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Abstract: In flat spacetime, the Dirac equation is the “square root” of the Klein–Gordon equation
in the sense that, by applying the square of the Dirac operator to the Dirac spinor, one recovers the
equation duplicated for each component of the spinor. In the presence of gravity, applying the square
of the curved-spacetime Dirac operator to the Dirac spinor does not yield the curved-spacetime Klein–
Gordon equation, but instead yields the Schrödinger–Dirac covariant equation. First, we show that
the latter equation gives rise to a generalization to spinors of the covariant Gross–Pitaevskii equation.
Then, we show that, while the Schrödinger–Dirac equation is not conformally invariant, there exists a
generalization of the equation that is conformally invariant but which requires a different conformal
transformation of the spinor than that required by the Dirac equation. The new conformal factor
acquired by the spinor is found to be a matrix-valued factor obeying a differential equation that
involves the Fock–Ivanenko line element. The Schrödinger–Dirac equation coupled to the Maxwell
field is then revisited and generalized to particles with higher electric and magnetic moments while
respecting gauge symmetry. Finally, Lichnerowicz’s vanishing theorem in the conformal frame is
also discussed.

Keywords: Dirac equation; curved spacetime; Schrödinger–Dirac equation; Gross–Pitaevskii equa-
tion; Weyl rescaling; anomalous moments; Lichnerowicz’s theorem; Klein–Gordon

1. Introduction

It is well known that, historically [1], Dirac derived their equation by seeking a first-
order relativistic covariant equation of the Schrödinger form for the wavefunction ψ. In
such a process, one demands that the wave equation describes a relativistic free particle
of four-momentum pa and of mass m, such that the usual relativistic energy–momentum
relation ηab pa pb −m2 = 0 hold. Throughout the paper, we set that G = h̄ = c = 1, and
we work with the metric signature (+,−,−,−). Throughout the paper, we shall also use
Latin letters to denote tangent-space and flat-spacetime indices. We reserve Greek letters
for curved-spacetime indices. Here, ηab is the Minkowski metric of flat spacetime and ηab

is its inverse. To fulfill such a requirement, every single component of the four-component
wavefunction ψ, now called a spinor field, should obey the Klein–Gordon equation that
describes spin-0 fields. Indeed, it is well known (see, e.g., Ref. [2]) that applying the
operator iγa∂a + m from the left to the first-order Dirac equation (iγa∂a −m)ψ = 0, where
γa are the Dirac gamma matrices, yields the flat-spacetime second-order Klein–Gordon
equation (ηab∂a∂a + m2)ψ = 0. The reason why the Klein–Gordon operator ηab∂a∂b + m2

acts on every single component of the four-spinor ψ is due to the fact that such an operator
is a diagonal operator.

Moving on to curved spacetimes, i.e., in the presence of gravity, this simple link
between the Klein–Gordon equation and the Dirac equation breaks down. While both
equations keep their respective forms thanks to the principle of covariance, one does
not recover the curved-spacetime Klein–Gordon equation by starting from the curved-
spacetime Dirac equation. What one obtains, instead, is a covariant equation, first derived
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by Schrödinger [3,4], that we shall call here the “Schrödinger–Dirac” equation for reasons
to be explained in Section 2. The latter equation contains several extra terms besides
those contained in the curved-spacetime Klein–Gordon equation, and it consists of four
coupled differential equations. This is in contrast to what one might expect since one would
naturally demand again that the covariant energy–momentum relation gµν pµ pν −m2 = 0
for the particle be satisfied in a spacetime of metric gµν. The latter relation, when written in
a covariant operator form thanks to the replacement pµ → i∇µ, does indeed give rise to
the curved-spacetime Klein–Gordon equation for a scalar field φ without any extra term,
i.e., (gµν∇µ∇ν + m2) φ = 0.

The mathematical reason why such a simple link between the Dirac equation and the
Klein–Gordon equation does not hold in curved spacetimes is that the non-commuting
gamma matrices become spacetime-dependent. As a result, the second derivative operator
also acts on those matrices from the left, giving rise to extra non-diagonal terms in the
final equation. The physical reason why such a simple link does not hold in the presence
of gravity is because the latter couples the different components of the four-spinor. This
prevents those components from obeying independent second-order differential equations
as they do in flat spacetime. It turns out, as we shall see in this paper, that the non-minimal
coupling with gravity makes the equation take the same nonlinear form as the more familiar
Gross–Pitaevskii equation in curved spacetime [5–8]. To the best of our knowledge, this
has not been pointed out in the literature before.

On the other hand, it is also a known fact that when conformally deforming spacetime,
the Dirac equation remains conformally invariant whereas one easily shows that the
Schrödinger–Dirac equation does not. When recalling that the Klein–Gordon equation in
curved spacetime is not conformally invariant but its non-minimally coupled version is [9],
it becomes of great interest to seek a generalization of the already non-minimally coupled
Schrödinger–Dirac equation that would also be conformally invariant. We show in this
paper that such a generalization does indeed exist and that it requires the spinor field to
conformally transform by bringing in a conformal factor that is different from that required
by the Dirac equation. Indeed, we show that the conformal factor the spinor comes with is
a matrix-valued function that obeys in the conformal frame a simple differential equation
involving the Fock–Ivanenko line element in a fundamental way.

In addition to deriving their equation for neutral spinors, Schrödinger also showed in
the same paper that, in the presence of the Maxwell field, one also extracts a second-order
differential equation from the curved-spacetime Dirac equation minimally coupled to the
Maxwell field [3]. The resulting equation displays the correct gyromagnetic ratio of the
particle [10] just as the more familiar non-relativistic flat-spacetime Pauli–Schrödinger
equation does. We show in this paper that, when starting from the curved-spacetime
Dirac equation that contains, besides the usual minimal-coupling term, an anomalous
magnetic moment term, the resulting second-order differential equation generalizes the
Schrödinger–Dirac equation to particles with an anomalous magnetic moment. The physical
meaning of the resulting extra terms in the equation is discussed. Afterwards, we further
generalize the Schrödinger–Dirac equation to describe particles with higher electric and
magnetic moments. We show that the resulting equation displays correction terms for
the magnetic moment of the particle that are proportional to spacetime curvature terms
and their derivatives. Those terms are very similar to the more familiar terms that arise in
quantum field theories from the calculation of the expectation value of the stress–energy
momentum tensor in curved spacetime. We shall discuss the origin of this coincidence in
great detail.

Finally, since the well-known Lichnerowicz vanishing theorem [11] is based on the
Lichnerowicz–Schrödinger operator, which is the operator acting on the spinor ψ in the
massless Schrödinger–Dirac equation, we examine the fate of the theorem in the con-
formal frame. We show that one reaches different conclusions about the link between
harmonic spinors and the curvature of the spin manifold depending on whether one re-
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lies on Lichnerowicz’s identity in the conformal frame or one relies on the conformally
transformed identity.

The remainder of this paper is structured as follows. In Section 2, we briefly review
the way in which the Schrödinger–Dirac equation is obtained, and then we extract from
it a nonlinear equation for spinors which is the analog of the nonlinear covariant Gross–
Pitaevskii equation for scalars in curved spacetimes. In Section 3, we first derive in detail the
conformal noninvariance of the Schrödinger–Dirac equation and point out some subtleties
behind the derivation. We then build a conformally invariant version of the equation and
examine the nature and behavior of the new conformal factor. In Section 4, we revisit
the Schrödinger–Dirac equation coupled to the Maxwell field and derive a generalized
equation for particles with an anomalous magnetic moment as well as for particles with
higher electric and magnetic moments. In Section 5, we revisit Lichnerowicz’s vanishing
theorem for conformally transformed spin manifolds. We conclude this paper with a brief
summary and conclusion section.

2. The Schrödinger–Dirac Equation and the Curved-Spacetime
Gross–Pitaevskii Equation

We first briefly recall in this section the derivation of the covariant Schrödinger–Dirac
equation, and then show the interesting emergence from it of a curved-spacetime Gross–
Pitaevskii-like equation.

The generalization of the Dirac equation to a curved spacetime of metric gµν is accom-
plished thanks to the use of the spacetime vierbeins ea

µ [12–16], defined by ηabea
µeb

ν = gµν [17].
The inverse eµ

a of the vierbeins are analogously defined by gµνeµ
a eν

b = ηab. The vierbeins
allow one to build the curved-spacetime gamma matrices γµ via the contraction γµ = eµ

a γa,
as a consequence of which the usual flat-spacetime anti-commutation relations of the
gamma matrices, {γa, γb} = 2ηab, become {γµ, γν} = 2gµν in curved spacetimes [18].
Furthermore, the partial derivatives ∂a should be replaced by the spin-covariant derivatives
Dµ defined by Dµ = ∂µ + Λµ, where the Fock–Ivanenko coefficients Λµ involve both the
spin connection ω ab

µ and the gamma matrices according to Λµ = 1
8 ω ab

µ [γa, γb] ≡ ω ab
µ Σab.

We introduced here, for convenience, the useful symbol Σab, also called spin tensor, to
stand for the often-reoccurring commutator 1

8 [γa, γb] (In the literature, the spin tensor is
sometimes defined slightly differently as σab = i

2 [γa, γb].) [19,20].
The spin connection ω ab

µ is related to the vierbeins and the Christoffel symbols Γλ
µν

by the usual defining relation ω ab
µ = ea

ν∂µeνb + Γλ
µνea

λeνb. To distinguish the covariant
derivative operator Dµ acting on spinors from the usual covariant derivative operator
acting on tensors, we denote the latter operator by the symbol ∇µ. We reserve the symbol
Dµ for the total covariant derivative operator acting on objects that carry both curved-space
and tangent-space/spinor indices. With these ingredients, the curved-spacetime Dirac
equation takes the form (iγµDµ −m)ψ = 0. Applying the operator iγµDµ + m from the
left to the latter equation yields the covariant Schrödinger–Dirac Equation [3,4]:(

gµνDµDν + m2 + 1
4 R
)

ψ = 0. (1)

The Ricci scalar R in this equation arises thanks to the emergence of the square of the
covariant derivative operator /D ≡ γµDµ. This equation was first derived by Schrödinger,
hence the name we chose for this equation. The detailed derivation of this equation, as well
as the subtleties concerning such a derivation, are given in Appendix A. To the best of our
knowledge, such subtleties have not been pointed out before. By comparing Equation (1)
to the curved-spacetime Klein–Gordon equation, (gµν∇µ∇ν + m2) φ = 0, it is clear that
not a single component of the four-spinor ψ obeys the latter equation as they all do in
flat spacetime. The reason is that the operator gµνDµDν in Equation (1) is a non-diagonal
matrix operator.

In Ref. [4], it was suggested that one “ought” to call Equation (1) the Schrödinger–
Lichnerowicz formula since Lichnerowicz, independently in Ref. [11], re-derived the for-
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mula /D2 = gµνDµDν +
1
4 R that led to the equation. Herein, we shall indeed call the latter

formula the Lichnerowicz–Schrödinger identity, even though it is sometimes referred to as
the Bochner–Weitzenbök identity in reference to other related versions of the identity in
the mathematics literature [21,22]. However, it is clear that Equation (1) is neither merely
a formula, nor does it reduce to an identity between operators. It is a dynamical equa-
tion governing the spacetime evolution of a spin- 1

2 field. We actually chose for it such a
name in analogy to the name chosen for the non-relativistic Pauli–Schrödinger Equation.
Note that, in Ref. [23] (and in Ref. [24]), Equation (1) was called the “generalized covariant
Pauli–Schrödinger equation”. We do not find such a name adequate, for Equation (1) is not
merely a covariant generalization of the Pauli–Schrödinger equation as the latter is neither
a special-relativistic equation nor an equation describing four-spinors. Another possible
name for the equation would be “modified Klein–Gordon equation”, as given in Ref. [25].
We do not find such a name adequate either, for Equation (1) is not merely a modification
of an equation that describes a scalar field. Equation (1) describes a completely different
physical entity and requires different mathematical objects and tools. Nevertheless, the
Lichnerowicz–Schrödinger equation was postulated by Pauli [26] who extended the non-
relativistic Schrödinger equation to non-relativistic spin- 1

2 particles. Similarly, Equation (1)
was derived by Schrödinger who extracted it from the curved-spacetime Dirac equation
as a second-order differential equation that turned out to involve the Ricci scalar and yet
maintained a matrix form as it is the case with the original Dirac equation.

It is worth noting here that, unlike the Dirac equation in curved spacetime, the
Schrödinger–Dirac Equation (1) does not mix the chiral components of the spinor field ψ.
Indeed, by applying the chiral projectors PL,R = 1

2
(
1∓ γ5) to Equation (1) from the left, the

chiral components ψL,R become decoupled and separately obey the same equation:(
gµνDµDν + m2 + 1

4 R
)

ψL,R = 0. (2)

Use has been made here of the fact that the matrix γ5 commutes with the spinor tensor
Σab hiding inside the derivative operators Dµ and Dν.

After this brief introduction to the equation and the tools it requires, we shall now
discuss some interesting physics emerging from the equation. In fact, although Equation (1)
seems to only be of academic interest since the R term is orders of magnitude smaller than
the mass term in that Equation (as Schrödinger himself pointed it out [3]), the equation is
actually very rich in physical content. It indeed turns out that the coupling of the spinor
field ψ to the Ricci scalar in Equation (1) offers a novel possibility that is not found even in
the curved spacetime Klein–Gordon equation.

Physically, Equation (1) means that the Dirac spinor is actually indirectly coupled to
other forms of matter if there are any in that region of spacetime, for the Ricci scalar is then
determined by matter distribution via Einstein’s field equations. However, the presence of
the spin- 1

2 field itself is already a source for gravitation even in the absence of any other
forms of matter. Indeed, contracting both sides of the Einstein field equations Rµν − 1

2 gµν =
−8πTµν with the inverse metric tensor gµν, leads to R = 8πT, where Tµν is the energy–
momentum tensor of matter and T = gµνTµν is its trace. On the other hand, the energy–
momentum tensor of the Dirac field in curved spacetime is i

2 [ψ̄γ(µDν)ψ− (D(µψ̄)γν)ψ] [19],
where parentheses around two indices stand for the symmetrization in those indices and
ψ̄ = ψ†γ0ψ. The trace T of this energy–momentum tensor is then easily evaluated to be
T = m ψ̄ψ, where we have used both the Dirac equation and its Dirac adjoint. This implies
then that the Ricci scalar R is given by R = 8πm ψ̄ψ. Substituting this into Equation (1), the
latter takes the following nonlinear form:(

gµνDµDν + m2 + 2πm ψ̄ψ
)

ψ = 0. (3)

Remarkably, this equation is very reminiscent of the nonlinear Gross–Pitaevskii equa-
tion used to describe superfluids [5,6]. Equation (3) can be seen as a generalization to spinor
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fields of the covariant Gross–Pitaevskii equation that describes scalar fields in curved space-
time [7,8]. In other words, classical gravity is able to induce a superfluid-like dynamics in
spin- 1

2 quantum fields thanks to the back-reaction of the latter on the background spacetime.
It is interesting to note here that, in Ref. [27], Heisenberg introduced the nonlinear

term (ψ̄ψ)ψ as a postulated new term on the right-hand side of the Dirac equation, and he has
even quantized the resulting nonlinear wave Equation [28,29]. It should be emphasized,
however, that whereas Heisenberg postulated such a nonlinear term for the Dirac equation,
that term arose here on the left-hand side of the Schrödinger–Dirac equation from first
principles. Furthermore, whereas Heisenberg postulated the term in the hope of unifying
the wave equations of matter and explaining the origin of the electron charge [27], the term
emerges here simply as a consequence of the universal coupling of matter to gravity.

Restoring the physical constants to Equation (3) and comparing its nonlinear term
with the term 2m

h̄2 g |ϕ|2 ϕ of the covariant Gross–Pitaevskii Equation [7], where g is related to

the scattering length as of the bosons by g = 4πh̄2as/m, we conclude that the analog of the
scattering length as in the fermion case is mG/4c2; which, of course, is an extremely small
quantity. It is important to emphasize here that this observation has never been pointed
out in the literature before, for what Schrödinger found attractive about the R term in their
equation was rather the possibility of interpreting it as a kind of a mass-generating term [3].
A similar argument to Schrödinger’s was also found in Ref. [10].

It is also worth noting here that, unlike the Schrödinger–Dirac Equation (1), the
nonlinear Equation (3) does mix the chiral components of the spinor, for we have ψ̄ψ =
ψ̄RψL + ψ̄LψR.

3. A Modified Schrödinger–Dirac Equation

Looking at the form of Equation (1), one cannot help but think of the conformally in-
variant version of the non-minimally coupled Klein–Gordon equation in curved spacetime:
(gµν∇µ∇ν + m2 + 1

6 R) φ = 0. This equation is conformally invariant only because of the
presence of the specific factor 1

6 in front of the Ricci scalar R. Any other factor in front of
R in the latter equation would not render it conformally invariant [9]. One might then
naturally expect that while the Schrödinger–Dirac Equation (1) is not conformally invariant,
a simply different numerical factor in front of R in that equation could render the latter
conformally invariant. However, it turns out that things are more subtle and interesting, as
we shall subsequently see. Before working out the conformal transformation of Equation
(1), let us first recall what we mean by a conformal transformation, a conformal frame, and
conformal invariance.

What we mean here by a conformal transformation—also known as a Weyl conformal
transformation in order to distinguish it from the conformal coordinate transformations—is
the spacetime-dependent rescaling of the metric gµν. In other words, one builds a conformal
spacetime (also called a conformal frame) of metric g̃µν by simply multiplying the original
spacetime metric gµν pointwise by a positive and everywhere regular spacetime-dependent
factor. Such a factor is usually denoted by Ω2(x), such that g̃µν = Ω2gµν (as can be seen in,
e.g., Refs. [30,31]).

Such a transformation of the metric also transforms the mass m into m̃ = Ω−1m and
the spinor ψ into ψ̃ = Ω−

3
2 ψ. Furthermore, by using the link between the vierbeins and the

metric, we also learn that the old vierbeins ea
µ are transformed into ẽa

µ = Ω ea
µ. In addition,

since the Christoffel symbols are then transformed into Γ̃λ
µν, the spin connection is also

transformed into ω̃ ab
µ and the Fock–Ivanenko coefficient is transformed into Λ̃µ. With

these transformed terms, one easily derives the expression of the transformed version
of the covariant derivative operator D̃µ as well as the transformed Ricci scalar R̃, the
explicit expressions of which are all given in Equation (A7) of Appendix B. With all these
transformed mathematical objects, the Dirac equation in the conformal spacetime turns
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out to have exactly the same form as in the original spacetime (see Equation (A8) for the
detailed steps of the derivation):

(iγ̃µD̃µ − m̃) ψ̃ = 0. (4)

Equations that preserve their form under a conformal transformation are called con-
formally invariant equations. It is worth noting that investigating the effect of a Weyl
transformation on the various equations of physics can be more than just a formal check
of the conformal (non)-invariance of equations. When properly interpreted, the results
help one gain novel insights into the nature of the link between physical concepts and
entities. Implementing such a philosophy with such a specific goal in mind has indeed been
fruitful in multiple recent works, ranging from the physics of quasi-local masses [32,33]
to the physics of wormholes and black holes [34–37]. In the domain of quantum physics,
which is the case here, and contrary to one’s expectation, a mundane noninvariance of an
equation could even shed new light on the interpretation issue emerging in the foundations
of quantum mechanics [9].

Now, thanks to the conformal invariance of the Dirac equation, it is straightforward
to see what form the Schrödinger–Dirac equation will have in the conformal frame if ever
one starts from Equation (4). One simply needs to apply the operator γ̃µD̃µ from the left
to Equation (4). The terms such a procedure has led to based on the metric gµν do in fact
necessarily emerge here unaltered when based on the metric g̃µν, only to be decorated
everywhere by tildes. In addition, however, one extra term arises due to the position-
dependent mass m̃. In fact, applying the operator γ̃µD̃µ to the left-hand side of Equation (4),
the conformally transformed Schrödinger–Dirac equation takes the following form:(

g̃µνD̃µD̃ν + m̃2 + 1
4 R̃
)

ψ̃ = im̃
Ω,µ

Ω
γ̃µψ̃. (5)

It is thus clear that the equation is conformally noninvariant and that the transformed
spinor field ψ̃ would obey slightly different dynamics in the conformal spacetime from
those it obeyed in the original spacetime due to the single extra term on the right-hand
side of Equation (5). Only massless spinors would lead to the same equation in the
conformal frame.

The other way of searching for the conformal version of the Schrödinger–Dirac equa-
tion is to start from the latter as given by Equation (1), which we know holds in the original
spacetime, and then conformally transform all the terms of that equation. The detailed
calculations are given in Appendix C, and the final result is the following new equation:(

g̃µνD̃µD̃ν + m̃2 + 1
4 R̃
)

ψ̃ = −
Ω,µ

Ω
γ̃µγ̃νD̃νψ̃. (6)

We clearly see that only when one assumes that the Dirac equation holds in the
conformal spacetime, i.e., when iγ̃µD̃µψ̃ = m̃ψ̃, does the right-hand side of Equation (6)
coincide with the right-hand side of Equation (5). The Schrödinger–Dirac equation is thus
conformally invariant for massless spinors, but only if the latter are also assumed to obey
the Dirac equation in the conformal frame. It is worth noting here that, the last term on
the right-hand side of Equation (6) is a generalization to spinors of a similar extra term
arising on the right-hand side of the conformally transformed curved-spacetime Klein–
Gordon equation. The corresponding term for the latter equation in the conformal frame is
2Ω,µ

Ω ∇̃µφ̃ [9].
However, the non-minimally coupled Klein–Gordon equation does not contain any

extra term when moving to the conformal frame. We are therefore naturally led to look for a
modified Schrödinger–Dirac equation that would be conformally invariant in analogy with
the non-minimally coupled Klein–Gordon equation. As the conformal invariance of the
latter is achieved by the mere presence of the term 1

6 Rφ on the left-hand side of the equation,
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a natural guess for a modified Schrödinger–Dirac equation is
(

gµνDµDν + m2 + ξR
)

ψ = 0
for some numerical factor ξ.

Starting from such a guess for the modified equation, we assume a more general
conformal transformation of the spinor field as follows:

ψ(x) = Ω
3
2 S(Ω, x)ψ̃(x), (7)

where S(Ω, x) is an unknown (possibly an invertible 4× 4 matrix-valued) functional of
the conformal factor Ω(x). Inserting this expression into our guess for the modified
Schrödinger–Dirac equation, the same steps followed in Equation (A9) for the usual
Schrödinger–Dirac equation now yield:

S
(

g̃µνD̃µD̃ν + m̃2 + ξR̃
)

ψ̃ + 2
[
D̃µS+

Ω,ν

2Ω
γ̃νγ̃µS

]
D̃µψ̃

+

[
D̃µD̃µS+

( 3
2 − 6ξ

) 2̃Ω
Ω

S− (3− 12ξ)
g̃µνΩ,µΩ,ν

Ω2 S+
Ω,ν

Ω
γ̃νγ̃µD̃µS

]
ψ̃ = 0. (8)

Therefore, for the modified Schrödinger–Dirac equation to be conformally invariant,
the content of each pair of square brackets in Equation (8) has to vanish. The vanishing
of the content of the first pair of square brackets that multiplies the term D̃µψ̃ leads to the
following constraint on the functional S(Ω, x):

D̃µS = −Ω,ν

2Ω
γ̃νγ̃µS. (9)

This equation shows that the functional S(Ω, x) cannot be a scalar, but only a matrix-
valued functional of the conformal factor Ω. Contracting both sides of Equation (9) by γ̃µ,
and applying the derivative operator D̃µ to both sides of Equation (9) leads to the two
following equations, respectively:

γ̃µD̃µS =
Ω,ν

Ω
γ̃νS, D̃µD̃µS = − 2̃Ω

2Ω
S. (10)

Inserting these two constraints on S(Ω, x) into the content of the second pair of square
brackets that multiplies ψ̃ in Equation (8), and setting the resulting expression equal to zero
straightforwardly yields the numerical value of ξ to be 1

6 . Remarkably, this value exactly
coincides with the numerical value of the factor multiplying R in the conformally invariant
non-minimally coupled Klein–Gordon Equation [9]. The modified Schrödinger–Dirac
equation that is conformally invariant then reads(

gµνDµDν + m2 + 1
6 R
)

ψ = 0, (11)

in which the spinor ψ transforms as ψ̃ = Ω−
3
2 S−1(Ω, x)ψ, where the matrix-valued func-

tional S(Ω, x) obeys all three differential equations as given in Equations (9) and (10).
Furthermore, by multiplying both sides of Equation (9) from the right by the inverse matrix
S−1(Ω, x) and then contracting both sides of the equation by dxµ, and recalling that the
Fock–Ivanenko matrix-valued line element ds = γµdxµ [15] is written as ds̃ ≡ γ̃µdxµ in
the conformal frame, Equation (9) takes the form

SD̃ S−1 =
Ω,µγ̃µ

2Ω
ds̃, (12)

where D̃ stands for the covariant differentiation operator in the conformal frame. This is a
total differential equation that remarkably involves the Fock–Ivanenko on the right-hand
side in a fundamental way.
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In order to find the explicit expression of the functional S(Ω, x), we solve the first-
order differential equation on the left in Equation (10). For that purpose, we choose the
following general ansatz for S(Ω, x),

S(Ω, x) = Ω,µγµ f (Ω, x) + εµνρσΩ,µγνγργσ h(Ω, x), (13)

where f (Ω, x) and h(Ω, x) are each an arbitrary complex scalar functional of Ω, and εµνρσ is
the totally antisymmetric Levi–Civita tensor. Indeed, the combination in expression (13) is
the only way of building an invariant matrix-valued functional out of the gamma matrices
by contracting the indices of the latter with the only available vector Ω,µ. Inserting the
ansatz (13) into the first equation in (10) and separating those independent terms made of
the independent elements of the Dirac algebra γµ and εµνρσγνγργσ, we arrive at the two
following independent differential equations for f (Ω, x) and h(Ω, x):

ΩΩ,µ f,µ + Ω2Ω f −Ω,µΩ,µ f = 0, (14)

ελνρσγµγνγργσ

(
ΩΩ,λh,µ + ΩΩ,λµh−Ω,λΩ,µh

)
= 0. (15)

Dividing both equations by Ω2 and then rearranging their terms, the two equations
take the following forms, respectively:

∇µ

(
Ω,µ

Ω
f
)
= 0, εµνρσγµγνγργσ∇λ

(
Ω,λ

Ω
h
)
= 0. (16)

Therefore, we conclude that f (Ω, x) and h(Ω, x) are functionals that render Ω,µ f /Ω
and Ω,µh/Ω divergence-free vector fields, i.e., conserved vector fields in the spacetime
region where the conformal function Ω(x) is defined.

Next, the conformal transformation ψ = Ω
3
2 S(Ω, x)ψ̃ required to guarantee the confor-

mal invariance of Equation (11) should also preserve the structure and the usual probability
amplitude interpretation assigned to a spinor. This can be achieved by starting from the
following transformation of the integrated probability density over an arbitrary spatial
volume V: ∫

ψ†ψ dV =
∫

ψ̃† S†S ψ̃ dṼ. (17)

In writing the right-hand side of this equality, we used the fact that Ω3dV = dṼ.
For unitarity to be preserved under such a conformal transformation, we then only need
to impose the extra condition that S†S be the identity matrix. Using Equation (13) and
the identity εµνρσγνγργσ = −6iγµγ5, where γ5 = iγ0γ1γ2γ3, we translate this unitarity
condition into

Ω,µΩ,νγµ†γν
[
| f |2 + 36|h|2 + 6i( f ∗h− h∗ f )γ5

]
= 1. (18)

Thus, whereas Equation (16) give the functionals f (Ω, x) and h(Ω, x) only up to an
arbitrary multiplicative complex constant for each, the extra condition (18) is what fixes
those arbitrary two complex (four real) constants. Of course, the existence of those two
functionals f (Ω, x) and h(Ω, x) simultaneously obeying Equations (16) and (18) should
be examined case by case. In other words, a given conformal factor Ω(x) may or may
not lead to actual functionals f (Ω, x) and h(Ω, x). This is in contrast to the conformal
transformation ψ = Ω

3
2 ψ̃ required by the Dirac equation.

4. Revisiting the Schrödinger–Dirac Equation in the Presence of the Maxwell Field

We examine here the Schrödinger–Dirac equation coupled to the Maxwell field Aµ.
For that purpose, we start by deriving the equation for the case where the particle is
coupled to the Maxwell field only through the usual minimal-coupling prescription. In
other words, one introduces the Maxwell field into the Dirac equation only by replacing
the spin-covariant derivative operator Dµ by Dµ + ieAµ inside the Dirac equation.
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Just as in the derivation, we displayed in Appendix A for the Schrödinger–Dirac
equation of neutral spinors, we may also now simply apply the derivative operator γνDν

from the left to the Dirac equation minimally coupled to the Maxwell field. This yields,

γνDν(iγµDµ − eγµ Aµ −m)ψ = 0

=⇒
(

ADµ
ADµ + 2ieΣµνFµν +

1
4 R + m2

)
ψ = 0. (19)

We introduced here the gauge- and spin-covariant derivative operator ADµ = Dµ +
ieAµ, as well as the field strength tensor Fµν = ∂µ Aν − ∂ν Aµ. The gauge invariance of the
resulting equation is guaranteed by the gauge invariance of the Dirac equation itself, as can
easily be seen from the first line. The term 2ieΣµνFµν gives rise to the familiar Pauli term in
the nonrelativistic Pauli–Schrödinger Equation [26]. The usual g = 2 factor of the electron
is indeed easily recognized by writing that term with the help of tensor σµν = i

2 [γµ, γν], for
then 2ieΣµνFµν takes the more familiar textbook form e

2 σµνFµν [20]. In fact, if Fµν represents
a magnetic field B lying along the z direction in a given reference frame in four-dimensional
spacetime, then

e
2

σµνFµν = −e
(

s.B 0
0 s.B

)
. (20)

The three-dimensional vector s is the spin vector 1
2 σ, where the 2× 2 matrices σ are the

Pauli matrices. Note that the same Equation (19) is also what one obtains when one applies
either iγµDµ − eγµ Aµ or iγµDµ − eγµ Aµ + m to the Dirac equation minimally coupled to
the Maxwell field.

4.1. Particles with an Anomalous Magnetic Moment

It is well known that for particles with an anomalous magnetic moment (such as an
electron, proton, neutron, muon, etc.), one may write a Dirac equation for such particles as
follows [38] (see also [39,40]),(

iγµDµ − eγµ Aµ − i
4 µ0γµγνFµν −m

)
ψ = 0. (21)

We introduced the factor 1
4 multiplying the constant µ0 (as performed in Ref. [40]) in

order to simplify our subsequent equations. As we shall show shortly, the constant µ0 is
what would give rise to the anomalous magnetic moment of the particle in the curved
spacetime. First, note that Equation (21) is clearly gauge invariant. Therefore, we may
legitimately apply a linear differential operator to this equation from the left to obtain a
second-order differential equation for particles with an anomalous magnetic moment that
would also be gauge invariant. For that purpose, we apply the differential operator γνDν

from the left to Equation (21). This yields,(
ADµ

ADµ + µ0Fµνγµ
ADν + 2i[e + µ0m]ΣµνFµν +

1
4 R + m2

−µ2
0 ΣµνΣρλFµνFρλ − µ2

0 ΣµνΣρλFµνFρλ − 2πµ0 jµγµ
)

ψ = 0. (22)

We introduce here the charged current jµ to which the Maxwell field couples thanks to
Maxwell’s second equation ∇µFµν = 4π jν. Furthermore, we set ADµ = Dµ + ieAµ.

From Equation (22), we start to see a gradual emergence of a general pattern each time
one extracts a second-order differential equation from the Dirac equation. In fact, when
starting from the Dirac equation minimally coupled to the Maxwell field, the second-order
differential equation one arrives at displays, as we saw below Equation (19), a coupling
of the particle to the magnetic field though the magnetic moment of the former. The
usual g-factor for the electron predicted by the Dirac equation emerges from the resulting
term 2ieΣµνFµν. What we obtain from Equation (22) is a similar term, but in which the
electric charge e is augmented by µ0m. This shows that the anomalous magnetic moment
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of the particle in this case comes from µ0, and the effective g-factor of the particle reads
2(1 + µ0

e m).
However, in addition to this coupling, the other manifestation of the anomalous

magnetic moment of the particle consists of inducing a coupling of the gauge-invariant
gradient ADµψ of the spinor field with the field strength Fµν, as given by the second term in
Equation (22), as well as a direct coupling of the spinor field ψ with the source current jµ, as
given by the last term in Equation (22). Furthermore, the anomalous magnetic moment also
induces a direct coupling of the spinor field with the field strength—as given by the term
before last in Equation (22)—that is second-order in the spin. In the next subsection, we
investigate how this pattern further generalizes in the case of particles with higher electric
and magnetic moments.

It is noteworthy to point out here that if no charged current couples to the Maxwell
field other than the one coming from the Dirac current jν = eψ̄γνψ, then Equation (22)
again takes a nonlinear form as does Equation (3).

4.2. Particles with Higher Electric and Magnetic Moments

It was shown by Foldy in Ref. [39] that the most general Lorentz invariant, local and
gauge invariant Dirac equation that is linear both in the spinor field ψ and in the external
electromagnetic field Aa has the following form in Minkowski spacetime:(

iγa∂a −
∞

∑
n=0

en2nγa Aa − i
4

∞

∑
n=0

µn2nγaγbFab −m

)
ψ = 0. (23)

In Ref. [39], the operator 2 stands for the flat-spacetime d’Alembertian operator
ηab∂a∂b. Comparing this equation with Equation (21), one learns that e0 should be identified
with the electric charge of the particle and µ0 should be identified with the anomalous
magnetic moment of the particle. The additional terms with n ≥ 1 represent a convenient
approximation for what a complete field theoretical treatment yields for the interaction of
the Dirac particle with the external electromagnetic field created by a certain charge and
current distribution [39]. In Ref. [40], Behncke suggested that those additional terms might
also be viewed as describing the interaction of an extended charge.

The way one arrives at all the additional terms appearing in Equation (23) in flat
spacetime is to consider all the possible contractions γa . . . γbγc∂a . . . ∂b Ac. Then, working
within the Lorenz gauge ∂a Aa = 0, one is able to show [39] that such combinations are only
split into two different classes of terms. One class consists of terms of the form 2nγa Aa,
and another class consists of terms of the form 2nγaγbFab. Therefore, after using Maxwell’s
equation in the Lorenz gauge, then 2Aa = 4π ja, and all the additional terms in Equation
(23) can be written in terms of the charged current jµ and its derivatives: en2n−1γa ja for
the first class, and µn2n−1γaγb(∂a jb − ∂b ja) for the second class [39].

In curved spacetime, one is not only forbidden to use the non-covariant terms ∂µ . . . ∂ν Aρ,
but even Maxwell’s equation takes the more involved form 2Aµ − Rµ

ν Aν −∇µ∇ν Aν =
4π jµ. Covariant derivatives of Aµ should thus be used instead, and then all possible
gauge-invariant contractions of the latter with the gamma matrices should be considered.
Fortunately, however, thanks to the gauge-symmetry invariance of the current jµ, we may
easily adopt Foldy’s final form of the equation to curved spacetimes. Indeed, the general
covariant form of Equation (23) in terms of the gauge invariant vector jµ and the Maxwell
tensor Fµν will then take the form(

iγµDµ−eγµ Aµ−
∞

∑
n=0

en2nγµ jµ− i
4

∞

∑
n=0

µn2nγµγνFµν−m

)
ψ = 0. (24)

We denoted here the electric charge of the particle by e, instead of e0, in order to make
the infinite series in 2nγµ jµ start from n = 0, as does the one involving the field strength
Fµν. Thus, the constant e0 stands here for the lowest-order electric moment of the particle.
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On the other hand, the d’Alembertian 2 in our Equation (24) is now the generally covariant
one, gµνDµDν. Applying the operator γνDν from the left to Equation (24) yields[

ADµ
ADµ +

∞

∑
n=0

(
2ien2n jν + µn2nFµνγµ

)ADν

+ 2i
(

e + m
∞

∑
n=0

µn2n
)

ΣµνFµν +
1
4 R + m2 −

∞

∑
n,m=0

enem(2n jµ)(2m jµ)

− ΣµνΣρλ
∞

∑
n,m=0

µnµm(2nFµν)(2mFρλ) + 4iΣµν
∞

∑
n=0

en∇µ2n jν

+ i
∞

∑
n=0

en∇µ2n jµ − γρΣµν
∞

∑
n=0

µn∇ρ2nFµν + iγµ
∞

∑
n,m=0

µnem
(
2nFµν

)
(2m jν)

]
ψ = 0. (25)

Several interesting observations can be made by inspecting this equation. The first
thing we notice in this equation when comparing it with Equation (22) is that the anomalous
magnetic moment of the particle is displayed now as an infinite-series correction to the
standard magnetic moment one derives from the Dirac equation. In addition, however, a
similar spin interaction emerges now thanks to the coupling of the spin with the higher-
derivatives ∇µ2n jν of the current, as well as a coupling of the spin with the higher-
derivatives ∇ρ2nFµν of the field strength. The next observation that can be made is that,
besides the coupling of the gauge-invariant gradient ADµψ of the spinor field with the
higher derivatives 2nFµν of field strength, there is also a directed coupling of that gradient
with the higher derivatives 2n jµ of the current. On the other hand, the spin–spin interaction
now becomes generalized into an interaction that includes all possible pair products of
higher-derivative terms 2nFµν of the field strength. We also now notice the emergence of
an interaction that is quadratic in the higher-derivative terms 2n jµ that couple directly to
the spinor field. Furthermore, the last term also involves a direct coupling of the spinor
field with a product of cross terms made of higher derivatives of both the field strength
and the current. The divergence terms ∇µ2n jµ did not appear before taking into account
the higher moments of the particle, because at the lowest order we considered previously,
only the vanishing term ∇µ jµ would have been included.

The last observation we would like to make here is the remarkable appearance in
Equation (25) of terms very similar to those that emerge in the form of curvature terms from
the study of the expectation value of the stress–energy tensor in curved spacetime [19,20].
In fact, moving the covariant derivative ∇µ past the d’Alembertian 2 in the non-vanishing
lowest-order term e1∇µ2jµ, as well as in the lowest-order term in the spin, 4ie1Σµν∇µ2jν,
we learn that these two terms read

ie1∇µ2jµ = −ie1

(
1
2

jµR,µ + 3∇µ jνRµν

)
, (26)

4ie1Σµν∇µ2jν = 4ie1Σµν
(
2∇µ jν + jρ∇νRµρ − 2∇ρ jλRµρν

λ −∇ρ jνRµρ

)
. (27)

In deriving the first identity, we also used the conservation equation∇µ jµ = 0, as well
as the contracted Bianchi identity ∇µRµ

ν = 1
2 R,ν. On the other hand, recalling that the

second Maxwell equation can also be written in terms of the field strength tensor as

2Fµν + 2RµρνλFρλ + RµρFρ
ν − RµρFρ

ν = 4π
(
∇µ jν −∇ν jµ

)
, (28)

the contraction of both sides of the latter equation by Σµν turns Equation (27) into
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4ie1Σµν∇µ2jν = 4ie1Σµν

(
1

8π
22Fµν +

1
4π

2RµρνλFρλ +
1

4π
Rµρνλ2Fρλ +

1
2π
∇δRµρνλ∇δFρλ

+
1

4π
2RµρFρ

ν +
1

4π
Rµρ2Fρ

ν +
1

2π
∇λRµρ∇λFρ

ν + jρ∇νRµρ − 2∇ρ jλRµρν
λ −∇ρ jνRµρ

)
. (29)

From Equation (26), we learn that the lowest-order term ie1∇µ2jµ brings a correc-
tion to the term −2πµ0 jµγµ of Equation (22) that is equal to − i

2 e1 jµR,µ, and brings into
Equation (22) an additional direct coupling between the spinor field and the gradient of
the current that is equal to −3ie1∇µ jνRµν. The inspection of Equation (29), on the other
hand, reveals that the lowest-order term in the particle’s spin, 4ie1Σµν∇µ2jν, contributes
with various correcting terms to the anomalous magnetic moment of the particle. Those
corrections include terms that are proportional to e1/4π, to the Riemann tensor Rµνρλ, to
the Ricci tensor Rµν, and to the second-order derivatives of these tensors, 2Rµνρλ, 2Rµν,
etc. Furthermore, iterating similar manipulations as those leading to Equations (26) and
(29) shows that the higher-derivative terms ien∇µ2n jµ and 4iΣµνen∇µ2n jν can also be
decomposed into correcting terms for the anomalous magnetic moment in Equation (25).
Those terms contain not only higher derivatives of the Riemann and Ricci tensors, but also
products of the latter, such as RµλRλ

ν, RρλRλ
αµν, RµνρλRλ

αβδ, etc.
The above observations become particularly interesting when recalling, as already

mentioned below in Equation (23), that the additional terms brought to the Dirac equation
are supposed to represent approximations of higher-order interaction terms that emerge
from a more complete quantum field theoretical treatment. Therefore, it is not surprising
that one also recovers corrections involving curvature terms and their derivatives and
contractions just as one does within a curved-spacetime quantum field theory. In contrast
to the latter, however, the curvature terms that arose here have nothing to do with quantum
vacuum expectation values. Those terms appeared here simply as gravity-induced correc-
tion terms inside the second-order differential Schrödinger–Dirac equation that governs
the dynamics of a Dirac particle inside an external electromagnetic field within general
relativity.

5. Revisiting Lichnerowicz’s Vanishing Theorem

As discussed in Section 1, the identity /D2= gµνDµDν +
1
4 R behind the derivation of the

Schrödinger–Dirac Equation (1) was re-derived independently by Lichnerowicz in Ref. [11].
The identity was used by Lichnerowicz to derive an important theorem for Riemannian
spin manifolds. The theorem, sometimes called the vanishing theorem [21], asserts that a
compact spin manifold of positive scalar curvature does not admit any nonzero harmonic
spinor. Conversely, the theorem implies that a compact spin manifold with an identically
vanishing scalar curvature can only admit parallel spinors. Given the results of Section
3 concerning the Schrödinger–Dirac equation in the conformal frame, it is also of great
interest to examine here the fate of the vanishing theorem in light of those results. Let us
first outline the usual proof of the vanishing theorem.

We call a harmonic spinor ψ any spinor satisfying the equation /D2ψ = 0 on a compact
spin manifold, i.e., when /Dψ = 0. We say that a Riemannian spacetime is a compact
spin manifold of positive scalar curvature if the spacetime is an orientable compact Rie-
mannian manifold with a spin structure on its tangent bundle, and if its Ricci scalar R
is everywhere positive or zero (R ≥ 0) without being identically zero [21]. Therefore,
multiplying the Lichnerowicz–Schrödinger identity (which reads /D2 = −gµνDµDν +

1
4 R

in the spin-manifold thanks to the anti-commutation relations in Riemannian spacetimes
{γµ, γν} = −2gµν [11]) by ψ† from the left and by ψ from the right, and then integrating
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by parts both sides of the equation over the four-volume compact manifold leads to the
following identity:∫

d4x
√

g ψ† /D2ψ = −
∫

d4x
√

g ψ†DµDµψ + 1
4

∫
d4x
√

g ψ†R ψ

=
∫

d4x
√

g |D ψ|2 + 1
4

∫
d4x
√

g R |ψ|2. (30)

Here, we denoted by g the positive determinant of the Riemannian metric. In the
mathematics literature, it is sometimes this identity which is called a theorem while the
consequences derived from it are called corollaries [21]. However, note that other names are
also found in the mathematics literature. For example, the manipulation (30) is sometimes
called the Bochner technique, whereas the Lichnerowicz–Schrödinger identity and its
variants are called the Weitzenböck formulas [41], the Bochner–Weitzenböck formulas [22],
or simply the Weitzenböck decomposition [42]. In fact, we clearly see that if R ≥ 0, then the
right-hand side of Equation (30) cannot vanish unless ψ = 0, which means that no nonzero
harmonic spinor can exist. Conversely, if R vanishes everywhere, then only harmonic
spinors such that |D ψ|2 = 0 can exist in the manifold, which means that only parallel
spinors are admitted in such a manifold. It follows then that if ever a nonzero harmonic
spinor exists in a manifold of non-negative curvature, that harmonic spinor is parallel and
the Ricci scalar R of the manifold should vanish everywhere.

When going to the conformal frame, it is clear that, by working right from the start
with the metric g̃µν and the spinor ψ̃, all the steps leading to an identity (30) remain
unaltered. All the terms of the identity simply become decorated all over the place by
tildes. This then implies that the corollaries derived in the previous paragraph from identity
(30) remain true for the manifold obtained by conformally deforming the original spin
manifold. Of course, it goes without saying that a positive-curvature manifold does not
necessarily conformally transform into a positive-curvature manifold. This can be seen
from the conformal transformation of the Ricci scalar R as given by the last identity in
Equation (A7). However, the point here is that once such a conformal manifold is obtained,
this first method suggests that one reaches the same conclusions about the relation between
the sign of the scalar curvature R̃ of the new manifold and the existence of harmonic spinors
ψ̃ in the manifold.

However, if we first start from identity (30) which holds in the original spin manifold,
then, as we show in detail in Appendix D, the conformally transformed version of identity
(30) takes the following form instead:∫

d4x
√

g̃ Ω ψ̃† /̃D
2
ψ̃ =

∫
d4x

√
g̃ Ω |D̃ ψ̃|2 + 1

4

∫
d4x

√
g̃ Ω R̃ |ψ̃|2 +

∫
d4x

√
g̃ Ω,µψ̃†D̃µψ̃. (31)

It is clear from this result that the corollaries derived from identity (30) no longer hold
in the conformal manifold. In fact, according to identity (31), a spin manifold of strictly
positive scalar curvature R̃ does not imply that nonzero harmonic spinors cannot exist, and
neither does the condition R̃ = 0 imply that only harmonic spinors such that |D̃ ψ̃|2 = 0
can exist in the manifold. This is due to the last term which consists of an integral that
could be positive, zero or negative, depending on the conformal function Ω(x) that couples
via its gradient to the term ψ̃†D̃µψ̃. See Refs. [43,44] for other results on harmonic functions
in conformal spin manifolds.

6. Summary and Conclusions

We revisited the usual derivation of the Schrödinger–Dirac equation and showed that,
depending on whether one initially assumes the Dirac equation to hold, there are two
possible forms for the resulting second-order differential equation for the spinor. The first
case leads to the usual Schrödinger–Dirac equation, whereas in the second case, a slightly
different second-order differential equation is obtained. We then showed that a nonlinear
covariant Gross–Pitaevskii-like equation emerges from the Schrödinger–Dirac equation
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when one takes into account the fact that the spinor field self-interacts via its coupling to the
curvature of spacetime. We extracted from the equation the gravitationally induced analog
for fermions of the scattering length of bosons. Such a length, given by g = 4πh̄2as/m for
bosons, is found here to take on the much smaller value mG/4c2 for fermions coupled to
gravity.

Note that one of the possible applications of such a nonlinear equation would be in
the study of matter under gravitational collapse. In fact, it is well known that, besides
the traditional methods relying on the perfect-fluid approximation or the equation of the
state of matter, one can study the equilibrium configurations of a self-gravitating system
of fermions by relying on the Dirac equation in curved spacetime coupled to the Einstein
equations [45]. In the latter approach, one inserts into the right-hand side of Einstein’s
equations the expectation value of the energy–momentum tensor of the fermions. In
contrast, Equation (3) offers us the possibility of tackling the problem of the equation
of state of dense compact stars in a more closed form. Solving Equation (3) for such a
system should indeed lead to a more accurate dynamics as the nonlinearity of the wave
equation takes into account the gravitational back-reaction of the fermion fluid. The closer
examination of this possible application will be the subject of a future work.

The conformal noninvariance of the Schrödinger–Dirac equation is also examined in
detail. This allowed us to build a modified Schrödinger–Dirac equation that is conformally
invariant in analogy to the well-known non-minimally coupled scalar field in a generalized
Klein–Gordon equation. However, the required conformal transformation of the spinor
for such a modified Schrödinger–Dirac equation is found to require a conformal factor
that is a matrix-valued functional of the conformal factor Ω(x). This matrix-valued func-
tional is found to obey a first-order differential equation that involves the Fock–Ivanenko
line element in a fundamental way. A supplementary condition on the conformal factor,
as dictated by the conservation of the unitarity under the conformal transformation, is
provided.

The coupling of the Schrödinger–Dirac equation to the Maxwell field is then revisited
and the detailed derivation giving rise to the emergence of the correct gyromagnetic mo-
ment of the particle is recalled. Using the same procedure, and starting from the generalized
Dirac equation proposed by Pauli for particles with an anomalous magnetic moment, we
derived a new Schrödinger–Dirac equation for such particles. We showed that just as the
Schrödinger–Dirac equation gives rise to the exact g-factor from the Dirac equation, the new
Schrödinger–Dirac equation gives rise to a correction for the g-factor as well as additional
terms that represent new interactions between the particle and the external electromagnetic
field and its source. Those results allowed us to generalize our equation even further by
appealing to Foldy’s equation for describing particles with higher electric and magnetic
moments. Despite being much more involved, the resulting equation displayed a remark-
ably simple pattern. The latter consists of higher-order terms representing corrections
to the electric and magnetic moments that involve spacetime curvature terms and their
derivatives in analogy to what is found within quantum field theory when computing the
expectation value of the stress–energy tensor in curved spacetime. We believe that this
result could bring new applications of the generalized Schrödinger–Dirac equation and
new insights on the latter in future work.

Finally, we revisited Lichnerowicz’s vanishing theorem under the conformal transfor-
mation. We showed that the conformal noninvariance of the identity behind the theorem
leads to interesting implications. We showed that the identity takes on different forms in
the conformal frame depending on how one extracts the transformed identity. If one starts
by considering the conformal frame and its conformal spinor, then the same steps leading
to the derivation of the identity behind the theorem in the original frame also give rise to
the same identity in the conformal frame. This implies that the corollaries one extracts for
conformal harmonic spinors and a compact manifold in the conformal frame are identical
to those extracted for those entities in the original frame. If, on the other hand, one starts
by transforming both sides of the identity that holds in the original frame, then one does
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not recover the same form of the identity in the new frame. This implies that the corollaries
one extracts in the new frame from the resulting identity no longer hold in the latter frame.
This occurs because, in the second method, one has to integrate by parts.
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Appendix A. Derivation of the Schödinger–Dirac Equation

The derivation of the Schrödinger–Dirac Equation (1) relies on the Lichnerowicz–
Schrödinger identity /D2 = gµνDµDν +

1
4 R. The proof of the Lichnerowicz–Schrödinger

identity starts by recalling that the vierbeins are covariantly constant: Dµeν
a = 0. This

implies that Dµγν = 0, where the action of the total derivative Dµ on the matrix-valued
tensor γν is defined by Dµγν = ∇µγν + [Λµ, γν]. Therefore, we have γµDµ(γνDν) =
γµγνDµDν. The remainder of the proof then proceeds as follows:

/D2ψ =
(
γµγνDµDν

)
ψ

=
(

1
2{γ

µ, γν}DµDν +
1
2 [γ

µ, γν]DµDν

)
ψ

=
(

gµνDµDν +
1
2 [γ

µ, γν]DµDν

)
ψ

=
(

gµνDµDν +
1
4 [γ

µ, γν][Dµ,Dν]
)

ψ

=
(

gµνDµDν − 1
4 [γ

µ, γν]R ab
µν Σab

)
ψ

=
(

gµνDµDν − 2RµνρσΣµνΣρσ
)
ψ

=
(

gµνDµDν +
1
4 R
)

ψ. (A1)

In the fifth line, we used the following identity:

[Dµ,Dν]ψ = −R ab
µν Σab ψ, (A2)

which, although the commutation relation (A2) and its generalization to the case where the
Maxwell field is present were first derived by Fock in Ref. [46]), follows from the following
expression of the Riemann tensor in terms of the spin connection:

R ab
µν = ∂νω ab

µ − ∂µω ab
ν + ω ac

ν ω b
µc −ω ac

µ ω b
νc . (A3)

In the last line of Equation (A1), we used the cyclic property of the Riemann tensor
Rµνρσ + Rµρσν + Rµσνρ = 0, the anticommutation relations {γµ, γν} = 2gµν of the gamma
matrices, as well as the definition of the Ricci scalar R = gµνRµν = gµνRρ

µρν. Thanks to
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Equation (A1), one easily derives the Schrödinger–Dirac equation by following the usual
steps from the literature by applying the operator iγµDµ + m from the left to the Dirac
equation (iγµDµ −m)ψ = 0:

(iγµDµ + m)(iγνDν −m)ψ = 0

=⇒
(

/D2ψ + m2
)

ψ = 0

=⇒
(

gµνDµDν +
1
4 R + m2

)
ψ = 0. (A4)

It is worth noting here that nowhere along these steps has the Dirac equation itself
been used. All one has to assume is that the second-order differential equation in the very
first line holds; the Schrödinger–Dirac equation in the last line then follows automatically.
In fact, if one were to assume that the Dirac equation holds, then one only needs to apply to
the Dirac equation from the left the operator γµDµ:

γµDµ(iγνDν −m)ψ = 0

=⇒
(

gµνDµDν +
1
4 R + imγµDµ

)
ψ = 0. (A5)

The second line in these steps is indeed a novel second-order differential equation that
only reduces to the Schrödinger–Dirac equation when the Dirac equation holds.

Appendix B. Conformal Invariance of the Curved-Spacetime Dirac Equation

In this appendix, we first gather the various formulas required in Section 3, and
then we give the detailed derivation of the conformal invariance of the curved-spacetime
Dirac equation.

Under the Weyl transformation of spacetime, g̃µν = Ω2gµν, the vierbeins ea
µ, their

inverses eµ
a , the Dirac field ψ and the mass m of the latter are all affected as follows:

ea
µ = Ω−1 ẽa

µ, eµ
a = Ω ẽµ

a , ψ = Ωsψ̃, m = Ω m̃. (A6)

Note that we chose here to assign the conventional conformal factor Ωs for the spinor
field ψ in order to show that the Dirac equation is only conformally invariant for the specific
weight s = 3

2 . A different conformal factor for the spinor field was introduced and analyzed
in Section 3.

As a consequence of the transformation of the vierbeins, the Christoffel symbols Γλ
µν,

the spin connection ω ab
µ , the spin-covariant derivative Dµ and the Ricci scalar R are all

affected as follows:

Γλ
µν = Γ̃λ

µν −Ω−1
(

δ̃λ
µ Ω,ν + δ̃λ

ν Ω,µ − g̃µν g̃λρΩ,ρ

)
,

ω ab
µ = ω̃ ab

µ + Ω−1Ω,ν

(
ẽνa ẽb

µ − ẽa
µ ẽνb

)
,

Dµ = D̃µ + 2Ω−1Ω,νΣ̃ν
µ,

R = Ω2R̃− 6 Ω 2̃Ω + 12g̃µνΩ,µΩ,ν. (A7)

For convenience, we denoted the partial derivatives ∂µΩ by Ω,µ and we introduced
the d’Alembertian in the conformal frame, 2̃ = ∇̃µ∇̃µ. Using these formulas, and starting
from the curved-spacetime Dirac equation written in the original frame, we proved the
conformal invariance of the equation as follows:

(iγµDµ −m)ψ = 0

⇒ (iΩγ̃µD̃µ + 2iγ̃µΩ,νΣ̃ν
µ −Ω m̃)Ωsψ̃ = 0

⇒ Ωs+1
(

iγ̃µD̃µ − m̃ + i
[
s− 3

2
]Ω,µ

Ω
γ̃µ

)
ψ̃ = 0. (A8)
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To go from the third to the fourth step, we applied the partial derivative on the factor
Ωs, and then we used the fact that 2γ̃µΣ̃νµ = − 3

2 γ̃ν which is itself derived from the usual
identities satisfied by the Dirac matrices in curved spacetime, namely γ̃µγ̃νγ̃µ = −2γ̃ν

and γ̃µγ̃µ = 4. The last equation shows that only for s = 3
2 does the equation become

conformally invariant. For a derivation of the conformal invariance of the Dirac equation
based on the Dirac Lagrangian in curved spacetime, see Refs. [19,31], and for a derivation
based on the massless Dirac equation, see Ref. [20].

Appendix C. Conformal Transformation of the Schrödinger–Dirac Equation

Using the various conformal transformations as given in Equations (A6) and (A7) of
the previous appendix, and starting from the Schrödinger–Dirac Equation (1) written in the
original frame, the final form for the equation in the conformal frame was found as follows:

(
gµνDµDν + m2 + 1

4 R
)

ψ = 0

⇒
(

gµνDµDν − gµνΓλ
µνDλ + m2 + 1

4 R
)

ψ = 0

⇒
(

Ω2 g̃µν
[

D̃µ + 2Ω−1Ω,ρΣ̃ρ
µ

][
D̃ν + 2Ω−1Ω,ρΣ̃ρ

ν

]
−
[
Ω2 g̃µνΓ̃λ

µν + 2Ωg̃λµΩ,µ

][
D̃λ + 2Ω−1Ω,ρΣ̃ρ

λ

]
+ Ω2m̃2 + 1

4 Ω2R̃− 3
2 Ω2̃Ω + 3g̃µνΩ,µΩ,ν

)
Ω

3
2 ψ̃ = 0

⇒ Ω
7
2

[(
g̃µνD̃µD̃ν + m̃2 + 1

4 R̃
)

ψ̃ +
Ω,µ

Ω
(
4Σ̃µν+ g̃µν

)
D̃νψ̃

]
=0

⇒ Ω
7
2

[(
g̃µνD̃µD̃ν + m̃2 + 1

4 R̃
)

ψ̃ +
Ω,µ

Ω
γ̃µγ̃νD̃νψ̃

]
= 0

⇒
(

g̃µνD̃µD̃ν + m̃2 + 1
4 R̃
)

ψ̃ = −
Ω,µ

Ω
γ̃µγ̃νD̃νψ̃. (A9)

In the first step, we expressed the total covariant derivative Dµ in terms of Dµ and
the Christoffel symbols. In the second step, we used the identities in Equation (A7). In
the third step, we used the usual identities satisfied by the Dirac gamma matrices in
curved spacetime: γ̃µγ̃µ = 4, γ̃µγ̃νγ̃µ = −2γ̃ν and γ̃µγ̃νγ̃ργ̃µ = 4g̃νρ, as well as the anti-
symmetry of the spin tensor: Σ̃µν = −Σ̃νµ and the fact that the latter is covariantly constant:
D̃νΣ̃µν = 0. In the fourth step, we used the identity 4Σ̃µν = γ̃µγ̃ν − g̃µν.

Appendix D. Conformal Transformation of Lichnerowicz’s Identity

Using the various conformal transformations as given in Equations (A6) and (A7) of
the previous appendix, and assuming identity (30) holds in the original spin manifold, we
derive here the conformal version of the latter identity in the new spacetime.

Let us start by conformally transforming the left-hand side of identity (30) as follows:∫
d4x
√

g ψ† /D2ψ =
∫

d4x Ω−
3
2
√

g̃ ψ̃†γ̃µ

(
D̃µ + 2

Ω,ρ

Ω
Σ̃ρ

µ

)
Ωγ̃ν

(
D̃ν + 2

Ω,λ

Ω
Σ̃λ

ν

)
Ω

3
2 ψ̃

=
∫

d4x
√

g̃ Ω ψ̃† /̃D
2
ψ̃ +

∫
d4x

√
g̃ Ω,µ ψ̃†γ̃µ /̃Dψ̃. (A10)

In the second step, we expanded the parentheses and again used the fact that γ̃µΣ̃ν
µ =

− 3
4 γ̃ν, which makes the majority of the terms cancel each other. On the other hand, using

the result (A9), we find that the right-hand side of the first line of the identity (30) transforms
as follows:
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−
∫

d4x
√

g ψ†DµDµψ + 1
4

∫
d4x
√

g ψ†R ψ

=
∫

d4x
√

g̃ Ω ψ̃†
(
−g̃µνD̃µD̃ν +

1
4 R̃
)

ψ̃ +
∫

d4x
√

g̃ Ω,µ ψ̃†γ̃µ /̃Dψ̃

=
∫

d4x
√

g̃ Ω |D̃ ψ̃|2 + 1
4

∫
d4x

√
g̃ Ω R̃ |ψ̃|2 +

∫
d4x

√
g̃ Ω,µψ̃† g̃µνD̃νψ̃ +

∫
d4x

√
g̃ Ω,µ ψ̃†γ̃µ /̃Dψ̃. (A11)

In the second step, we integrated by parts. Equating the right-hand sides of the results
(A10) and (A11), and then using the identity 4Σ̃µν = γ̃µγ̃ν − g̃µν, we arrive at the following
conformal transformation of identity (30):∫

d4x
√

g̃ Ω ψ̃† /̃D
2
ψ̃ =

∫
d4x

√
g̃ Ω |D̃ ψ̃|2 + 1

4

∫
d4x
√

g̃ Ω R̃ |ψ̃|2 +
∫

d4x
√

g̃ Ω,µψ̃†D̃µψ̃. (A12)
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