.
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Figure 12. The bifurcation diagram of model (4): (a) with respect to e1 when e2 = 1.5, (b) with respect
to e2 when e1 = 1.5. The rest of the system parameters are the same as in Equation (29).
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Figure 13. The fluctuation of the LLE of model (4): (a) with respect to e1 when e2 = 1.5, (b) with
respect to e2 when e1 = 1.5. The rest of the system parameters are the same as in Equation (29).

Figure 14. The phase space diagram of model (4) for different values of e2: (a) LAS for e2 = 0.5,
(b) periodic oscillation for e2 = 1.6, and (c) chaotic oscillations for e2 = 2.8. The rest of the system
parameters are the same as in Equation (29).

6.2. Effects of Time-Delays

Now, we explore the dynamics of system (22) by varying delay parameters τ, and
fixing other system parameters as given in (29). We can obtain ω0 ≈ 0.08222 and critical
delay τ0 ≈ 1.7031. According to Theorem 10, when τ passes its critical value τ0, the
interior equilibrium P∗ loses its stability and a periodic solution occurs through the Hopf
bifurcation, which is given in Figure 15. For low values of τ, the system is in a stable state
and then the system loses its stability as τ passes its critical value. Figure 15c displays the
bifurcation diagram of model (22) with respect to τ, which indicates that the system (22) is
stable for 0 ≤ τ < 1.703; limit cycle oscillations for 1.703 ≤ τ < 5.8 and higher periodic
or chaotic oscillations for τ ≥ 5.8. Thus, the gestation delay in special predators has a
destabilizing effect.
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Table 1. The largest Lyapunov exponent (LLE) for different cases of the food chain model (4).

e1

LLE
e2

LLE

Case e2 = 0.0, Case e2 = 1.5, Case e1 = 0.0, Case e1 = 1.5,
f2 = 0.0 f2 = 0.1 f1 = 0.0 f1 = 3.5

0.0 −1.0739 −1.0972 0.0 −0.1672 −0.3046

0.4 −0.9566 −0.0332 0.3 −0.5770 −0.1890

0.8 −0.3694 −0.0491 0.6 −0.0002 −0.0830

1.2 −0.0937 −0.0009 0.9 −0.0008 −0.0015

1.6 0.0013 −0.0007 1.2 −0.0006 0.0003

2.0 0.0032 0.0004 1.5 0.0088 −0.0009

2.4 −0.0034 −0.0020 1.8 0.0037 0.4604

2.8 −0.0018 0.0663 2.1 −0.0035 0.3537

3.2 0.0078 0.0003 2.4 0.0304 0.4981

3.6 0.0017 0.0165 2.7 0.0746 0.3790

4.0 0.1672 0.0438 3.0 0.1044 0.3969

Ref. fig. Figure 6b Figure 13a Ref. fig. Figure 9b Figure 13b
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Figure 15. The phase space diagram of model (22): (a) the equilibrium P∗ is LAS for τ = 1.5 < τ0;
(b) periodic solution occurs at τ = 1.85 > τ0. (c) The bifurcation diagram of model (22) with respect
to τ. The rest of the system parameters are the same as in Equation (29).

6.3. Discussion

System (4) has four ecologically possible equilibria for system parameters as given
in (29). Coexistence equilibrium is the only one that is stable. This means that all solutions
to system (4) start with different initial populations that approach equilibrium. In the case
without COEs among species, the system becomes stable from its chaotic nature as we
increase the fear parameters f1 and f2. Ecologically, middle and special predators can access
lower numbers of prey. As a result, none of the species could become extinct in the system
while maintaining a positive density level. In the absence of induced fear on the middle
predator f2 = e2 = 0, the system maintains stability for lower values of e1, and the system
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shows periodic or chaotic oscillations as e1 increases further. Similarly, in the absence of
induced fear on the prey, f1 = e1 = 0, the system transitions from a stable state to a chaotic
state as e2 increases and shuttles down in periodic oscillation as e2 increases further. When
both fear factors are present constantly, we observe that for lower parameters, e1 and e2, the
system shows stable behavior and it becomes chaotic through period-doubling as e1 and/or
e2 increase. A greater number of prey and middle predators are consumed by middle and
special predators, respectively, in the ecosystem as the COE effect among species increases,
and this situation leads to an extinction stage of the species. Thus, both f1 and f2 have
stabilizing effects, while both e1 and e2 have destabilizing effects. For a lower time delay,
the system is stable. When the time delay increases, the system exhibits higher periodic or
chaotic oscillations. The bifurcation diagram of the middle predator is only used because
all three species in the system have bifurcation diagrams that are symmetric. To protect
biodiversity and manage ecosystems, we can use fear through artificial vocalization.

7. Conclusions

In this work, we investigated the combined impacts of fear and fear-induced carry-
over effects (COEs) in the three-species Hastings–Powell model [13]. The Holling type-II
functional response is used in the proposed model to describe the asymmetric interference
among the species. The growth rates of the prey and middle predator are affected by the
respective fears of middle and special predators. Fear and the COE affect the growth rate of
the species, which is taken into account in this paper. The preliminaries given in Section 3
ensure that the solution of the proposed system is always positive and non-zero. All
ecologically possible equilibriums were evaluated and their local stabilities were analyzed.
We further explored the global stability of coexistence equilibrium. We reviewed the Hopf
bifurcation at the coexistence equilibrium by taking the middle predator’s COE against the
fear of the special predator as a bifurcation parameter. In addition, the proposed model was
extended by employing the gestation delay in the special predator growth term, and the
Hopf bifurcation was investigated by choosing the time delay as the bifurcation parameter.
Lastly, numerical examples were demonstrated to justify the proposed theoretical findings.

Our derived method can be very useful for fishery management. The method proposed
in this paper can be extended by incorporating harvesting strategies and Allee effects as
well as different functional responses, which will be part of future work.
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Abbreviations
The following abbreviations are used in this manuscript:

COE carry-over effect
LAS locally asymptotically stable
GAS globally asymptotically stable
LLE largest Lyapunov exponent

Appendix A

The Lyapunov characteristic exponents are crucial for describing the behaviors of
dynamical systems. They measure the average rate of divergence or convergence of two
trajectories starting from nearby initial points. If δz0 is the initial distance of two nearby
trajectories in the phase space, then the largest Lyapunov exponent λmax is defined by:

λmax = lim
t→∞

lim
|δz0|→0

1
t

log
(
|δz(t)|
|δz0|

)
,

where δz(t) describes the distance between two trajectories at time t. The procedure for
calculating the largest Lyapunov exponent is given in the following steps (see [12,54]):

1. Start with any initial condition in the basin of attraction, such that the system exhibits
chaotic oscillations.

2. Select a nearby point with a distance of ε0, e.g., ε0 = 10−10.
3. Advance both orbits one iteration forward and calculate the new distance, say, ε1. The

distance is calculated from the sum of the squares of the differences in each variable
4. Evaluate log | ε1

ε0
|.

5. Readjust one orbit so its distance is ε0 and is in the same direction as ε1.
6. Repeat steps 3 to 5 many times and calculate the average of step 4.
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