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Abstract: In this article, a new version of the generalized q-deformed Sinh–Gordon equation is
presented, and analytical solutions are developed for specific parameter sets using those equations.
There is a possibility that the new equation can be used to model physical systems that have broken
symmetries and include also effects related to amplification or dissipation. In addition, we have
include some illustrations that depict the varied patterns of soliton propagation.
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1. Introduction

Both in mathematics and applied sciences, dynamic models are essential. These models
are built on differential equations, either ordinary or partial. A considerable impact on
non-linearity is provided by the explanation of dynamics in microscopic systems that obey
quantum physics principles [1–3]. Numerous scholars have explored a variety of ordinary
or partial differential equations with significant applications in several fields [4–10].

The q-deformed non-linear equations have great interest in describing the behavior of
some physical systems when they lose their symmetry, for example the deformed nucleus
in nuclear reactions, phase change in solid state physics, the perturbation in the quantum
optics, and elasticity changes [11–15]. Eleuch [16] introduced a new generalized form and
new analytical solutions of the q-deformed equation.

∂2u
∂z∂ζ

= [sinhq(uγ)]p − δ. (1)

Equation (1) has been solved analytically and numerically using several methods in
many papers [16–20]. In our paper [17], we introduced soliton solution of this equation
using generalized projective Riccati equations (GPRE) and (-φ(ξ))-expansion methods. In
another work, the (G

′
/G)-expansion approach and the exponential cubic B-spline algorithm

are used to investigate the solutions of the same equation analytically and numerically [18].
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The solutions 3+1 q-deformed equation is investigated by (G
′
/G)-expansion, finite el-

ement, and cubic b-spline techniques [19]. Moreover, the ( G
′

G , 1
G )-expansion and Sine–

Gordon-expansion methods are applied to obtain new solutions of the (2+1)-dimensional
q-deformed model, and the stability of the solutions was investigated using Painlevé
analysis technique [20].

In this paper, as an extension of Equation (1) (Eleuch equation), we propose a new
form of generalized q-deformed Sinh–Gordon equation as:

∂2u
∂z∂ζ

= eαu[sinhq(uγ)]p − δ. (2)

where γ, p, α ∈ R∗, δ ∈ R and 0 < q < 1.
The sinhq is defined by:

sinhq(t) =
et − qe−t

2
.

We explore the soliton solutions of (2) using a Kudryashov approach.
This paper is organized as follows: the second section introduces the analysis of the

proposed equation. In the third section, the analytical approach is provided. The fourth
section contains the solutions. We provide several figures for solutions in the fifth section.
We conclude in the last section.

2. The Mathematical Examination of the Model

Using the standard transformation:

x = az +
ζ

a
,

t = az− ζ

a
,

where a is an arbitrary constant, then (2) can be written as:

∂2u
∂x2 −

∂2u
∂t2 = eαu[sinhq(uγ)]p − δ. (3)

The transformation below is applied to find the traveling wave solution of (3).

u(x, t) = h(ξ), (4)

where
ξ = κx− θt. (5)

where θ is the traveling wave speed. From (4) and (5) then (3) becomes,(
κ2 − θ2

)
h′′(ξ) + δ− eαh(ξ)[sinhq(h(ξ)γ)]p = 0. (6)

Now we look at three cases for (6).

• Case one: p = γ = α = 1, δ = − q
2 .

Thus, (6) can be written as:(
κ2 − θ2

)
h′′(ξ)− q

2
− eh(ξ)[sinhq(h(ξ))] = 0. (7)

We can multiply both sides of (7) by h′(ξ) and get the following equation after integration.

1
2

(
−
(

θ2 − κ2
)

h′(ξ)2 − 1
2

e2h(ξ)
)
− C1 = 0, (8)
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where C1 is the integration constant.
Let

h(ξ) =
1
2

ln(v(ξ)). (9)

Then, (8) becomes,

−8C1v(ξ)2 +
(

κ2 − θ2
)

v′(ξ)2 − 2v(ξ)3 = 0. (10)

Thus, we can solve (10), to find the solution of (3) in the first case.

• Case two: α = −1, γ = 1, p = 1, δ = 1
2 .

Equation (6) can be written as:(
κ2 − θ2

)
h′′(ξ) +

1
2
− e−h(ξ)[sinhq(h(ξ))] = 0. (11)

We can multiply both sides of (11) by h′(ξ) and get the following equation after
integration.

1
2

((
κ2 − θ2

)
h′(ξ)2 − 1

2
qe−2h(ξ)

)
− C3 = 0. (12)

Let
h(ξ) =

1
2

ln(v(ξ)). (13)

Then, (12) becomes,(
κ2 − θ2

)
v′(ξ)2 − 2v(ξ)(4C3v(ξ) + q) = 0. (14)

Then, we can solve (14) to get solution of Equation (3) in the second case.

• Case three: Assume that α = 2, γ = 1, p = 2, δ =
( q

2
)2.

Then, (6) can be written as:(
κ2 − θ2

)
h′′(ξ)− e2h(ξ)[sinhq(h(ξ))]2 +

( q
2

)2
= 0. (15)

By multiplying both sides of (15) by h′(ξ) we get after integration.

1
4

(
qe2h(ξ) − 2

(
θ2 − κ2

)
h′(ξ)2 − 1

4
e4h(ξ)

)
− C5 = 0. (16)

Let
h(ξ) = ln(v(ξ)). (17)

Then, (16) becomes,

−16C5v(ξ)2 + 4qv(ξ)4 + 8
(

κ2 − θ2
)

v′(ξ)2 − v(ξ)6 = 0. (18)

We can solve (18) to find the solution of (3) in the third case.

3. The Strategy of the Kudryashov Technique

Let us consider the following form of the partial differential equation:

G(u, uxx, utt, . . .) = 0. (19)

To convert (3) to an ordinary differential equation, we apply the traveling wave
transformation:

H(h, h′′, . . .) = 0. (20)
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The following are the key steps in the new generalization of the Kudryashov method:

Step 1: Suppose the solution of (20) can be expressed as follows:

h(ξ) =
N

∑
i=0

(Ai(Q(ξ))i, (21)

where Ai(i = 0, 1, 2, . . . , N), AN 6= 0 are constants that may be found using the
homogeneous balancing principle that determines N.

Step 2: The ordinary differential equation is fulfilled by the function Q(ξ):

dQ(ξ)

dξ
= (Q(ξ)− 1)Q(ξ). (22)

The solution to (22) is as follows:

Q(ξ) =
1

1 + eξ
. (23)

Step 3: We get a polynomial of Q(ξ) by putting (21) into (20). We obtain a set of algebraic
equations by combining all terms with similar powers of Q(ξ) and setting each
coefficient to zero.

Step 4: We determine the solution of (19) by solving this system.

4. Soliton Solutions for the Model

The Kudryashov method is used in this section to obtain the analytic solution to the
three cases specified for the problem (3).

• Case 1: α = p = γ = 1, δ = − q
2 :

In (10) by considering first vanishing integration constant we get the following
solution:

v(ξ) =
4(

C2 + ξ
√

2
κ2−θ2

)
2

. (24)

Then, by using (9) with (5) and (4) we get the following solution to (3)

u(x, t) =
1
2

ln
(

4(
C2 + (κx− θt)

√
2

κ2−θ2

)
2

)
. (25)

In (10), if constant of integration non-zero we apply the balance principle in (10)
between v′2 and v3 we get 2N + 2 = 3N ⇒ N = 2. The solution of (10) can be written as
follows:

v(ξ) =
2

∑
i=0

Ai(Q(ξ)i. (26)

We obtain the system by substituting (26) into (10) and setting the coefficient of Q(ξ)
to zero:

−8A2
0C1 − 2A3

0 = 0,

−16A1 A0C1 − 6A1 A2
0 = 0,

−16A2 A0C1 − 8A2
1C1 − A2

1θ2 + A2
1κ2 − 6A2 A2

0 − 6A2
1 A0 = 0,

−16A2 A1C1 + 2A2
1θ2 − 4A2 A1θ2 − 2A2

1κ2 + 4A2 A1κ2

−2A3
1 − 12A0 A2 A1 = 0,

−8A2
2C1 − 4A2

2θ2 + 8A1 A2θ2 − A2
1θ2 + A2

1κ2

+4A2
2κ2 − 8A1 A2κ2 − 6A0 A2

2 − 6A2
1 A2 = 0,
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8A2
2θ2 − 4A1 A2θ2 − 8A2

2κ2 + 4A1 A2κ2 − 6A1 A2
2 = 0,

−4A2
2θ2 + 4A2

2κ2 − 2A3
2 = 0.

We can determine the constants by solving the above equations by symbolic software,
such as Mathematica.

A0 = 0, A1 = −16C1, A2 = 16C1, κ = ∓
√

8C1 + θ2. (27)

Then, the solutions for (3) at α = p = γ = 1, δ = − q
2 by substituting (27) into (26)

with (9), (5), and (4).

u1,2(x, t) =
1
2

ln
(
−16C1

1 + e(κx−θt)
+

16C1

(1 + e(κx−θt))2

)
. (28)

• Case 2: α = −1, γ = 1, p = 1, δ = 1
2 :

In (14), if the constant of integration equal zero we have:

v(ξ) =
1
4

(
C4 + ξ

√
2q

κ2 − θ2

)
2. (29)

Then, by using (13) with (5) and (4) we get the following solution to (3)

u(x, t) =
1
2

ln
(

1
4

(
C4 + (κx− θt)

√
2q

κ2 − θ2

)
2
)

. (30)

In (14), if constant of integration is not equal zero we apply the balance principle in (14)
between v′2 and v2 we get 2N + 2 = 2N we cannot find N so, we take this transformation

v(ξ) =
1

f (ξ)
. (31)

Then, (14) becomes

−8C3 f (ξ)2 +
(

κ2 − θ2
)

f ′(ξ)2 − 2q f (ξ)3 = 0. (32)

Now, we apply the balance principle in (32) between f ′2 and f 3 we get 2N + 2 =
3N ⇒ N = 2.

The solution of (32) can be written as follows:

f (ξ) =
2

∑
i=0

Ai(Q(ξ)i. (33)

We obtain the system of equations by substituting (33) into (32) and setting the coeffi-
cient of Q(ξ) to zero:

−8A2
0C3 − 2A3

0q = 0,

−16A1 A0C3 − 6A1 A2
0q = 0,

−16A2 A0C3 − 8A2
1C3 − A2

1θ2 + A2
1κ2 − 6A2 A2

0q− 6A2
1 A0q = 0,

−16A2 A1C3 + 2A2
1θ2 − 4A2 A1θ2 − 2A2

1κ2

+4A2 A1κ2 − 2A3
1q− 12A0 A2 A1q = 0,

−8A2
2C3 − 4A2

2θ2 + 8A1 A2θ2 − A2
1θ2 + A2

1κ2

+4A2
2κ2 − 8A1 A2κ2 − 6A0 A2

2q− 6A2
1 A2q = 0,

8A2
2θ2 − 4A1 A2θ2 − 8A2

2κ2 + 4A1 A2κ2 − 6A1 A2
2q = 0,
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−4A2
2θ2 + 4A2

2κ2 − 2A3
2q = 0.

We get the following constants by using the Mathematica program to solve the previ-
ous set of equations.

A0 = 0, A1 = −16C3

q
, A2 =

16C3

q
, κ = ∓

√
8C3 + θ2. (34)

Then, the solutions of (3) for α = −1, γ = 1, p = 1, δ = 1
2 by substituting (34) into (33)

with (31), (13), (5), and (4).

u1,2(x, t) =
1
2

ln
(

1
− 16C3

q

1+e(κx−θt) +
16C3

q

(1+e(κx−θt))2

)
. (35)

• Case 3: α = 2, γ = 1, p = 2, δ =
( q

2
)2:

By applying the balance principle in (18) between v′2 and v6 we get 2N + 2 = 6N ⇒
N = 1

2 but N integer number. So, we consider this transformation

v(ξ) = f (ξ)
1
2 . (36)

Then, (18) becomes:

−16C5 f (ξ)2 − 2
(

θ2 − κ2
)

f ′(ξ)2 + 4q f (ξ)3 − f (ξ)4 = 0. (37)

Now, we apply the balance principle in (37) between f ′2 and f 4 we get 2N + 2 =
4N ⇒ N = 1. So, the solution of (37) can be written as follows:

f (ξ) =
1

∑
i=0

Ai(Q(ξ)i. (38)

We get the following system by substituting (38) into (37) and setting the coefficient of
Q(ξ) to zero:

−16A2
0C5 + 4A3

0q− A4
0 = 0,

−32A1 A0C5 + 12A1 A2
0q− 4A1 A3

0 = 0,

−16A2
1C5 − 2A2

1θ2 + 2A2
1κ2 + 12A0 A2

1q− 6A2
0 A2

1 = 0,

4A2
1θ2 − 4A2

1κ2 + 4A3
1q− 4A0 A3

1 = 0,

−2A2
1θ2 + 2A2

1κ2 − A4
1 = 0.

We get the following two sets of constants.

• Set one:

A0 = 0, A1 = 2q, κ = ∓
√

θ2 + 2q2, C5 =
q2

4
. (39)

Then, the solutions of (3) for α = 2, γ = 1, p = 2, δ =
( q

2
)2 by substituting (39) into (38)

with (36), (17), (5), and (4).

u1,2(x, t) =
1
2

ln
(

2q
1 + e(κx−θt)

)
. (40)

• Set two:

A0 = 2q, A1 = −2q, κ = ∓
√

θ2 + 2q2, C5 =
q2

4
. (41)
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Then, the solutions of (3) for α = 2, γ = 1, p = 2, δ =
( q

2
)2 by substituting (41) into (38)

with (36), (17), (5), and (4).

u3,4(x, t) =
1
2

ln
(

2q +
−2q

1 + e(κx−θt)

)
. (42)

5. Illustrations with Graphics

Here, we illustrate some two-dimensional, three-dimensional, and contour figures
of obtained solutions. Figures 1–6 depicts some of the analytical solutions. Firstly, we
introduce two figures of case 1 for p = γ = α = 1, δ = − q

2 . In Figure 1, we present
the graph of (25) for C2 = 1.2, θ = 0.09, κ = 0.07 we observe that the wave moves to
the right when the time increases. In addition, Figure 2 shows the graph of (28) q = 0.5,
θ = 0.1, C1 = −0.007 we notice that the wave goes up over time. Secondly, we present
two figures of case 1 for α = −1, γ = 1, p = 1, δ = 1

2 . Figure 3 shows the graph of (30)
for C4 = 1.4, θ = 0.09, κ = 0.07, q = 0.4 we observe that the wave is moving to the right
over time. The graph of (34) at C3 = −0.001, θ = 0.07, q = 0.7 is presented in Figure 4,
we notice that the wave moves up over time. Thirdly, we plot two figures of case 1 for
α = 2, γ = 1, p = 2, δ =

( q
2
)2. The graph of (39) at θ = 0.25, q = 0.2 is illustrated in Figure 5,

we note that the wave moves down over time. Finally, in Figure 6, we show the graph
of (42) at θ = 0.25, q = 0.2 we notice that the wave amplitude grows when the time evolves.
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Figure 6. Structure of (42) at θ = 0.25, q = 0.2 using the Kudryashov approach.

6. Conclusions

A new generalized form of the q-deformed Sinh–Gordon equation is developed and
investigated in this study. The Kudryashov approach is utilized in order to locate the
analytical soliton solutions. The method used is effective and gives good results that can be
easily interpreted. The consideration of three different examples relating to the proposed
equation is expanded upon. We have provided an illustration of the adequacy of the wave
propagation. In the future works, we will expect to develop alternative methods for solving
this form of q-deformed Sinh–Gordon equation. The newly presented equation makes it
possible to describe physical systems that break symmetry where in addition amplification
or dissipation effects could be considered.
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