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Abstract: In this paper, the oscillatory properties of certain second-order differential equations
of neutral type are investigated. We obtain new oscillation criteria, which guarantee that every
solution of these equations oscillates. Further, we get conditions of an iterative nature. These results
complement and extend some beforehand results obtained in the literature. In order to illustrate the
results we present an example.
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1. Introduction

In this work, we suppose a second-order neutral delay differential equation (NDDE)
with several delays (

r($)
(
y′($)

)γ
)′

+
l

∑
i=1

gi($)κβ(ϑi($)) = 0, (1)

where $ ≥ $0 and y($) = κ($) + pκ(τ($)). Throughout this study, we suppose

G1 γ, β ∈ {u/v : u, b ∈ Z+are odd} and l is a positive integer;

G2 r ∈ C([$o, ∞), (0, ∞)), p ≥ 0 is a constant, gi($) is not congruently zero, eventually and

µ$0($) =
∫ $

$0

r−1/γ(ξ)dξ = ∞; (2)

G3 τ, ϑi ∈ c([$o, ∞),R), τ($) ≤ $, ϑi($) ≤ $, lim$→∞ τ($) = ∞ and lim$→∞ ϑi($) = ∞ for
all i = 1, 2, ..., l.

By a solution of (2), we mean a nontrivial real-valued function κ ∈ C1([$κ , ∞)) for all
$κ ≥ $0, which has the property r(y′)γ ∈ C1([$κ , ∞)) and satisfies (1) on [$κ , ∞). We will
consider only those solutions κ of (1) that satisfy the condition

sup{|κ($)| : $ ≥ $κ} > 0, for all $ > $κ .

A solution is said to be oscillatory if it is distinguished that it is neither positive
nor negative eventually. A differential equation whose solutions all oscillate is called an
oscillatory equation.

NDDEs appear in a variety of situations, including issues with electric networks
using lossless transmission lines (as in high-speed computers where such lines are used to
interconnect switching circuits). Additional applications in population dynamics, automatic
control, mixing liquids, and vibrating masses attached to an elastic bar are available, see
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Hale [1,2]. Dynamical systems with several delays have been intensively studied in control
theory; see [3,4]. To encourage special interest in the oscillatory behavior of solutions to
second-order NDDEs through their applications in the natural sciences and engineering,
There is a continuing need to discover new necessary conditions for the oscillation or
nonoscillation of solutions varietal type equations; see, e.g., papers [5–11].

Baculikova and Dzurina [12] studied the NDDE(
r($)

(
(κ($) + p($)κ(τ($)))′

)γ)′
+ g($)κβ(ϑ($)) = 0, (3)

They presented new oscillation criteria for the case under the condition

0 ≤ p($) ≤ p0 < ∞ and τ ◦ ϑ = ϑ ◦ τ.

Dong [13], Liu and Bai [14] and Xu and Meng [15] studied the oscillation of (3), where
0 ≤ p($) < 1.

Bohner et al. [16] and Agarwal et al. [6] studied the oscillation of the equation(
r($)

(
(κ($) + p($)κ(τ($)))′

)γ)′
+ g($)κγ(ϑ($)) = 0, $ ≥ $0 > 0,

where ∫ ∞

$o
r−1/γ(ξ)dξ < ∞.

Recently, Moaaz [17] created conditions for the oscillation of NDDEs(
r($)

(
(κ($) + p($)κ(τ($)))′

)γ)′
+ f ($,κ(ϑ($))) = 0,

under condition (2).
In this paper we will use some important lemmas and notation

B($) =

{
cβ−γ

1 i f γ ≤ β

c2µ
β−γ
$0 ($) i f γ > β,

where c1 and c2 are positive constants. We will denote by the symbol κ+ the class of all
eventually positive solutions of (1).

Lemma 1. [18] Let κ ∈ κ+.Then,

y > 0, y′ > 0 and
(

r
(
y′
)γ
)′
≤ 0, (4)

for $ ≥ $1, where $1 is sufficiently large.

Lemma 2. [19] If κ ∈ κ+, then yβ−γ($) ≥ B($), eventually.

There is no doubt that the concept of symmetry is of great importance as it appears in
many natural phenomena and has many applications. The approach adopted in our paper
is based on exploiting the symmetry between positive and negative solutions in studying
only positive solutions.

The aim of this work is to find new NDDE oscillation criteria (1). We establish more
effective criteria by considering the equation in two cases: p < 1 and p > 1. To create
more efficient criteria, we take into account the influence of the delay argument τ($), and
we abandon some of the constraints that are usually imposed on the coefficients of the
equation in the case p > 1. When γ = β and p < 1, we also utilize an iterative method to
obtain the oscillation criterion of (1).
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2. Main Results

For convenience, we write the functions without the independent variable, such as
f ($) = f and f (q($)) = f (q). In addition, we suppose that τ0 = $, τm = τ ◦ τm−1,
τ−m−1 = τ−1 ◦ τ−m for m = 1, 2, .... We use some notations in this paper:

g($) = min{gi($) : i = 1, 2, ..., l},

ϑ($) = max{ϑi($) : i = 1, 2, ..., l}.

g = g(1− p(ϑ))β,

χ̃$0($) = µ$0($) +
1
γ

∫ $

$0

µ$0(ξ)g(ξ)
l

∑
i=1

B(ϑi(ξ))µ
γ
$o (ϑi(ξ))dξ,

χ̂$0($) = exp

(
−γ

∫ $

ϑ($)

1
r1/γ(ξ)χ̃$0(ξ)

dξ

)
,

and

ϕk($) =
∫ ∞

$
χ̂$0(ς)g(ς)

l

∑
i=1

B(ϑi(ς))dς, k = 0, 1.

First, we will establish new criteria for the oscillation of solution (1) using the Riccati
technique.

Lemma 3. Let κ ∈ κ+, p > 1 and there is an even integer n > 0 such that

p̃ =
n/2

∑
m=1

1
p2m−1

(
1− 1

p
µ$2

(
τ−2m)

µ$2

(
τ−(2m−1)

)) > 0. (5)

Then
κ($) ≥ p̃($)y($). (6)

Proof. We assume that κ ∈ κ+.Thus, κ($), κ(τ($)) and κ(ϑi($)) are positive for all
$ ≥ $1, where $1 is large enough and 1 ≤ i ≤ l. From Lemma 1, we have that (4) holds.

Since
(

r1/γy′
)′
≤ 0, we obtain that

y($) = y($1) +
∫ $

$1

1
r1/γ(ξ)

r1/γ(ξ)y′(ξ)dξ,

so

y($) >
∫ $

$1

1
r1/γ(ξ)

r1/γ(ξ)y′(ξ)dξ

> r1/γ($)y′($)
∫ $

$1

1
r1/γ(ξ)

dξ

> r1/γ($)y′($)µ$1($), (7)

for all $ ≥ $1. Using the definition of y($), we find

κ =
1
p

(
y
(

τ−1
)
−κ

(
τ−1

))
=

1
p

(
y
(

τ−1
)
− 1

p
y
(

τ−2
))

+
1
p2κ

(
τ−2

)
.
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By repeating the above step, we can see

κ =
n

∑
m=1

(−1)m+1

pm y
(
τ−m)+ 1

pn κ
(
τ−n)

>
n/2

∑
m=1

1
p2m−1

(
y
(

τ−(2m−1)
)
− 1

p
y
(

τ−2m
))

, (8)

for $ ≥ $2 ≥ $1, where $2 is large enough, and n ∈ Z+ is even . Taking (7) and τ−2m ≥
τ−(2m−1) into account, we get

y
(

τ−2m
)
< y

(
τ−(2m−1)

) µt1

(
τ−2m)

µt1

(
τ−(2m−1)

) , (9)

for m = 1 , 2 , ..., n/2. From (8) and (9), we obtain

κ >
n/2

∑
m=1

1
p2m−1

(
1− 1

p0

µt1

(
τ−2m)

µt1

(
τ−(2m−1)

))y
(

τ−(2m−1)
)

> p̃y.

The proof of the lemma is complete.

Lemma 4. Let κ ∈ κ+and p < 1. Then

κ($) ≥ p̂($)y($), (10)

for any n ∈ Z+ is odd , where

p̂ = (1− p)
(n−1)/2

∑
m=0

p2m µ$1

(
τ2m+1)
µ$1

, (11)

and
µ$1($) =

∫ $

$1

r−1/γ(ξ)dξ.

Proof. Let’s move forward as in the proof of Lemma 3, we get (7). Using the definition of
y($), we obtain

κ = y− pκ(τ) = y− py(τ) + p2κ
(

τ2
)

.

By repeating the above step, we can see

κ =
n

∑
m=0

(−1)m pmy(τm) + pn+1κ
(

τn+1
)

≥
(n−1)/2

∑
m=0

(
p2my

(
τ2m

)
− p2m+1y

(
τ2m+1

))
, (12)

for $ ≥ $2 ≥ $1, where $2 is enough, and odd n ∈ Z+. Since τ2m+1($) ≤ τ2m($), we have
that

y(τn) ≤ ... ≤ y
(

τ2m+1
)
≤ y

(
τ2m

)
≤ ... ≤ y,

for m = 0, 2, ..., (n− 1)/2. From (12), we arrive at

κ ≥
(n−1)/2

∑
m=0

p2m(1− p)y
(

τ2m+1
)

. (13)
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From (7), we obtain

y
(

τ2m+1
)
> y

µ$1(τ2m+1)

µ$1

.

Thus, from (13), we find

κ ≥ (1− p)y
(n−1)/2

∑
m=0

p2m
µ$1(τ2m+1)

µ$1

.

This completes the proof.

Theorem 1. If

lim inf
$→∞

γ

ϕ1

∫ ∞

$
r−1/γ(ς)ϕ

(γ+1)/γ
1 (ς)dς >

γ

(γ + 1)(γ+1)/γ
, (14)

then (1) is oscillatory.

Proof. Supposing that the result we want to achieve is incorrect. We suppose the opposite
that κ is a non-oscillatory solution of (1). Without losing generalization, we assume that
κ ∈ κ+.Thus, κ($), κ(τ($)) and κ(ϑi($)) are positive for all $ ≥ $1, where $1 is sufficiently
large and 1 ≤ i ≤ l. We obtain

κ ≥ y(1− p(ϑ)),

which with (1) gives (
r
(
y′
)γ
)′
≤ −g

l

∑
i=1

yβ(ϑi). (15)

Using the chain rule and simple computation, we find

γ
(

r1/γy′
)γ−1 d

d$

(
y− µ$1 r1/γy′

)
= −γ

(
r1/γy′

)γ−1
µ$1

(
r1/γy′

)′
= −µ$1

(
r
(
y′
)γ
)′

, (16)

from (15) and (16), we obtain

d
d$

(
y− µ$1 r1/γy′

)
≥ 1

γ

(
r1/γy′

)1−γ
µ$1 g

l

∑
i=1

yβ(ϑi)

≥ 1
γ

(
r1/γy′

)1−γ
µ$1 g

l

∑
i=1

B(ϑi)yγ(ϑi). (17)

Integrating (17) from $1to $, we obtain

y ≥ µ$1 r1/γy′ +
1
γ

∫ $

$1

(
r1/γ(ξ)y′(ξ)

)1−γ
µ$1(ξ)g(ξ)

l

∑
i=1

B(ϑi(ξ))yγ(ϑi(ξ))dξ. (18)

Since
(
r($)(y′($))γ)′ ≤ 0, we have

y(ϑi) ≥ µ$1(ϑi)r1/γ(ϑi)y′(ϑi) ≥ µ$1(ϑi)r1/γy′.

Thus, (18) becomes

y ≥
(

µ$1 +
1
γ

∫ $

$1

µ$1(ξ)g(ξ)
l

∑
i=1

B(ϑi(ξ))µ
γ
$1(ϑi)dξ

)
r1/γy′,

that is
y ≥ χ̃$1 r1/γy′. (19)
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Integrating y′/y ≤ 1/µ̂$1 r1/γ from ϑ($) to $, we find

ln
y($)

y(ϑ($))
≤
∫ $

ϑ($)

1
r1/γ(ξ)χ̃$1(ξ)

dξ,

that is

y(ϑ($)) ≥ exp

(
−
∫ $

ϑ($)

1
r1/γ(ξ)χ̃$1(ξ)

dξ

)
y($). (20)

Define the function

υ =
r(y′)γ

yγ
. (21)

Then υ($) > 0 for $ ≥ $1. From (1) and (21), we obtain

υ′ ≤ −g
yγ(ϑ)

yγ

l

∑
i=1

yβ−γ(ϑi)−
γ

r1/γ($)
υ(γ+1)/γ < 0. (22)

By using (20), we obtain

υ′($) ≤ −gχ̂
l

∑
i=1

B(ϑi)−
γ

r1/γ($)
υ(γ+1)/γ < 0. (23)

By integrating (23) from $ to ∞, we conclude that

∫ ∞

$
g(ς)χ̂(ς)

l

∑
i=1

B(ϑi(ς))dς + γ
∫ ∞

$
r−1/γ(ς)υ(γ+1)/γ(ς)dς ≤ υ($)− υ(∞).

Since υ is a positive decreasing function, we see that

ϕ1 + γ
∫ ∞

$
r−1/γ(ς)υ(γ+1)/γ(ς)dς ≤ υ.

Hence,

1 +
γ

ϕ1

∫ ∞

$
r−1/γ(ς)ϕ

(γ+1)/γ
1 (ς)

(
υ(ς)

ϕ1(ς)

)(γ+1)/γ

dς ≤ υ

ϕ1
. (24)

Set
κ = inf

$≥$1

υ

ϕ1
.

From (24), κ ≥ 1. Taking (14) and (24) into account, we find

1 + γ

(
κ

γ + 1

)1+1/γ

≤ κ

or (
κ

γ + 1

)γ+1
≤
(

κ − 1
γ

)γ

,

which is not possible with the permissible value γ > 0 and κ ≥ 1. This contradiction
completes the proof.

Theorem 2. Suppose that p < 1. If there is a function θ ∈ C1([$o, ∞), (0, ∞)) with

lim sup
$→∞

∫ $

$1

(
θ(ξ)δ(ξ)g(ξ)

l

∑
i=1

p̂β(ϑi(ξ)) B(ϑi(ξ)) −
r(ξ)(θ′+(ξ))

γ+1

θγ(ξ)(γ + 1)(γ+1)

)
dξ = ∞, (25)
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then (1) is oscillatory, where

µ̂$0($) = µ$0($) +
1
γ

∫ $

$0

µ$0(ξ)g(ξ)
l

∑
i=1

p̂
β
(ϑi(ξ)) B(ϑi(ξ))µ

γ
$o (ϑi(ξ))dξ

and

δ($) = exp

(
−γ

∫ $

ϑ($)

1
r1/γ(ξ)µ̂$1(ξ)

dξ

)
,

where

µ̂$1($) = µ$1($) +
1
γ

∫ $

$1

µ$1(ξ)g(ξ)
l

∑
i=1

p̂
β
(ϑi(ξ)) B(ϑi(ξ))µ

γ
$1(ϑi(ξ))dξ.

Proof. Supposing that the result we want to achieve is incorrect. We suppose the opposite
that κ is a non-oscillatory solution of (1). Without losing generalization, we assume that
κ ∈ κ+. Thus, κ($), κ(τ($)) and κ(ϑi($)) are positive for all $ ≥ $1, where $1 large
enough and 1 ≤ i ≤ l. From Lemma 4, we obtain that (10) holds. Combining (1) and (10),
we arrive at (

r
(
y′
)γ
)′
≤ −g

l

∑
i=1

p̂
β
(ϑi) yβ(ϑi). (26)

Using (16) and (26) gives

d
d$

(
y− µ$1 r1/γy′

)
≥ 1

γ

(
r1/γy′

)1−γ
µ$1 g

l

∑
i=1

p̂
β
(ϑi) yβ(ϑi)

≥ 1
γ

(
r1/γy′

)1−γ
µ$1 g

l

∑
i=1

p̂
β
(ϑi) B(ϑi)yγ(ϑi). (27)

Integrating (27) from $1to $, we obtain

y ≥ µ$1 r1/γy′ +
1
γ

∫ $

$1

(
r1/γ(ξ)y′(ξ)

)1−γ
µ$1(ξ)g(ξ)

l

∑
i=1

p̂
β
(ϑi(ξ)) B(ϑi(ξ))yγ(ϑi(ξ))dξ.

(28)
Since

(
r($)(y′($))γ)′ ≤ 0, we have

y(ϑi) ≥ µ$1(ϑi)r1/γ(ϑi)y′(ϑi) ≥ µ$1(ϑi)r1/γy′.

Thus, (28) becomes

y ≥
(

µ$1 +
1
γ

∫ $

$1

µ$1(ξ)g(ξ)
l

∑
i=1

p̂
β
(ϑi(ξ)) B(ϑi(ξ))µ

γ
$1(ϑi)dξ

)
r1/γy′,

that is
y ≥ µ̂$1 r1/γy′. (29)

Integrating y′/y ≤ 1/µ̂$1 r1/γ from ϑ($) to $, we find

ln
y($)

y(ϑ($))
≤
∫ $

ϑ($)

1
r1/γ(ξ)µ̂$1(ξ)

dξ,

that is

y(ϑ($)) ≥ exp

(
−
∫ $

ϑ($)

1
r1/γ(ξ)µ̂$1(ξ)

dξ

)
y($). (30)
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Now, we define

Θ = θ
r(y′)γ

yγ
.

Therefore, Θ($) > 0 for all $ ≥ $1 and

Θ′ =
θ′

θ
Θ + θ

(
r(y′)γ)′

yγ
− γθ

r(y′)γ+1

yγ+1 .

From (26) and (30), we find

Θ′ ≤ θ′

θ
Θ− θ

g ∑l
i=1 p̂

β
(ϑi) B(ϑi)yγ(ϑi)

yγ
− γθ

r(y′)γ+1

yγ+1 ,

so

Θ′ ≤ θ′

θ
Θ− θg

l

∑
i=1

p̂
β
(ϑi) B(ϑi) δi − γθ

r(y′)γ+1

yγ+1 .

Using the definition of Θ, we conclude that

Θ′ ≤ θ′

θ
Θ− θg

l

∑
i=1

p̂
β
(ϑi) B(ϑi) δi −

γ

r1/γθ1/γ
Θ1+1/γ.

Using the inequality

Aφ− Bφ(γ+1)/γ ≤ γγ

(γ + 1)(γ+1)
Aγ+1

Bγ
, B > 0,

with A = θ′/θ, B = γ/
(

r1/γθ1/γ
)

and φ = Θ, we get

Θ′ ≤ −θδg
l

∑
i=1

p̂
β
(ϑi) B(ϑi) +

1

(γ + 1)(γ+1)

r(θ′+)
γ+1

θγ
.

Integrating the above inequality from $1to $, we obtain

∫ $

$1

(
θ(ξ)g(ξ)δ(ξ)

l

∑
i=1

p̂
β
(ϑi(ξ)) B(ϑi(ξ))−

1

(γ + 1)(γ+1)

r(ξ)(θ′+(ξ))
γ+1

θγ(ξ)

)
dξ ≤ Θ($1),

which contradicts (25). The proof is complete.

Theorem 3. Assume that (5) holds. If there exists a function v ∈ C1([$o, ∞), (0, ∞)) such that

lim sup
$→∞

∫ $

$1

(
v(ξ)g(ξ)δ̃(ξ)

l

∑
i=1

p̃
β
(ϑi(ξ)) B(ϑi(ξ))−

r(ξ)(v′+(ξ))
γ+1

vγ(ξ)(γ + 1)(γ+1)

)
dξ = ∞,

then (1) is oscillatory, where

µ̃$0($) = µ$0($) +
1
γ

∫ $

$0

µ$0(ξ)g(ξ)
l

∑
i=1

p̃
β
(ϑi(ξ)) B(ϑi(ξ))µ

γ
$o (ϑi(ξ))dξ,

and

δ̃($) = exp

(
−γ

∫ $

ϑ($)

1
r1/γ(ξ)µ̃$1(ξ)

dξ

)
.

Proof. It is enough to use (6) instead of (10) in the proof of Theorem 2 to prove this theorem.
To prove this theorem, we use
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Now, we will establish new criteria for oscillation of solution (1) by using an iterative
technique.

Lemma 5. Suppose that κ ∈ κ+, γ = β and p < 1. Then

y($) = φk($)r1/γ($)y′($), (31)

for k = 0, 1, ..., where φ0($) = µ̂$1($) and

φk+1($) =
∫ $

$1

(
1

r(ς)
exp

(∫ $

ς
g(ξ)

l

∑
i=1

p̂
γ
(ϑi(ξ))φ

γ
k (ϑi(ξ))dξ

))1/γ

dς. (32)

Proof. Suppose that κ ∈ κ+. Thus, κ($), κ(τ($)) and κ(ϑi($)) are positive for all $ ≥ $1,
where $1 large enough. Using Lemma 1, we have that (4) holds. Next, by induction, we
will prove (31).

For k = 1, as in the proof of Theorem 2, we get that (26) and (29) hold. By (29), we find

y ≥ µ̂$1($)r
1/γy′ = φ0($)r1/γy′.

Next, we suppose that (31) holds at k = n; that is, y ≥ φnr1/γy′. Thus, since((
r1/γy′

)γ)′
≤ 0, we find

y(ϑi) ≥ φn(ϑi)r1/γ(ϑi)y′(ϑi) ≥ φn(ϑi)r1/γy′.

Which, with (26), gives

(
r
(
y′
)γ
)′

+ g
l

∑
i=1

p̂
γ
(ϑi) yγ(ϑi) ≤ 0,

so (
r
(
y′
)γ
)′

+ g
l

∑
i=1

p̂
γ
(ϑi)φ

γ
n (ϑi)r

(
y′
)γ ≤ 0. (33)

Setting H = r(y′)γ, (33) becomes

H′($) + g
l

∑
i=1

p̂
γ
(ϑi)φ

γ
n (ϑi)H($) ≤ 0. (34)

Applying the Gronwall inequality in (34), we get

H(ς) ≥ H($) exp

(∫ $

ς
g(ξ)

l

∑
i=1

p̂
γ
(ϑi(ξ))φ

γ
n (ϑi(ξ))dξ

)
,

for $ ≥ ς ≥ $1, and so

y′(ς) ≥ r1/γ($)y′($)

(
1

r(ς)
exp

(∫ $

ς
g(ξ)

l

∑
i=1

p̂
γ
(ϑi(ξ))φ

γ
n (ϑi(ξ))dξ

))1/γ

.

Integrating this inequality from $1 to $, we obtain

y($) ≥ r1/γ($)y′($)
∫ $

$1

(
1

r(ς)
exp

(∫ $

ς
g(ξ)

l

∑
i=1

p̂
γ
(ϑi(ξ))φ

γ
n (ϑi(ξ))dξ

))1/γ

dς

= φn+1($)r1/γ($)y′($).
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The proof is complete.

Theorem 4. Assume that γ = β and p < 1. Then (1) is oscillatory if

lim inf
$→∞

∫ $

ϑ($)
g(ξ)

l

∑
i=1

p̂
γ
(ϑi(ξ))φ

γ
k (ϑi(ξ))dξ >

1
e

, (35)

for some integers k > 0, where p̂, φk are defined as in (11) and (32), respectively.

Proof. Supposing that the result we want to achieve is incorrect. We suppose the opposite
that κ is a non-oscillatory solution of (1). Without losing generalization, we assume that
κ ∈ κ+. Thus, κ($), κ(τ($)) and κ(ϑi($)) are positive for all $ ≥ $1, where $1 large
enough. Using Lemma 5, we arrive at (31) holds. As in the proof of Theorem 2, we get (26).
Using (33) and (31), we obtain

(
r
(
y′
)γ
)′

+ g
l

∑
i=1

p̂
γ
(ϑi)φ

γ
k (ϑi)r(ϑi)

(
y′(ϑi)

)γ ≤ 0.

If we set w = (r(y′))γ, we have that w is a positive solution of the delay differential
inequality

w′($) + g
l

∑
i=1

p̂
γ
(ϑi)φ

γ
k (ϑi)w(ϑi) ≤ 0.

Using Theorem 1 in [20] the associated delay differential equation

w′($) + g
l

∑
i=1

p̂
γ
(ϑi)φ

γ
k (ϑi)w(ϑi) = 0, (36)

also has a positive solution. But, the equation (36) with condition (35) is oscillatory; this is a
contradiction. The proof is complete.

Theorem 5. Suppose that γ = β and p < 1. Then (1) is oscillatory if there is a function
ρ ∈ C1([$o, ∞), (0, ∞)) with

lim sup
$→∞

∫ $

$1

(
ρ(ξ)g(ξ)δ̂k(ξ)

l

∑
i=1

p̂
β
(ϑi(ξ)) B(ϑi(ξ))−

r(ξ)(ρ′+(ξ))
γ+1

ργ(ξ)(γ + 1)(γ+1)

)
dξ = ∞, (37)

for some integers k ≥ 0, where

δ̂k($) = exp
(
−γ

∫ $

ϑ($)

1
r1/γ(ξ)φk(ξ)

dξ

)
,

p̂ and φk are defined as in (11) and (32), respectively.

Proof. Supposing that the result we want to achieve is incorrect. We suppose the opposite
that κ is a non-oscillatory solution of (1). Without losing generalization, we assume that
κ ∈ κ+. Thus, there exist $1 > $0 such that κ($), κ(τ($)) and κ(ϑi($)) are positive for all
$ ≥ $1 and 1 ≤ i ≤ n. Now, we define ψ = ρr(y′/y)γ. Thus, ψ($) > 0 and

ψ′ =
ρ′

ρ
ψ + ρ

(
r(y′)γ)′

yγ
− γρr

(
y′

yγ+1

)γ+1

.

From Lemma 5, we have that (31) holds. By replacing (29) with (31) in the proof
of Theorem 2, this part of the proof is similar to that of Theorem 2 and so the proof is
obtained.
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Example 1. Consider the NDDE((
(κ($) + pκ(η$))′

)γ)′
+

g0

$γ
κγ(λ2$) +

g0

$γ+1κ
γ(λ1$) = 0, (38)

where g0 > 0, $ > 1, λ2 < λ1 and η, λ1, λ2 ∈ (0, 1). It is easy to verify that

µ$0($) = $, τm($) = ηm$, µ̂$0($) =

(
1 +

2
γ

p̂γ
0 g0λ

γ
1

)
$ and δ($) = λ

γ̂
1 ,

g($) =
g0

$γ+1 (1− p)γ, χ̃$0($) = A$, χ̂$0($) = λA
1

and
ϕ1($) =

1
γ

λ
γ
A
1 (1− p)γg0

1
$γ

,

where

p̂ = (1− p)
(n−1)/2

∑
m=0

p2mη2m+1 = p̂0, γ̂ =
γ(

1 + 2
γ p̂γ

0 g0λ
γ
1

)
and A = 1 + 2

γ g0λ
γ
1 (1− p)γ.

From Theorem 2, we arrive at (38) is oscillatory if p < 1 and

g0 >
γ

γ+1

2λ
γ̂

1 p̂γ
0 (γ + 1)

γ+1 . (39)

By Theorem 3, we have that (38) is oscillatory if p > 1 and

g0 >
γ

γ+1

2λ
γ̃
1 p̃γ

0 (γ + 1)
γ+1 . (40)

Using Theorem 1, we see that (38) is oscillatory if

g0 >
γγ+1

λ
γ
A
1 (1− p)γ(γ + 1)γ+1

. (41)

Remark 1. By comparing the conditions (39) and (41) for different values p, λ1 and η, we obtain
the following table when γ = 1.

(39) (41)
(p, λ1, η) n = 5
(2/3, 0.1, 0.755) 2. 667 1 4. 434 8
(0.5, 0.5, 0.83) 0.442 22 0.815 79

Remark 2. In a special case the best-known criteria for oscillation of neutral delay differential
Equation (38) at q0

$γ κγ(λ2$) = 0 are

q0 >
γ

γ+1

(1− p)γλ

γ

(1+ 1
γ (1−p)γ g0λγ) (γ + 1)

γ+1
for p < 1 see [21] (Example 3) (42)

and
g0λγ ln

(µ

λ

)
>

µ + p
µe

for p > 1 see [18] (Corollary 2). (43)
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Consider the particular case of (38) in the form(((
κ($) + 2

3
κ(0.755$)

)′)γ)′
+

g0

$2κ
γ(0.1$) = 0.

The conditions (39) and (42) reduce to g0 > 5.2529 and g0 > 5.30610, respectively.
Consider another particular case of (38) in the form((

(κ($) + 4κ(0.5$))′
)γ)′

+
g0

$2κ
γ(0.4$) = 0.

The conditions (40) and (43) reduce to g0 > 2.0411 and g0 > 37.094, respectively.
So, our results improve the related results in [18,21].

Remark 3. An interesting problem for further research could be to study the problem of oscillation
for Equation (1) when

µ$0($) =
∫ $

$0

r−1/γ(ξ)dξ < ∞.

3. Conclusions

The oscillatory behavior of a class of NDDEs with multiple delays has been studied.
The study depends on establishing new criteria by finding an improved relationship
between the solution κ and the corresponding function y. We also created criteria of
an iterative nature that can be applied more than once in case the previous results fail.
By comparing our results with previous results in Remark 2, we have illustrated the
significance of the new results.
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