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Abstract: The importance of partial differential equations in physics, mathematics and engineering
cannot be emphasized enough. Partial differential equations are used to represent physical processes,
which are then solved analytically or numerically to examine the dynamical behaviour of the system.
The new iterative approach and the Homotopy perturbation method are used in this article to solve
the fractional order Fokker–Planck equation numerically. The Caputo sense is used to characterize
the fractional derivatives. The suggested approach’s accuracy and applicability are demonstrated
using illustrations. The proposed method’s accuracy is expressed in terms of absolute error. The
proposed methods are found to be in good agreement with the exact solution of the problems using
graphs and tables. The results acquired using the given approaches are also obtained at various
fractional orders of the derivative. It is observed from the graphs and tables that fractional order
solutions converge to an integer solution when the fractional orders approach the integer-order of the
problems. The tabular and graphical view for the given problems is obtained through Maple. The
presented approaches can be applied to existing non-linear fractional partial differential equations
due to their accurate, simple and straightforward implementation.

Keywords: Elzaki transform; new iterative method; Caputo derivatives; homotopy perturbation
method; Fokker–Planck equation

1. Introduction

The theory of fractional calculus (FC) has received a lot of interest in recent years
because of its applications to complex systems. The simulation of significant-world issues
employing fractional order derivatives gives higher accuracy than modeling involving
integer-order derivatives, according to fractional derivative principles. FC refers to the
background and non-local dispersed effects of any physical system in phenomena such as
wave motion analysis, solitary waves, phase turbulence in reaction–diffusion schemes [1–4],
chaotic drifting waves induced by photon collision [5], wrinkled flame front propagation [6],
time fractional-coupled mKdV equation [7–9], fractional order wave equations [10] and
fractional space-time diffusion equation [11–13]. Fractional Differential Equations (FDEs)
have received a lot of interest from mathematicians because they enable fractional mod-
eling of various natural processes [14–16]. As a result, the use of FDEs to represent many
physical systems and processes has increased, such as coloured noise [17], economics [18],
earthquake oscillation [19] and bioengineering [20]. Rheology [21], control theory [22],
visco-elastic materials [23], signal processing [24], polymers [25], damping method [26]
and so on are some of the additional applications [27–30]. The fractional differential equa-
tion is an effective tool for modeling nonlinear phenomena in scientific and engineering
models. In applied mathematics and engineering, partial differential equations, especially
nonlinear ones, have been utilized to model a vast array of scientific phenomena [31–33].
Parallel to their work in the physical sciences, researchers were able to identify and model
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a vast array of relevant and real-world physical problems using fractional order partial
differential equations (FPDEs). It has long been asserted how crucial it is to establish esti-
mates for them using numerical or analytical techniques. Consequently, symmetry analysis
is a useful method for comprehending partial differential equations, particularly when
examining equations generated from accounting-related mathematical concepts [34–36].
Even though symmetry is the cornerstone of nature, the majority of natural observations
lack symmetry. A sophisticated strategy for concealing symmetry is the appearance of un-
expected symmetry-breaking events. Two types of symmetry exist: finite and infinitesimal.
Both discrete and continuous finite symmetries exist. Space is a continuous transformation,
but parity and temporal inversion are discrete natural symmetries. Patterns have always
intrigued mathematicians. In the seventeenth century, classification of spatial and planar
patterns gained significant traction. Unfortunately, exact solution of fractional nonlinear
differential equations has proven to be quite difficult.

The Fokker–Planck equation (FPE) was developed by Adriaan Fokker and Max Planck
to describe the time evolution of the probability density function of a particle’s position and
velocity and it is one of the most extensively used statistical physics equations [37]. FPE
appears in a variety of natural science domains; Brownian motion [38] and the diffusion
model of chemical reactions [39] are now widely used in physics, chemistry, engineering
and biology in various modified forms. The FPE first appears in kinetic theory [40], where it
represents the behavior of one-particle distribution function of a dilute gas with long-range
collisions, such as a Coulomb gas. Some applications of this type of equation can be found
in research by He and Wu [41], Jumarie [42], Kamitani and Matsuba [43], Xu et al. [44]
and Zak [45].

Among these applications, we considered Fokker–Planck equations of fractional order
with the general form

ξ
β
ϑ(φ, ϑ) = L

(
ξφ(φ, ϑ) + ξφφ(φ, ϑ)

)
+ Nξφφ(φ, ϑ), φ, ϑ > 0, β ∈ (0, 1], (1)

with initial source
ξ(φ, 0) = ζ(φ).

The function (φ, ϑ) is assumed to be a causal function of time and space, i.e., vanishing
for φ < 0 and ϑ < 0, β is the parameter describing the order of the fractional time and space
derivative. Fokker and Planck proposed the Fokker–Planck equation (Equation (1)) to de-
scribe brownian motion of particles [46]. The Fokker–Plank equation, which explains solute
transport, depicts the change in probability of a random function in time and space. PDEs of
both time and space fractional order are used to describe a variety of phenomena, including
wave propagation, continuous random walks, charge carrier transport in amorphous semi-
conductors, anomalous diffusion, ribosome mobility along mRNA and pattern generation
in polymeric networks [47]. In the current study [48], we use both the innovative iterative
approach offered by Gejji and Jafari [49] and the homotopy perturbation transform method
proposed by Madani et al. [50], Khan and Wu. Daftardar-Gejji and Jafari introduced a
new iterative method for finding numerical solutions to nonlinear functional equations in
2006 [51]. Many nonlinear differential equations of integer and fractional order [52] and
fractional boundary value problems have been solved using the iterative method. In a
simple manner, the second strategy combines the Elzaki transformation, the homotopy
perturbation method and He’s polynomials. He [53,54] invented the homotopy perturba-
tion technique (HPM), which is a series expansion approach for solving nonlinear partial
differential equations. To ensure convergence of approximation series over a certain interval
of physical parameters, the HPM employs a so-called convergence-control parameter.

The rest of this work is arranged in the following manner. The Abel–Riemann frac-
tional derivative, Caputo fractional derivative and Elzaki transform are all defined in
Section 1. The new iterative transform method for solving fractional partial differential
equations is described in Section 2. The Homotopy perturbation transform is described
in Section 3 for solving fractional partial differential equations. In Section 4, we show five



Symmetry 2023, 15, 430 3 of 19

examples of how the approaches can be used to solve Fokker–Planck equations. Section 5
presents the conclusion.

2. Basic Definitions
2.1. Definition

The fractional derivative Dβ in the Abel–Riemann sense having order β is given as [55]

Dβµ(ϕ) =


dκ

dϕκ µ(ϕ), β = κ,
1

Γ(κ−β)
d

dϕκ

∫ ϕ
0

µ(ϕ)

(ϕ−φ)β−κ+1 dφ, κ − 1 < β < κ,

where κ ∈ Z+, β ∈ R+ and

D−βµ(ϕ) =
1

Γ(β)

∫ ϕ

0
(ϕ− φ)β−1µ(φ)dφ, 0 < β ≤ 1.

2.2. Definition

The fractional integration operator κφ in Abel–Riemann sense is defined as [55]

κβµ(ϕ) =
1

Γ(β)

∫ ϕ

0
(ϕ− φ)β−1µ(ϕ)dϕ, ϕ > 0, β > 0.

having properties:

κβ ϕκ =
Γ(κ + 1)

Γ(κ + β + 1)
ϕκ+φ,

Dβ ϕκ =
Γ(κ + 1)

Γ(κ − β + 1)
ϕκ−φ.

2.3. Definition

The Caputo derivative Dβ of fractional order β is given as [55]

CDβµ(ϕ) =


1

Γ(κ−β)

∫ ϕ
0

µκ(φ)

(ϕ−φ)β−κ+1 dφ, κ − 1 < β < κ,
dκ

dϕκ µ(ϕ), κ = β.
(2)

with the properties

κ
β
ϕDβ

ϕg(ϕ) = g(ϕ)−
m

∑
k=0

gk(0+)
ϕk

k!
, f or ϕ > 0, and κ − 1 < β ≤ κ, κ ∈ N.

Dβ
ϕκ

β
ϕg(ϕ) = g(ϕ).

(3)

2.4. Definition

The Caputo operator in terms of Elzaki transform is [55]:

E[Dβ
ϕg(ϕ)] = s−βE[g(ϕ)]−

κ−1

∑
k=0

s2−β+kg(k)(0), where κ − 1 < β < κ.

3. Methodology of NITM

Consider fractional order PDE of the form

Dβ
ϑ ξ(φ, ϑ) + Nξ(φ, ϑ) + Mξ(φ, ϑ) = h(φ, ϑ), n ∈ N, n− 1 < β ≤ n, (4)
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subjected to initial condition

ξk(φ, 0) = gk(φ), k = 0, 1, 2, ..., n− 1, (5)

where N and M represents linear and non-linear terms.
By employing Elzaki transform for Equation (4), we obtain

E[Dβ
ϑ ξ(φ, ϑ)] + E[Nξ(φ, ϑ) + Mξ(φ, ϑ)] = E[h(φ, ϑ)]. (6)

By employing the Elzaki differentiation property

E[ξ(φ, ϑ)] =
m

∑
k=0

s2−β+ku(k)(φ, 0) + sβE[h(φ, ϑ)]− sβE[Nξ(φ, ϑ) + Mξ(φ, ϑ)], (7)

By applying the inverse Elzaki transform to Equation (7),

ξ(φ, ϑ) = E−1

[{
m

∑
k=0

s2−β+kuk(φ, 0) + sβE[h(φ, ϑ)]

}]
− E−1

[
sβE[Nξ(φ, ϑ) + Mξ(φ, ϑ)]

]
. (8)

By means of the iterative technique, we have

ξ(φ, ϑ) =
∞

∑
m=0

ξm(φ, ϑ). (9)

N

(
∞

∑
m=0

ξm(φ, ϑ)

)
=

∞

∑
m=0

N[ξm(φ, ϑ)], (10)

the non-linear term N is determined as

N

(
∞

∑
m=0

ξm(φ, ϑ)

)
= ξ0(φ, ϑ) + N

(
m

∑
k=0

ξk(φ, ϑ)

)
−M

(
m

∑
k=0

ξk(φ, ϑ)

)
. (11)

On putting (9)–(11) into Equation (8), we have

∞

∑
m=0

ξm(φ, ϑ) = E−1

[
sβ

(
m

∑
k=0

s2−φ+kuk(φ, 0) + E[h(φ, ϑ)]

)]

− E−1

[
sβE

[
N

(
m

∑
k=0

ξk(φ, ϑ)

)
−M

(
m

∑
k=0

ξk(φ, ϑ)

)]]
.

(12)

Hence, the iteration formula is defined as

ξ0(φ, ϑ) = E−1

[
sβ

(
m

∑
k=0

s2−φ+kuk(φ, 0) + sβE(g(φ, ϑ))

)]
, (13)

ξ1(φ, ϑ) = −E−1
[
sβE[N[ξ0(φ, ϑ)] + M[ξ0(φ, ϑ)]

]
, (14)

ξm+1(φ, ϑ) = −E−1

[
sβE

[
−N

(
m

∑
k=0

ξk(φ, ϑ)

)
−M

(
m

∑
k=0

ξk(φ, ϑ)

)]]
, m ≥ 1. (15)

Thus, the solution for the m-term in the series is obtained by means of Equations (4)
and (5)

ξ(φ, ϑ) ∼= ξ0(φ, ϑ) + ξ1(φ, ϑ) + ξ2(φ, ϑ) + .....,+ξm(φ, ϑ), m = 1, 2, . . . . (16)
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4. Methodology of HPTM

Consider the fractional order PDE of the form

Dβ
ϑ ξ(φ, ϑ) + Mξ(φ, ϑ) + Nξ(φ, ϑ) = h(φ, ϑ), ϑ > 0, 0 < β ≤ 1,

ξ(φ, 0) = g(φ), φ ∈ <.
(17)

By employing the Elzaki transform in Equation (17), we obtain

E[Dβ
ϑ ξ(φ, ϑ) + Mξ(φ, ϑ) + Nξ(φ, ϑ)] = E[h(φ, ϑ)], ϑ > 0, 0 < β ≤ 1,

ξ(φ, ϑ) = s2g(φ) + sβE[h(φ, ϑ)]− sβE[Mξ(φ, ϑ) + Nξ(φ, ϑ)].
(18)

By applying inverse Elzaki transform, we obtain

ξ(φ, ϑ) = F(φ, ϑ)− E−1
[
sβE{Mξ(φ, ϑ) + Nξ(φ, ϑ)}

]
, (19)

where
F(φ, ϑ) = E−1

[
s2g(φ) + sβE[h(φ, ϑ)]

]
= g(φ) + E−1

[
sβE[h(φ, ϑ)]

]
. (20)

For parameter p, the perturbation technique is determined as

ξ(φ, ϑ) =
∞

∑
k=0

pkξk(φ, ϑ), (21)

here p is the perturbation parameter and p ∈ [0, 1].
The nonlinear components are defined as

Nξ(φ, ϑ) =
∞

∑
k=0

pk Hk(ξk), (22)

where He‘s polynomials are represented by Hn with ξ0, ξ1, ξ2, ..., ξn, and are given as

Hn(ξ0, ξ1, · · · , ξn) =
1

β(n + 1)
Dk

p

[
N

(
∞

∑
k=0

pkξk

)]
p=0

, (23)

where Dk
p = ∂k

∂pk .
On putting Equations (22) and (23) into Equation (19), we obtain

∞

∑
k=0

pkξk(φ, ϑ) = F(φ, ϑ)− p×
[

E−1

{
sβE{M

∞

∑
k=0

pkξk(φ, ϑ) +
∞

∑
k=0

pk Hk(ξk)}
}]

. (24)

By comparing both sides of the coefficient of p, we have

p0 : ξ0(φ, ϑ) = F(φ, ϑ),

p1 : ξ1(φ, ϑ) = E−1
[
sβE(Mξ0(φ, ϑ) + H0(ξ))

]
,

p2 : ξ2(φ, ϑ) = E−1
[
sβE(Mξ1(φ, ϑ) + H1(ξ))

]
,

...

pk : ξk(φ, ϑ) = E−1
[
sβE(Mξk−1(φ, ϑ) + Hk−1(ξ))

]
, k > 0, k ∈ N.

(25)
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The terms ξk(φ, ϑ) are easily computable giving convergent series. On taking p→ 1,

ξ(φ, ϑ) = lim
M→∞

M

∑
k=1

ξk(φ, ϑ). (26)

4.1. Example

Let us consider the time-fractional Fokker–Planck equation as

∂β

∂ϑβ
(ξ(φ, ϑ)) +

∂

∂φ

(
φ

6
ξ(φ, ϑ)

)
− ∂2

∂φ2

(
φ2

12
ξ(φ, ϑ)

)
= 0, φ, ϑ > 0, β ∈ (0, 1], (27)

subjected to initial condition
ξ(φ, 0) = φ2 (28)

for special value β = 1; the exact solution is

ξ(φ, ϑ) = φ2 exp
ϑ
2 (29)

By employing the Elzaki transform in Equation (27), we have

E[ξ(φ, ϑ)] = s2(φ2) + sβE

[
− ∂

∂φ

(
φ

6
ξ(φ, ϑ)

)
+

∂2

∂φ2

(
φ2

12
ξ(φ, ϑ)

)]
, (30)

By applying the inverse Elzaki transform, we obtain

ξ(φ, ϑ) = e−φ + E−1

(
sβE

[
− ∂

∂φ

(
φ

6
ξ(φ, ϑ)

)
+

∂2

∂φ2

(
φ2

12
ξ(φ, ϑ)

)])
. (31)

Hence, by implementing NITM, we obtain

ξ0(φ, ϑ) = φ2,

ξ1(φ, ϑ) = E−1

[
sβE

{
− ∂

∂φ

(
φ

6
ξ0(φ, ϑ)

)
+

∂2

∂φ2

(
φ2

12
ξ0(φ, ϑ)

)}]
= φ2 ϑβ

2Γ(β + 1)
,

ξ2(φ, ϑ) = E−1

[
sβE

{
− ∂

∂φ

(
φ

6
ξ1(φ, ϑ)

)
+

∂2

∂φ2

(
φ2

12
ξ1(φ, ϑ)

)}]
= φ2 (ϑβ)2

4Γ(2β + 1)
,

ξ3(φ, ϑ) = E−1

[
sβE

{
− ∂

∂φ

(
φ

6
ξ2(φ, ϑ)

)
+

∂2

∂φ2

(
φ2

12
ξ2(φ, ϑ)

)}]
= φ2 (ϑβ)3

8Γ(3β + 1)
,

...

Thus, we obtain solution in series form as

ξ(φ, ϑ) = ξ0(φ, ϑ) + ξ1(φ, ϑ) + ξ2(φ, ϑ) + ξ3(φ, ϑ) + · · · . (32)

So we obtain

ξ(φ, ϑ) = φ2

{
1 +

ϑβ

2Γ(β + 1)
+

ϑ2β

4Γ(2β + 1)
+

ϑ3β

8Γ(3β + 1)
+ · · ·

}
. (33)

Now, by implementing HPETM, we obtain

∞

∑
n=0

pnwn(φ, ϑ) = (φ2) + p{E−1(sβE[
∞

∑
n=0

pn Hn(w)])}. (34)
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By comparing both sides of the coefficient of p, we obtain:

p0 : w0(φ, ϑ) = φ2,

p1 : w1(φ, ϑ) = [E−1{sβE(H0(w))}] = φ2 ϑβ

2Γ(β + 1)
,

p2 : w2(φ, ϑ) = [E−1{sβE(H1(w))}] = φ2 (ϑβ)2

4Γ(2β + 1)
,

p3 : w3(φ, ϑ) = [E−1{sβE(H2(w))}] = φ2 (ϑβ)3

8Γ(3β + 1)
,

...

(35)

Thus, we obtain the solution in series form in terms of HPM as

ξ(φ, ϑ) =
∞

∑
n=0

pnwn(φ, ϑ). (36)

So we obtain

ξ(φ, ϑ) = φ2

{
1 +

ϑβ

2Γ(β + 1)
+

ϑ2β

4Γ(2β + 1)
+

ϑ3β

8Γ(3β + 1)
+ · · ·

}
. (37)

The graphs in Figure 1 depict how the exact and suggested techniques solved the
problem when β = 1. Figure 1 depicts our method’s solution at various fractional orders of
β = 1, 0.75, 0.50, 0.25 inside the domain of 0 ≤ φ, ϑ ≥ 1, while Figure 1 depicts the solution
for problem 1 at ϑ = 0.5 and 0 ≤ φ ≥ 1, respectively. Additionally, Table 1 compares the
proposed method results in terms of absolute error at various fractional orders.

Figure 1. Graphical layout of exact solution, proposed method solution, and 3D and 2D behavior at
various fractional orders of example 1.
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Table 1. Comparative analysis of NITM and HPTM solution of example 1.

η ξ |Exact− N IT M| |Exact− N IT M| |Exact− HPT M| |Exact− HPT M|
β = 0.6 β = 1 β = 0.8 β = 1

0.5 8.48379150 × 10−03 1.5700000 × 10−08 4.09610800 × 10−04 1.5700000 × 10−08

1 1.69675830 × 10−02 6.3000000 × 10−08 1.63844300 × 10−03 6.3000000 × 10−08

1.5 2.54513740 × 10−02 1.4100000 × 10−07 3.68649700 × 10−03 1.4100000 × 10−07

2 3.39351660 × 10−02 2.5200000 × 10−07 6.55377200 × 10−03 2.5200000 × 10−07

2.5 4.24189580 × 10−02 3.9300000 × 10−07 1.02402690 × 10−02 3.9300000 × 10−07

0.001 3 5.09027490 × 10−02 5.6700000 × 10−07 1.47459870 × 10−02 5.6700000 × 10−07

3.5 5.93865400 × 10−02 7.7000000 × 10−07 2.00709300 × 10−02 7.7000000 × 10−07

4 6.78703320 × 10−02 1.0100000 × 10−06 2.62150900 × 10−02 1.0100000 × 10−06

4.5 7.63541240 × 10−02 1.2700000 × 10−06 3.31784700 × 10−02 1.2700000 × 10−06

5 8.48379150 × 10−02 1.5700000 × 10−06 4.09610800 × 10−02 1.5700000 × 10−06

0.5 1.27076980 × 10−02 6.2500000 × 10−08 6.81188800 × 10−04 6.2500000 × 10−08

1 2.54153960 × 10−02 2.5000000 × 10−07 2.72475500 × 10−03 2.5000000 × 10−07

1.5 3.81230940 × 10−02 5.6300000 × 10−07 6.13069900 × 10−03 5.6300000 × 10−07

2 5.08307920 × 10−02 1.0000000 × 10−06 1.08990200 × 10−02 1.0000000 × 10−06

2.5 6.35384900 × 10−02 1.5630000 × 10−06 1.70297190 × 10−02 1.5630000 × 10−06

0.002 3 7.62461880 × 10−02 2.2500000 × 10−06 2.45227950 × 10−02 2.2500000 × 10−06

3.5 8.89538860 × 10−02 3.0600000 × 10−06 3.33782500 × 10−02 3.0600000 × 10−06

4 1.01661584 × 10−01 4.0000000 × 10−06 4.35960800 × 10−02 4.0000000 × 10−06

4.5 1.14369282 × 10−01 5.0600000 × 10−06 5.51762900 × 10−02 5.0600000 × 10−06

5 1.2707698 × 10−01 6.2500000 × 10−06 6.81188800 × 10−02 6.2500000 × 10−06

4.2. Example

Let us consider the time-fractional Fokker–Planck equation as

∂

∂ϑβ
(ξ(φ, ϑ)) +

∂

∂φ
(φξ(φ, ϑ))− ∂2

∂φ2

(
φ2

2
ξ(φ, ϑ)

)
= 0, φ, ϑ > 0, β ∈ (0, 1], (38)

subjected to initial condition
ξ(φ, 0) = φ, (39)

for special value β = 1, the exact solution is

ξ(φ, ϑ) = φ expϑ . (40)

By employing Elzaki transform in Equation (38), we have

E[ξ(φ, φ, ϑ)] = s2(φ) + sβE

[
− ∂

∂φ
(φξ(φ, ϑ)) +

∂2

∂φ2

(
φ2

2
ξ(φ, ϑ)

)]
, (41)

By applying inverse Elzaki transform, we obtain

ξ(φ, φ, ϑ) = (φ) + E−1

(
sβE

[
− ∂

∂φ
(φξ(φ, ϑ)) +

∂2

∂φ2

(
φ2

2
ξ(φ, ϑ)

)])
. (42)

Hence, by implementing NITM, we obtain

ξ0(φ, ϑ) = φ,

ξ1(φ, ϑ) = E−1

[
sβE

{
− ∂

∂φ
(φξ0(φ, ϑ)) +

∂2

∂φ2

(
φ2

2
ξ0(φ, ϑ)

)}]
= φ

ϑβ

Γ(β + 1)
,
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ξ2(φ, ϑ) = E−1

[
sβE

{
− ∂

∂φ
(φξ1(φ, ϑ)) +

∂2

∂φ2

(
φ2

2
ξ1(φ, ϑ)

)}]
= φ

(ϑβ)2

Γ(2β + 1)
,

ξ3(φ, ϑ) = E−1

[
sβE

{
− ∂

∂φ
(φξ2(φ, ϑ)) +

∂2

∂φ2

(
φ2

2
ξ2(φ, ϑ)

)}]
= φ

(ϑβ)3

Γ(3β + 1)
,

...

Thus, we obtain the solution in series form as

ξ(φ, ϑ) = ξ0(φ, ϑ) + ξ1(φ, ϑ) + ξ2(φ, ϑ) + ξ3(φ, ϑ) + · · · ξn(φ, ϑ). (43)

So we obtain

ξ(φ, ϑ) = φ + φ
ϑβ

Γ(β + 1)
+ φ

(ϑβ)2

Γ(2β + 1)
+ φ

(ϑβ)3

Γ(3β + 1)
+ · · · . (44)

Now, by implementing HPETM, we obtain

∞

∑
n=0

pnwn(φ, ϑ) = (e−φ) + p{E−1(sβE[
∞

∑
n=0

pnHn(w)])}. (45)

By comparing both sides of the coefficient of p, we obtain:

p0 : w0(φ, ϑ) = φ,

p1 : w1(φ, ϑ) = [E−1{sβE(H0(w))}] = φ
ϑβ

Γ(β + 1)
,

p2 : w2(φ, ϑ) = [E−1{sβE(H1(w))}] = φ
(ϑβ)2

Γ(2β + 1)
,

p3 : w3(φ, ϑ) = [E−1{sβE(H2(w))}] = φ
(ϑβ)3

Γ(3β + 1)
,

...

(46)

Thus, we obtain solution in series form in terms of HPM as

ξ(φ, ϑ) =
∞

∑
n=0

pnwn(φ, ϑ). (47)

So we obtain

ξ(φ, ϑ) = φ + φ
ϑβ

Γ(β + 1)
+ φ

(ϑβ)2

Γ(2β + 1)
+ φ

(ϑβ)3

Γ(3β + 1)
+ · · · . (48)

The graphs in Figure 2 depict how the exact and suggested techniques solved the
problem when β = 1. Figure 2 depicts our method’s solution at various fractional orders of
β = 1, 0.75, 0.50, 0.25 inside the domain of 0 ≤ φ, ϑ ≥ 5, while Figure 2 depicts the solution
for problem 2 at ϑ = 0.5 and 0 ≤ φ ≥ 5, respectively. Additionally, Table 2 compares the
proposed method results in terms of absolute error at various fractional orders.
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Figure 2. Graphical layout of exact solution, proposed method solution, and 3D and 2D behavior at
various fractional orders of example 2.

Table 2. Comparative analysis of NITM and HPTM solution of example 2.

η ξ |Exact− N IT M| |Exact− N IT M| |Exact− HPT M| |Exact− HPT M|
β = 0.6 β = 1 β = 0.8 β = 1

0.5 4.36677680 × 10−03 3.5000000 × 10−09 1.64248450 × 10−03 3.5000000 × 10−09

1 1.74671070 × 10−02 7.0000000 × 10−09 3.28496900 × 10−03 7.0000000 × 10−09

1.5 3.93009910 × 10−02 1.0000000 × 10−08 4.92745400 × 10−03 1.0000000 × 10−08

2 6.98684280 × 10−02 1.4000000 × 10−08 6.56993800 × 10−03 1.4000000 × 10−08

2.5 1.09169419 × 10−02 1.8000000 × 10−08 8.21242200 × 10−03 1.8000000 × 10−08

0.001 3 1.57203963 × 10−02 2.1000000 × 10−08 9.85490700 × 10−03 2.1000000 × 10−08

3.5 2.13972060 × 10−01 2.4000000 × 10−08 1.14973920 × 10−02 2.4000000 × 10−08

4 2.79473710 × 10−01 2.8000000 × 10−08 1.31398760 × 10−02 2.8000000 × 10−08

4.5 3.53708920 × 10−01 3.2000000 × 10−08 1.47823600 × 10−02 3.2000000 × 10−08

5 4.36677680 × 10−01 3.5000000 × 10−08 1.64248450 × 10−02 3.5000000 × 10−08

0.5 6.12090700 × 10−03 1.7000000 × 10−08 2.73690750 × 10−03 1.7000000 × 10−08

1 2.44836280 × 10−02 3.4000000 × 10−08 5.47381500 × 10−03 3.4000000 × 10−08

1.5 5.50881630 × 10−02 5.1000000 × 10−08 8.21072200 × 10−03 5.1000000 × 10−08

2 9.79345120 × 10−02 6.8000000 × 10−08 1.09476300 × 10−02 6.8000000 × 10−08

2.5 1.53022675 × 10−02 8.5000000 × 10−08 1.36845380 × 10−02 8.5000000 × 10−08

0.002 3 2.20352652 × 10−01 1.0200000 × 10−07 1.64214450 × 10−02 1.0200000 × 10−07

3.5 2.99924450 × 10−01 1.1900000 × 10−07 1.91583520 × 10−02 1.1900000 × 10−07

4 3.91738050 × 10−01 1.3600000 × 10−07 2.18952600 × 10−02 1.3600000 × 10−07

4.5 4.95793470 × 10−01 1.5300000 × 10−07 2.46321680 × 10−02 1.5300000 × 10−07

5 6.12090700 × 10−01 1.7000000 × 10−07 2.73690750 × 10−02 1.7000000 × 10−07

4.3. Example

Let us consider the time-fractional Fokker–Planck equation as
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∂

∂ϑβ
(ξ(φ, ϑ)) +

∂

∂φ

(
4
φ

ξ2(φ, ϑ)

)
− ∂

∂φ

(
φ

3
ξ(φ, ϑ)

)
− ∂2

∂φ2

(
ξ2(φ, ϑ)

)
= 0, φ, ϑ > 0, β ∈ (0, 1], (49)

subjected to initial condition
ξ(φ, 0) = φ2. (50)

for special value β = 1; the exact solution is

ξ(φ, ϑ) = φ2 expϑ . (51)

By employing the Elzaki transform in Equation (49), we have

E[ξ(φ, φ, ϑ)] = s2(φ2) + sβE

[
∂

∂φ

(
φ

3
ξ(φ, ϑ)

)
+

∂2

∂φ2

(
ξ2(φ, ϑ)

)
− ∂

∂φ

(
4
φ

ξ2(φ, ϑ)

)]
, (52)

By applying the inverse Elzaki transform, we obtain

ξ(φ, φ, ϑ) = φ2 + E−1

(
sβE

[
∂

∂φ

(
φ

3
ξ(φ, ϑ)

)
+

∂2

∂φ2

(
ξ2(φ, ϑ)

)
− ∂

∂φ

(
4
φ

ξ2(φ, ϑ)

)])
. (53)

Hence, by implementing NITM, we obtain

ξ0(φ, ϑ) = φ2,

ξ1(φ, ϑ) = E−1[sβE{ ∂

∂φ

(
φ

3
ξ0(φ, ϑ)

)
+

∂2

∂φ2

(
ξ2

0(φ, ϑ)
)
− ∂

∂φ

(
4
φ

ξ2
0(φ, ϑ)

)
}] = φ2 ϑβ

Γ(β + 1)
,

ξ2(φ, ϑ) = E−1[sβE{ ∂

∂φ

(
φ

3
ξ1(φ, ϑ)

)
+

∂2

∂φ2

(
ξ2

1(φ, ϑ)
)
− ∂

∂φ

(
4
φ

ξ2
1(φ, ϑ)

)
}] = φ2 (ϑβ)2

Γ(2β + 1)
,

ξ3(φ, ϑ) = E−1[sβE{ ∂

∂φ

(
φ

3
ξ2(φ, ϑ)

)
+

∂2

∂φ2

(
ξ2

2(φ, ϑ)
)
− ∂

∂φ

(
4
φ

ξ2
2(φ, ϑ)

)
}] = φ2 (ϑβ)3

Γ(3β + 1)
,

...

Thus, we obtain the solution in series form as

ξ(φ, ϑ) = ξ0(φ, ϑ) + ξ1(φ, ϑ) + ξ2(φ, ϑ) + ξ3(φ, ϑ) + · · · ξn(φ, ϑ). (54)

So we obtain

ξ(φ, ϑ) = φ2 + φ2 ϑβ

Γ(β + 1)
+ φ2 (ϑβ)2

Γ(2β + 1)
+ φ2 (ϑβ)3

Γ(3β + 1)
+ · · · . (55)

Now, by implementing HPETM, we obtain

∞

∑
n=0

pnwn(φ, ϑ) = (e−φ) + p{E−1(sβE[
∞

∑
n=0

pnHn(w)])}. (56)

The non-linear terms are represented by the polynomials Hn(w). The elements of
He’s polynomials, for example, are obtained using the recursive relationship Hn(w) =
∂2

∂φ2

(
ξ2(φ, ϑ)

)
− ∂

∂φ

(
4
φ ξ2(φ, ϑ)

)
, ∀n ∈ N. The following approximation is achieved by

equating the equivalent power coefficient of p on both sides:
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p0 : w0(φ, ϑ) = cos(φ),

p1 : w1(φ, ϑ) = [E−1{sβE(H0(w))}] = φ2 ϑβ

Γ(β + 1)
,

p2 : w2(φ, ϑ) = [E−1{sβE(H1(w))}] = φ2 (ϑβ)2

Γ(2β + 1)
,

p3 : w3(φ, ϑ) = [E−1{sβE(H2(w))}] = φ2 (ϑβ)3

Γ(3β + 1)
,

...

(57)

The solution in series form by means of HPM is given as

ξ(φ, ϑ) =
∞

∑
n=0

pnwn(φ, ϑ). (58)

So we obtain

ξ(φ, ϑ) = φ2 + φ2 ϑβ

Γ(β + 1)
+ φ2 (ϑβ)2

Γ(2β + 1)
+ φ2 (ϑβ)3

Γ(3β + 1)
. (59)

The graphs in Figure 3 depict how the exact and suggested techniques solved the
problem when β = 1. Figure 3 depicts our method’s solution at various fractional orders of
β = 1, 0.75, 0.50, 0.25 inside the domain of 0 ≤ φ, ϑ ≥ 5, while Figure 3 depicts the solution
for problem 3 at ϑ = 0.5 and 0 ≤ φ ≥ 10, respectively.

Figure 3. Graphical layout of exact solution, proposed method solution, and 3D and 2D behavior at
various fractional orders of example 3.
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4.4. Example

Let us consider the time-fractional Fokker–Planck equation as

∂

∂ϑβ
(ξ(φ, ϑ))− ∂

∂φ
ξ(φ, ϑ)− ∂2

∂φ2 ξ(φ, ϑ) = 0, ϑ > 0, β ∈ (0, 1], (60)

subjected to initial condition
ξ(φ, 0) = φ, (61)

for special value β = 1; the exact solution is

ξ(φ, ϑ) = φ + ϑ. (62)

By employing the Elzaki transform in Equation (60), we have

E[ξ(φ, φ, ϑ)] = s2(φ) + sβE

[
∂

∂φ
ξ(φ, ϑ) +

∂2

∂φ2 ξ(φ, ϑ)

]
, (63)

By applying the inverse Elzaki transform, we obtain

ξ(φ, φ, ϑ) = (φ) + E−1

(
sβE

[
∂

∂φ
ξ(φ, ϑ) +

∂2

∂φ2 ξ(φ, ϑ)

])
. (64)

Hence, by implementing NITM, we obtain

ξ0(φ, ϑ) = φ,

ξ1(φ, ϑ) = E−1

[
sβE

{
∂

∂φ
ξ0(φ, ϑ) +

∂2

∂φ2 ξ0(φ, ϑ)

}]
=

ϑβ

Γ(β + 1)
,

ξ2(φ, ϑ) = E−1

[
sβE

{
∂

∂φ
ξ1(φ, ϑ) +

∂2

∂φ2 ξ1(φ, ϑ)

}]
= 0,

ξ3(φ, ϑ) = E−1

[
sβE

{
∂

∂φ
ξ2(φ, ϑ) +

∂2

∂φ2 ξ2(φ, ϑ)

}]
= 0,

...

Thus, we obtain the solution in series form as

ξ(φ, ϑ) = ξ0(φ, ϑ) + ξ1(φ, ϑ) + ξ2(φ, ϑ) + ξ3(φ, ϑ) + · · · ξn(φ, ϑ). (65)

So we obtain

ξ(φ, ϑ) = φ +
ϑβ

Γ(β + 1)
. (66)

Now, by implementing HPETM, we obtain

∞

∑
n=0

pnwn(φ, ϑ) = (e−φ) + p{E−1(sβE[
∞

∑
n=0

pnHn(w)])}. (67)
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By comparing both sides of the coefficient of p, we obtain:

p0 : w0(φ, ϑ) = φ,

p1 : w1(φ, ϑ) = [E−1{sβE(H0(w))}] = ϑβ

Γ(β + 1)
,

p2 : w2(φ, ϑ) = [E−1{sβE(H1(w))}] = 0,

p3 : w3(φ, ϑ) = [E−1{sβE(H2(w))}] = 0,
...

(68)

Thus, we obtain the solution in series form in terms of HPM as

ξ(φ, ϑ) =
∞

∑
n=0

pnwn(φ, ϑ). (69)

So we obtain

ξ(φ, ϑ) = φ +
ϑβ

Γ(β + 1)
. (70)

The graphs in Figure 4 depict how the exact and suggested techniques solved the
problem when β = 1. Figure 4 depicts our method’s solution at various fractional orders of
β = 1, 0.75, 0.50, 0.25 inside the domain of 0 ≤ φ, ϑ ≥ 5, while Figure 4 depicts the solution
for problem 4 at ϑ = 0.5 and 0 ≤ φ ≥ 5, respectively.

Figure 4. Graphical layout of exact solution, proposed method solution, and 3D and 2D behavior at
various fractional orders of example 4.

4.5. Example

Let us consider the time-fractional Fokker–Planck equation as

∂β

∂ϑβ
(ξ(φ, ϑ))− (1− φ)

∂

∂φ
ξ(φ, ϑ)− (eϑφ2)

∂2

∂φ2 ξ(φ, ϑ) = 0, ϑ > 0, β ∈ (0, 1], (71)
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subjected to initial condition
ξ(φ, 0) = 1 + φ, (72)

for special value β = 1; the exact solution is

ξ(φ, ϑ) = expϑ(1 + φ). (73)

By employing the Elzaki transform in Equation (71), we have

E[ξ(φ, φ, ϑ)] = s2(1 + φ) + sβE

[
(1− φ)

∂

∂φ
ξ(φ, ϑ) + (eϑφ2)

∂2

∂φ2 ξ(φ, ϑ)

]
, (74)

By applying the inverse Elzaki transform, we obtain

ξ(φ, φ, ϑ) = (1 + φ) + E−1

(
sβE

[
(1− φ)

∂

∂φ
ξ(φ, ϑ) + (eϑφ2)

∂2

∂φ2 ξ(φ, ϑ)

])
. (75)

Hence, by implementing NITM, we obtain

ξ0(φ, ϑ) = 1 + φ,

ξ1(φ, ϑ) = E−1

[
sβE

{
(1− φ)

∂

∂φ
ξ0(φ, ϑ) + (eϑφ2)

∂2

∂φ2 ξ0(φ, ϑ)

}]
= (1 + φ)

ϑβ

Γ(β + 1)
,

ξ2(φ, ϑ) = E−1

[
sβE

{
(1− φ)

∂

∂φ
ξ1(φ, ϑ) + (eϑφ2)

∂2

∂φ2 ξ1(φ, ϑ)

}]
= (1 + φ)

(ϑβ)2

Γ(2β + 1)
,

ξ3(φ, ϑ) = E−1

[
sβE

{
(1− φ)

∂

∂φ
ξ2(φ, ϑ) + (eϑφ2)

∂2

∂φ2 ξ2(φ, ϑ)

}]
= (1 + φ)

(ϑβ)3

Γ(3β + 1)
,

...

Thus, we obtain the solution in series form as

ξ(φ, ϑ) = ξ0(φ, ϑ) + ξ1(φ, ϑ) + ξ2(φ, ϑ) + ξ3(φ, ϑ) + · · · ξn(φ, ϑ). (76)

So we obtain

ξ(φ, ϑ) = (1 + φ) + (1 + φ)
ϑβ

Γ(β + 1)
+ (1 + φ)

(ϑβ)2

Γ(2β + 1)
+ (1 + φ)

(ϑβ)3

Γ(3β + 1)
+ · · · . (77)

Now, by implementing HPETM, we obtain

∞

∑
n=0

pnwn(φ, ϑ) = (e−φ) + p{E−1(sβE[
∞

∑
n=0

pnHn(w)])}. (78)
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By comparing both sides of the coefficient of p, we obtain:

p0 : w0(φ, ϑ) = 1 + φ,

p1 : w1(φ, ϑ) = [E−1{sβE(H0(w))}] = (1 + φ)
ϑβ

Γ(β + 1)
,

p2 : w2(φ, ϑ) = [E−1{sβE(H1(w))}] = (1 + φ)
(ϑβ)2

Γ(2β + 1)
,

p3 : w3(φ, ϑ) = [E−1{sβE(H2(w))}] = (1 + φ)
(ϑβ)3

Γ(3β + 1)
,

...

(79)

Thus, we obtain the solution in series form in terms of HPM as

ξ(φ, ϑ) =
∞

∑
n=0

pnwn(φ, ϑ). (80)

So we obtain

ξ(φ, ϑ) = (1 + φ) + (1 + φ)
ϑβ

Γ(β + 1)
+ (1 + φ)

(ϑβ)2

Γ(2β + 1)
+ (1 + φ)

(ϑβ)3

Γ(3β + 1)
+ · · · . (81)

The graphs in Figure 5 depict how the exact and suggested techniques solved the
problem when β = 1. Figure 5 depicts our method’s solution at various fractional orders of
β = 1, 0.75, 0.50, 0.25 inside the domain of 0 ≤ φ, ϑ ≥ 5, while Figure 5 depicts the solution
for problem 5 at ϑ = 0.5 and 0 ≤ φ ≥ 10, respectively.

Figure 5. Graphical layout of exact solution, proposed method solution, and 3D and 2D behavior at
various fractional orders of example 5.
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5. Conclusions

To solve the space and time-fractional Fokker–Planck equation, the new iterative
approach and the homotopy perturbation method are used in this article. The two methods
are particularly powerful and efficient in finding analytical and numerical solutions for
a wide range of space-time fractional partial differential equations. Without employing
linearization, perturbation or limiting assumptions, they give results in terms of convergent
series with easily computed components. The study demonstrates that the two methodolo-
gies need less computational effort than previous methods while providing quantitatively
accurate results. In all examples, the excellent agreement of numerical findings between
the two approaches is also evident and notable. Finally, the proposed approaches are more
efficient and solve the complexity of calculating fractional order PDE solutions, which
occurs frequently in science and engineering.
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