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Abstract: Hardy-type integral inequalities play a prominent role in the study of analytic inequalities,
which are essential in mathematical analysis and its various applications, such as in the study of
symmetry and asymmetry phenomena. In this paper, employing methods of real analysis and using
weight functions, we investigate some equivalent conditions of two kinds of reverse Hardy-type
integral inequalities with a particular non-homogeneous kernel. A few equivalent conditions of two
kinds of reverse Hardy-type integral inequalities with a particular homogeneous kernel are deduced
in the form of applications.
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1. Introduction

In 1925, by introducing one pair of conjugate exponents (p, q)
(

p > 1, 1
p + 1

q = 1
)

,
Hardy [1] established the following extension of Hilbert’s integral inequality:
For f (x), g(y) ≥ 0,

0 <
∫ ∞

0
f p(x)dx < ∞ and 0 <

∫ ∞

0
gq(y)dy < ∞,

we have

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dxdy <
π

sin(π/p)

(∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q
, (1)

with the best possible constant factor

π

sin(π/p)
.

Inequality (1) as well as Hilbert’s integral inequality (for p = q = 2 in (1), cf. [2]) have
proved to be essential in analysis and its various applications (cf. [3,4]). In 1934, Hardy et al.
established an extension of (1) with the kernel k1(x, y), where k1(x, y) is a non-negative
homogeneous function of degree −1 (cf. [3], Theorem 319). The following Hilbert-type
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integral inequality with the non-homogeneous kernel is proved:
If p > 1, 1

p + 1
q = 1, h(u) > 0,

φ(σ) =
∫ ∞

0
h(u)uσ−1du ∈ R+,

then ∫ ∞

0

∫ ∞

0
h(xy) f (x)g(y)dxdy

< φ

(
1
p

)(∫ ∞

0
xp−2 f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q
, (2)

with the best possible constant factor φ( 1
p ) (cf. [3], Theorem 350).

In 1998, by introducing an independent parameter λ > 0, Yang presented an extension
of (1) for p = q = 2 with the kernel 1

(x+y)λ (cf. [5,6]). In 2004, by introducing another pair of

conjugate exponents (r, s) (r > 1, 1
r +

1
s = 1), Yang [7] proved an extension of (1) with the

kernel 1
xλ+yλ (λ > 0). In 2005, Yang et al. [8] also established an extension of (1) and the

result of [5]. Krnic et al. in [9–14] presented as well some extensions of (1).
In 2009, Yang proved the following extension of (3) (cf. [15,16]):
If λ1 + λ2 = λ ∈ R = (−∞, ∞), kλ(x, y) is a non-negative homogeneous function of

degree −λ, satisfying

kλ(ux, uy) = u−λkλ(x, y)(u, x, y > 0),

k(λ1) =
∫ ∞

0
kλ(u, 1)uλ1−1du ∈ R+ = (0, ∞),

then for p > 1, 1
p + 1

q = 1, we have

∫ ∞

0

∫ ∞

0
kλ(x, y) f (x)g(y)dxdy

< k(λ1)

(∫ ∞

0
xp(1−λ1)−1 f p(x)dx

) 1
p
(∫ ∞

0
yq(1−λ2)−1gq(y)dy

) 1
q
, (3)

with the best possible constant factor k(λ1). For 0 < p < 1, 1
p +

1
q = 1, we derive the reverse

of (3). The following extension of (2) has been proved:
For p > 1, 1

p + 1
q = 1, we have

∫ ∞

0

∫ ∞

0
h(xy) f (x)g(y)dxdy

< φ(σ)

(∫ ∞

0
xp(1−σ)−1 f p(x)dx

) 1
p
(∫ ∞

0
yq(1−σ)−1gq(y)dy

) 1
q
, (4)

where the constant factor φ(σ) is the best possible. For 0 < p < 1, 1
p + 1

q = 1, we obtain the
reverse of (4) (cf. [17]).

Some equivalent inequalities of (3) and (4) were considered in [16]. In 2013, Yang [17]
also studied the equivalency between (3) and (4). In 2017, Hong [18] presented an equivalent
condition between (3) and some parameters. Other similar works are provided in [19–27].

Remark 1 (cf. [17]). If h(xy) = 0, for xy > 1, then

φ(σ) =
∫ 1

0
h(u)uσ−1du = φ1(σ) ∈ R+,



Symmetry 2023, 15, 463 3 of 18

and the reverse of (4) reduces to the following reverse Hardy-type integral inequality with the
non-homogeneous kernel:

∫ ∞

0
g(y)

(∫ 1
y

0
h(xy) f (x)dx

)
dy

> φ1(σ)

(∫ ∞

0
xp(1−σ)−1 f p(x)dx

) 1
p
(∫ ∞

0
yq(1−σ)−1gq(y)dy

) 1
q
; (5)

if h(xy) = 0, for xy < 1, then

φ(σ) =
∫ ∞

1
h(u)uσ−1du = φ2(σ) ∈ R+,

and the reverse of (4) reduces to the following reverse Hardy-type integral inequality with non-
homogeneous kernel:

∫ ∞

0
g(y)

(∫ ∞

1
y

h(xy) f (x)dx

)
dy

> φ2(σ)

(∫ ∞

0
xp(1−σ)−1 f p(x)dx

) 1
p
(∫ ∞

0
yq(1−σ)−1gq(y)dy

) 1
q
. (6)

Hardy-type integral inequalities play a prominent role in the study of analytic inequal-
ities, which are essential in mathematical analysis and its various applications in Physics
and Engineering, such as in the study of symmetry and asymmetry phenomena (cf. [23,28]).

In the present work, employing methods of real analysis as well as using weight
functions, we obtain a few equivalent conditions of (5) (resp. (6)) with a particular non-
homogeneous kernel

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

(β > −1).

Some equivalent conditions of two kinds of reverse Hardy-type integral inequalities
with a particular homogeneous kernel are deduced in the form of applications. We also
consider some interesting corollaries.

2. An Example and Two Lemmas

Example 1. Setting

h(u) =
(min{u, 1})α| ln u|β
(max{u, 1})λ+α

(u > 0),

we then obtain that

h(xy) =
(min{xy, 1})α| ln xy|β

(max{xy, 1})λ+α
,

and for β > −1, σ, µ > −α, σ + µ = λ ∈ R,

k(1)λ (σ) : =
∫ 1

0
h(u)uσ−1du =

∫ 1

0

(min{u, 1})α(− ln u)β

(max{u, 1})λ+α
uσ−1du

=
∫ 1

0
uα+σ−1(− ln u)βdu =

Γ(β + 1)
(σ + α)β+1 ∈ R+,

k(2)λ (σ) : =
∫ ∞

1
h(u)uσ−1du =

∫ ∞

1

(min{u, 1})α(ln u)β

(max{u, 1})λ+α
uσ−1du

=
∫ 1

0
vα+µ−1(− ln v)βdv =

Γ(β + 1)
(µ + α)β+1 = k(1)λ (µ) ∈ R+,
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where
Γ(η) :=

∫ ∞

0
vη−1e−vdv (η > 0)

stands for the gamma function (cf. [29]).

In the following, we assume that 0 < p < 1(q < 0), 1
p + 1

q = 1, β > −1, λ, σ1 ∈ R.

Lemma 1. If σ > −α and there exists a constant M1 > 0 such that for any non-negative
measurable functions f (x), g(y) in (0, ∞) the following inequality

∫ ∞

0
g(y)

[∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]
dy

≥ M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q

(7)

holds true, then we have
σ1 = σ and k(1)λ (σ) ≥ M1.

Proof. If σ1 < σ, then for n ∈ N, we consider the following two functions

fn(x) :=

{
xσ+ 1

pn−1, 0 < x ≤ 1
0, x > 1

, gn(y) :=

{
0, 0 < y < 1

yσ1− 1
qn−1, y ≥ 1

,

and obtain that

J1 : =

[∫ ∞

0
xp(1−σ)−1 f p

n (x)dx
] 1

p
[∫ ∞

0
yq(1−σ1)−1gq

n(y)dy
] 1

q

=

(∫ 1

0
x

1
n−1dx

) 1
p
(∫ ∞

1
y−

1
n−1dy

) 1
q
= n.

Setting u = xy, for 0 < p < 1, we derive that

I1 : =
∫ ∞

0
gn(y)

[∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

fn(x)dx

]
dy

=
∫ ∞

1

[∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

xσ+ 1
pn−1dx

]
yσ1− 1

qn−1dy

=
∫ ∞

1
y(σ1−σ)− 1

n−1dy
∫ 1

0

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ+ 1
pn−1du

≤ 1
σ− σ1 +

1
n

∫ 1

0

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ−1du ≤
k(1)λ (σ)

σ− σ1
,

and then by (7), it follows that

k(1)λ (σ)

σ− σ1
≥ I1 ≥ M1 J1 = M1n. (8)

By (8), letting n→ ∞, in view of k(1)λ (σ) < ∞, σ > σ1 and M1 > 0, we get that

∞ >
k(1)λ (σ)

σ− σ1
≥ ∞,

which is a contradiction.
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If σ1 > σ, then for

n ≥ 1
|q|(σ1 − σ)

(n ∈ N),

we consider the following two functions:

f̃n(x) :=

{
0, 0 < x < 1

xσ− 1
pn−1, x ≥ 1

, g̃n(y) :=

{
yσ1+

1
qn−1, 0 < y ≤ 1

0, y > 1
,

and deduce that

J̃1 : =

[∫ ∞

0
xp(1−σ)−1 f̃ p

n (x)dx
] 1

p
[∫ ∞

0
yq(1−σ1)−1 g̃q

n(y)dy
] 1

q

=

(∫ ∞

1
x−

1
n−1dx

) 1
p
(∫ 1

0
y

1
n−1dy

) 1
q
= n.

Setting u = xy, in view of σ1 +
1

qn ≥ σ (q < 0), we obtain

Ĩ1 :=
∫ ∞

0
f̃n(x)

[∫ 1
x

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

g̃n(y)dy

]
dx

=
∫ ∞

1

[∫ 1
x

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

yσ1+
1

qn−1dy

]
xσ− 1

pn−1dx

=
∫ ∞

1
x(σ−σ1)− 1

n−1dx
∫ 1

0

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ1+
1

qn−1du

≤ 1
σ1 − σ + 1

n

∫ 1

0

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ−1du ≤
k(1)λ (σ)

σ1 − σ
,

and then by Fubini’s theorem (cf. [30]) and (7), we derive that

k1(σ)

σ1 − σ
≥ Ĩ1 =

∫ ∞

0
g̃n(y)

[∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f̃n(x)dx

]
dy

≥ M1 J̃1 = M1n. (9)

By (9), letting n→ ∞, we obtain that

∞ >
k(1)λ (σ)

σ1 − σ
≥ ∞,

which is a contradiction.
Hence, we conclude that σ1 = σ.
For σ1 = σ, we deduce that I1 ≥ M1 J1 and then

k(1)λ (σ) =
∫ 1

0

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ−1du

≥
∫ 1

0

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ+ 1
pn−1du ≥ M1.

This completes the proof of the lemma.
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Lemma 2. If µ > −α, σ = λ− µ and there exists a constant M2 > 0 such that for any non-
negative measurable functions f (x), g(y) in (0, ∞), the following inequality

∫ ∞

0
g(y)

[∫ ∞

1
y

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]
dy

≥ M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q

(10)

holds true, then we have
σ1 = σ and k(2)λ (σ) ≥ M2.

Proof. If σ1 > σ, then for n ∈ N, we consider two functions f̃n(x) and g̃n(y) as in Lemma 1
and derive that

J̃1 =

[∫ ∞

0
xp(1−σ)−1 f̃ p

n (x)dx
] 1

p
[∫ ∞

0
yq(1−σ1)−1 g̃q

n(y)dy
] 1

q
= n.

Setting u = xy, we obtain

Ĩ2 : =
∫ ∞

0
g̃n(y)

[∫ ∞

1
y

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f̃n(x)dx

]
dy

=
∫ 1

0

[∫ ∞

1
y

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

xσ− 1
pn−1dx

]
yσ1+

1
qn−1dy

=
∫ 1

0
y(σ1−σ)+ 1

n−1dy
∫ ∞

1

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ− 1
pn−1du

≤
k(2)λ (σ)

σ1 − σ
,

and then by (10), it follows that

k(2)λ (σ)

σ1 − σ
≥ Ĩ2 ≥ M2 J̃1 = M2n. (11)

By (11), letting n→ ∞, we get that

∞ >
k(2)λ (σ)

σ1 − σ
≥ ∞,

which is a contradiction.
If σ1 < σ, then for

n ≥ 1
|q|(σ− σ1)

(n ∈ N),

we consider two functions fn(x) and gn(y) as in Lemma 1 and get that

J1 =

[∫ ∞

0
xp(1−σ)−1 f p

n (x)dx
] 1

p
[∫ ∞

0
yq(1−σ1)−1gq

n(y)dy
] 1

q
= n.



Symmetry 2023, 15, 463 7 of 18

Setting u = xy, we obtain

I2 : =
∫ ∞

0
fn(x)

[∫ ∞

1
x

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

gn(y)dy
]

dx

=
∫ 1

0

[∫ ∞

1
x

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

yσ1− 1
qn−1dy

]
xσ+ 1

pn−1dx

=
∫ 1

0
x(σ−σ1)+

1
n−1dx

∫ ∞

1

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ1− 1
qn−1du

≤ 1
σ− σ1

∫ ∞

1

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ−1du =
k(2)λ (σ)

σ− σ1
,

and then by Fubini’s theorem (cf. [30]) and (10), it follows that

k(2)λ (σ)

σ− σ1
≥ I2 =

∫ ∞

0
gn(y)

[∫ ∞

1
y

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

fn(x)dx

]
dy

≥ M2 J1 = M2n. (12)

By (12), letting n→ ∞, we derive that

∞ >
k(2)λ (σ)

σ− σ1
≥ ∞,

which is a contradiction.
Hence, we conclude that σ1 = σ.
For σ1 = σ, we deduce Ĩ2 ≥ M2 J̃2 and then it follows that

k(2)λ (σ) =
∫ ∞

1

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ−1du

≥
∫ ∞

1

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ− 1
pn−1 ≥ M2.

This completes the proof of the lemma.

3. Reverse Hardy-Type Inequalities of the First Kind

Theorem 1. If σ > −α, then the following conditions are equivalent:
(i) There exists a constant M1 > 0, such that for any f (x) ≥ 0 satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞,

we have the following reverse Hardy-type integral inequality of the first kind with the non-
homogeneous kernel:

J : =

{∫ ∞

0
ypσ1−1

[∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]p

dy

} 1
p

> M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
. (13)

(ii) There exists a constant M1 > 0, such that for any g(y) ≥ 0 satisfying

0 <
∫ ∞

0
yq(1−σ1)−1gq(y)dy < ∞,
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we have the following reverse Hardy-type integral inequality of the first kind with the non-
homogeneous kernel:

{∫ ∞

0
xqσ−1

[∫ 1
x

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

g(y)dy

]q

dx

} 1
q

> M1

[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q
. (14)

(iii) There exists a constant M1 > 0, such that for any f (x), g(y) ≥ 0 satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞ and 0 <

∫ ∞

0
yq(1−σ1)−1gq(y)dy < ∞,

we have the following inequality:

I : =
∫ ∞

0
g(y)

[∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]
dy

> M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q
. (15)

(iv) σ1 = σ.
If Condition (iv) holds, then the constant M1 = k(1)λ (σ) in (13)–(15) is the best possible.

Proof. (i)⇒ (ii). By the reverse Hölder inequality (cf. [31]), we have

I =
∫ ∞

0

[
yσ1− 1

p

∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

](
y

1
p−σ1 g(y)

)
dy

≥ J
[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q
. (16)

Then by (13), we obtain (14).
(ii)⇒ (iv). By Lemma 1, we have σ1 = σ.
(iv)⇒ (i). Setting u = xy, we obtain the following weight function:

ω1(σ, y) : = yσ
∫ 1

y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

xσ−1dx

=
∫ 1

0

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ−1du = k(1)λ (σ)(y > 0). (17)
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By the reverse Hölder inequality with weight and (17), for y ∈ (0, ∞), we have[∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]p

=

{∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

[
y(σ−1)/p

x(σ−1)/q
f (x)

][
x(σ−1)/q

y(σ−1)/p

]
dx

}p

≥
∫ 1

y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

yσ−1

x(σ−1)p/q
f p(x)dx

×
[∫ 1

y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

xσ−1

y(σ−1)q/p
dx

]p−1

=

[
ω1(σ, y)
yq(σ−1)+1

]p−1 ∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

yσ−1

x(σ−1)p/q
f p(x)dx

= (k(1)λ (σ))p−1y−pσ+1
∫ 1

y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

yσ−1

x(σ−1)p/q
f p(x)dx. (18)

If (18) obtains the form of equality for some y ∈ (0, ∞), then (cf. [31]) there exist
constants A and B, such that they are not both zero, and

A
yσ−1

x(σ−1)p/q
f p(x) = B

xσ−1

y(σ−1)q/p
a.e. in R+.

We suppose that A 6= 0 (otherwise B = A = 0). It follows that

xp(1−σ)−1 f p(x) = yq(1−σ) B
Ax

a.e. in R+,

which contradicts the fact that 0 <
∫ ∞

0 xp(1−σ)−1 f p(x)dx < ∞. Hence, (18) becomes a
strict inequality.

For σ1 = σ, by Fubini’s theorem (cf. [30]) and the above result, we have

J > (k(1)λ (σ))
1
q

{∫ ∞

0

[∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

yσ−1 f p(x)
x(σ−1)p/q

dx

]
dy

} 1
p

= (k(1)λ (σ))
1
q

{∫ ∞

0

[∫ 1
x

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

yσ−1dy
x(σ−1)(p−1)

]
f p(x)dx

} 1
p

= (k(1)λ (σ))
1
q

[∫ ∞

0
ω1(σ, x)xp(1−σ)−1 f p(x)dx

] 1
p

= k(1)λ (σ)

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
.

Setting 0 < M1 ≤ k(1)λ (σ)(< ∞), (13) follows.
Therefore, Conditions (i), (iii), and (iv) are equivalent. Since the Conditions (i) and (iii)

are equivalent, similarly, by Fubini’s theorem, we have

I =
∫ ∞

0
f (x)

[∫ 1
x

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

g(y)dy

]
dx,

and we deduce that Conditions (ii) and (iii) are equivalent. Hence, the conditions (i), (ii),
(iii), and (iv) are equivalent.
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When Condition (iv) is satisfied, if there exists a constant M1 ≥ k(1)λ (σ), such that (14)

is true, then by Lemma 1 we have k(1)λ (σ) ≥ M1. Hence, the constant factor M1 = k(1)λ (σ)
in (14) is the best possible.

The constant factor M1 = k(1)λ (σ) in (13) is still the best possible. Otherwise, by (16)

(for σ1 = σ), we would conclude that the constant factor M1 = k(1)λ (σ) in (15) is not the

best possible. Similarly, we can prove that the constant factor M1 = k(1)λ (σ) in (14) is the
best possible.

This completes the proof of the theorem.

In particular, for σ = σ1 = 1
p in Theorem 1, we derive the following corollary.

Corollary 1. If α > − 1
p , then the following conditions are equivalent:

(i) There exists a constant M1 > 0, such that for any f (x) ≥ 0, satisfying

0 <
∫ ∞

0
xp−2 f p(x)dx < ∞,

we have the following inequality:

{∫ ∞

0

[∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]p

dy

} 1
p

> M1

(∫ ∞

0
xp−2 f p(x)dx

) 1
p
. (19)

(ii) There exists a constant M1 > 0, such that for any g(y) ≥ 0, satisfying

0 <
∫ ∞

0
gq(y)dy < ∞,

we have the following inequality:

{∫ ∞

0
xq−2

[∫ 1
x

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

g(y)dy

]q

dx

} 1
q

> M1

(∫ ∞

0
gq(y)dy

) 1
q
. (20)

(iii) There exists a constant M1 > 0, such that for any f (x), g(y) ≥ 0, satisfying

0 <
∫ ∞

0
xp−2 f p(x)dx < ∞ and 0 <

∫ ∞

0
gq(y)dy < ∞,

we have the following inequality:

∫ ∞

0
g(y)

[∫ 1
y

0

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]
dy

> M1

(∫ ∞

0
xp−2 f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q
. (21)

The constant M1 = k(1)λ ( 1
p ) in (19)–(21) is the best possible.

Setting y = 1
Y , G(Y) = g( 1

Y )
1

Y2−λ in Theorem 1, and then replacing Y by y, we deduce
the following corollary.
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Corollary 2. If σ > −α, then the following conditions are equivalent:
(i) There exists a constant M1, such that for any f (x) ≥ 0, satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞,

we have the following inequality:

{∫ ∞

0
yp(λ−σ1)−1

[∫ y

0

(min{x, y})α| ln(x/y)|β
(max{x, y})λ+α

f (x)dx
]p

dy

} 1
p

> M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
. (22)

(ii) There exists a constant M1 > 0, such that for any G(y) ≥ 0, satisfying

0 <
∫ ∞

0
yq[1−(λ−σ1)]−1Gq(y)dy < ∞,

we have the following reverse Hardy-type integral inequality:

{∫ ∞

0
xqσ−1

[∫ ∞

x

(min{x, y})α| ln(x/y)|β
(max{x, y})λ+α

G(y)dy
]q

dx

} 1
q

> M1

[∫ ∞

0
yq[1−(λ−σ1)]−1Gq(y)dy

] 1
q
. (23)

(iii) There exists a constant M1 > 0, such that for any f (x), G(y) ≥ 0, satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞ and 0 <

∫ ∞

0
yq[1−(λ−σ1)]−1Gq(y)dy < ∞,

we have the following inequality:

∫ ∞

0
G(y)

[∫ y

0

(min{x, y})α| ln(x/y)|β
(max{x, y})λ+α

f (x)dx
]

dy

> M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq[1−(λ−σ1)]−1Gq(y)dy

] 1
q
. (24)

(iv) σ1 = σ.
If Condition (iv) holds true, then the constant M1 = k(1)λ (σ) in (22)–(24) is the best possible.

For g(y) = G(y) and µ = λ− σ1 in Corollary 2, we deduce the corollary below.

Theorem 2. If σ > −α, then the following conditions are equivalent:
(i) There exists a constant M1 > 0, such that for any f (x) ≥ 0 satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞,

we have the following reverse Hardy-type inequality of the first kind with the homogeneous kernel:

{∫ ∞

0
ypµ−1

[∫ y

0

(min{x, y})α| ln(x/y)|β
(max{x, y})λ+α

f (x)dx
]p

dy

} 1
p

> M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
. (25)
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(ii) There exists a constant M1 > 0, such that for any g(y) ≥ 0 satisfying

0 <
∫ ∞

0
yq(1−µ)−1gq(y)dy < ∞,

we have the following reverse Hardy-type inequality of the first kind with the homogeneous kernel:

{∫ ∞

0
xqσ−1

[∫ ∞

x

(min{x, y})α| ln(x/y)|β
(max{x, y})λ+α

g(y)dy
]q

dx

} 1
q

> M1

[∫ ∞

0
yq(1−µ)−1gq(y)dy

] 1
p
. (26)

(iii) There exists a constant M1 > 0, such that for any f (x), g(y) ≥ 0 satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞ and 0 <

∫ ∞

0
yq(1−µ)−1gq(y)dy < ∞,

we have the following inequality:

∫ ∞

0
g(y)

[∫ y

0

(min{x, y})α| ln(x/y)|β
(max{x, y})λ+α

f (x)dx
]

dy

> M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−µ)−1gq(y)dy

] 1
q
. (27)

(iv) µ + σ = λ.
If Condition (iv) holds, then the constant M1 = k(1)λ (σ) in (25)–(27) is the best possible.

In particular, for λ = 1, σ = 1
q , µ = 1

p in Theorem 2, we deduce the corollary below.

Corollary 3. If α > − 1
q , then the following conditions are equivalent:

(i) There exists a constant M1 > 0, such that for any f (x) ≥ 0 satisfying

0 <
∫ ∞

0
f p(x)dx < ∞,

we have the following inequality:

{∫ ∞

0

[∫ y

0

(min{x, y})α| ln(x/y)|β
(max{x, y})1+α

f (x)dx
]p

dy

} 1
p

> M1

(∫ ∞

0
f p(x)dx

) 1
p
. (28)

(ii) There exists a constant M1 > 0, such that for any g(y) ≥ 0 satisfying

0 <
∫ ∞

0
gq(y)dy < ∞,

we have the following inequality:

{∫ ∞

0

[∫ x

0

(min{x, y})α| ln(x/y)|β
(max{x, y})1+α

g(y)dy
]q

dx

} 1
q

> M1

(∫ ∞

0
gq(y)dy

) 1
p
. (29)

(iii) There exists a constant M1 > 0, such that for any f (x), g(y) ≥ 0 satisfying

0 <
∫ ∞

0
f p(x)dx < ∞ and 0 <

∫ ∞

0
gq(y)dy < ∞,



Symmetry 2023, 15, 463 13 of 18

we have the following inequality:

I =
∫ ∞

0
g(y)

[∫ y

0

(min{x, y})α| ln(x/y)|β
(max{x, y})λ+α

f (x)dx
]

dy

> M1

(∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q
. (30)

The constant M1 = k(1)1 ( 1
q ) in (28)–(30) is the best possible.

4. Reverse Hardy-Type Inequalities of the Second Kind

Similarly, we obtain the following weight function:

ω2(σ, y) : = yσ
∫ ∞

1
y

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

xσ−1dx

=
∫ ∞

1

(min{u, 1})α| ln u|β
(max{u, 1})λ+α

uσ−1du = k(2)λ (σ) (y > 0).

Given Lemma 2, we similarly derive the following theorem.

Theorem 3. If λ− σ > −α, then the following conditions are equivalent:

(i) There exists a constant M2 > 0, such that for any f (x) ≥ 0, satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞,

we have the following reverse Hardy-type inequality of the second kind with the non-
homogeneous kernel:

{∫ ∞

0
ypσ1−1

[∫ ∞

1
y

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]p

dy

} 1
p

> M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
. (31)

(ii) There exists a constant M2 > 0, such that for any g(y) ≥ 0 satisfying

0 <
∫ ∞

0
yq(1−σ1)−1gq(y)dy < ∞,

we have the following reverse Hardy-type integral inequality of the second kind with the
non-homogeneous kernel:

{∫ ∞

0
xqσ−1

[∫ ∞

1
x

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

g(y)dy
]q

dx

} 1
q

> M2

[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q
. (32)

(iii) There exists a constant M2 > 0, such that for any f (x), g(y) ≥ 0 satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞ and 0 <

∫ ∞

0
yq(1−σ1)−1gq(y)dy < ∞,
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we have the following inequality:

∫ ∞

0
g(y)

[∫ ∞

1
y

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]
dy

> M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q
. (33)

(iv) σ1 = σ.
If Condition (iv) holds, then the constant M2 = k(2)λ (σ) in (31)–(33) is the best possible.
In particular, for σ = σ1 = 1

p in Theorem 3, we have

Corollary 4. If λ > 1
p − α, then the following conditions are equivalent:

(i) There exists a constant M2 > 0, such that for any f (x) ≥ 0 satisfying

0 <
∫ ∞

0
xp−2 f p(x)dx < ∞,

we have the following inequality:

{∫ ∞

0

[∫ ∞

1
y

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]p

dy

} 1
p

> M2

(∫ ∞

0
xp−2 f p(x)dx

) 1
p
. (34)

(ii) There exists a constant M2 > 0, such that for any g(y) ≥ 0 satisfying

0 <
∫ ∞

0
gq(y)dy < ∞,

we have the following inequality:

{∫ ∞

0
xq−2

[∫ ∞

1
x

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

g(y)dy
]q

dx

} 1
q

> M2

[∫ ∞

0
gq(y)dy

] 1
q
. (35)

(iii) There exists a constant M2 > 0, such that for any f (x), g(y) ≥ 0 satisfying

0 <
∫ ∞

0
xp−2 f p(x)dx < ∞, and 0 <

∫ ∞

0
gq(y)dy < ∞,

we have the following inequality:

∫ ∞

0
g(y)

[∫ ∞

1
y

(min{xy, 1})α| ln xy|β
(max{xy, 1})λ+α

f (x)dx

]
dy

> M2

(∫ ∞

0
xp−2 f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q
. (36)

The constant M2 = k(2)λ ( 1
p ) in (34)–(36) is the best possible.

Setting y = 1
Y , G(Y) = g( 1

Y )
1

Y2 in Theorem 3, and then replacing Y by y, we deduce
the following corollary.
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Corollary 5. If λ− σ > −α, then the following conditions are equivalent:
(i) There exists a constant M2 > 0, such that for any f (x) ≥ 0 satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞,

we have the following inequality:

{∫ ∞

0
y−pσ1−1

[∫ ∞

y

(min{x/y, 1})α| ln(x/y)|β
(max{x/y, 1})λ+α

f (x)dx
]p

dy

} 1
p

> M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
. (37)

(ii) There exists a constant M2 > 0, such that for any G(y) ≥ 0 satisfying

0 <
∫ ∞

0
yq(1+σ1)−1Gq(y)dy < ∞,

we have the following reverse Hardy-type integral inequality:

{∫ ∞

0
xqσ−1

[∫ x

0

(min{x/y, 1})α| ln(x/y)|β
(max{x/y, 1})λ+α

G(y)dy
]q

dx

} 1
q

> M2

[∫ ∞

0
yq(1+σ1)−1Gq(y)dy

] 1
q
. (38)

(iii) There exists a constant M2 > 0, such that for any f (x), G(y) ≥ 0 satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞, and 0 <

∫ ∞

0
yq(1+σ1)−1Gq(y)dy < ∞,

we have the following inequality:

∫ ∞

0
G(y)

[∫ ∞

y

(min{x/y, 1})α| ln(x/y)|β
(max{x/y, 1})λ+α

f (x)dx
]

dy

> M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1+σ1)−1Gq(y)dy

] 1
q
. (39)

(iv) σ1 = σ.
If Condition (iv) is satisfied, then the constant M2 = k(2)λ (σ) in (37)–(39) is the best possible.

For g(y) = yλG(y) and µ = λ− σ1 in Corollary 5, we obtain the following theorem.

Theorem 4. If λ− σ > −α, then the following conditions are equivalent:
(i) There exists a constant M2 > 0, such that for any f (x) ≥ 0 satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞,
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we have the following reverse Hardy-type integral inequality of the second kind with the homoge-
neous kernel: {∫ ∞

0
ypµ−1

[∫ ∞

y

(min{x, y})α| ln(x/y)|β
(max{x, y})λ+α

f (x)dx
]p

dy

} 1
p

> M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
. (40)

(ii) There exists a constant M2 > 0, such that for any g(y) ≥ 0 satisfying

0 <
∫ ∞

0
yq(1−µ)−1gq(y)dy < ∞,

we have the following reverse Hardy-type inequality of the second kind with the homogeneous kernel:

{∫ ∞

0
xqσ−1

[∫ x

0

(min{x, y})α| ln(x/y)|β
(max{x, y})λ+α

g(y)dy
]q

dx

} 1
q

> M2

[∫ ∞

0
yq(1−µ)−1gq(y)dy

] 1
p
. (41)

(iii) There exists a constant M2 > 0, such that for any f (x), g(y) ≥ 0 satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞, and 0 <

∫ ∞

0
yq(1−µ)−1gq(y)dy < ∞,

we have the following inequality:

∫ ∞

0
g(y)

[∫ ∞

y

(min{x, y})α| ln(x/y)|β
(max{x, y})λ+α

f (x)dx
]

dy

> M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−µ)−1gq(y)dy

] 1
q
. (42)

(iv) µ + σ = λ.
If Condition (iv) is satisfied, then the constant M2 = k(1)λ (µ) in (40)–(42) is the best possible.

In particular, for λ = 1, σ = 1
q , µ = 1

p in Theorem 4, we derive the corollary below.

Corollary 6. If α > − 1
p , then the following conditions are equivalent:

(i) There exists a constant M2 > 0, such that for any f (x) ≥ 0 satisfying

0 <
∫ ∞

0
f p(x)dx < ∞,

we have the following inequality:

{∫ ∞

0

[∫ ∞

y

(min{x, y})α| ln(x/y)|β
(max{x, y})1+α

f (x)dx
]p

dy

} 1
p

> M2

(∫ ∞

0
f p(x)dx

) 1
p
. (43)

(ii) There exists a constant M2 > 0, such that for any g(y) ≥ 0 satisfying

0 <
∫ ∞

0
gq(y)dy < ∞,
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we have the following inequality:

{∫ ∞

0

[∫ x

0

(min{x, y})α| ln(x/y)|β
(max{x, y})1+α

g(y)dy
]q

dx

} 1
q

> M2

(∫ ∞

0
gq(y)dy

) 1
p
. (44)

(iii) There exists a constant M2 > 0, such that for any f (x), g(y) ≥ 0 satisfying

0 <
∫ ∞

0
f p(x)dx < ∞, and 0 <

∫ ∞

0
gq(y)dy < ∞,

we have the following inequality:

∫ ∞

0
g(y)

[∫ ∞

y

(min{x, y})α| ln(x/y)|β
(max{x, y})1+α

f (x)dx
]

dy

> M2

(∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q
. (45)

The constant M2 = k(1)1 ( 1
p ) in (43)–(45) is the best possible.

5. Conclusions

Hardy-type integral inequalities play a prominent role in the study of analytic inequal-
ities, which are essential in mathematical analysis and its various applications, such as in
the study of symmetry and asymmetry phenomena. In the present work, in Theorem 1
and Theorem 3, employing methods of real analysis as well as using weight functions, we
obtain a few equivalent conditions of (5) (resp. (6)) with a particular non-homogeneous
kernel. Some equivalent conditions of two kinds of reverse Hardy-type integral inequalities
with a particular homogeneous kernel are deduced in the form of applications in Theorem 2
and Theorem 4. We also consider some interesting corollaries. In further studies, some
Hardy-type integral inequalities involving the Riemann zeta function are obtained. The
lemmas and theorems proved within this work provide an extensive account of this type
of inequalities.
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