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Abstract: The primary objective of this article was to introduce a new probabilistic model for the dis-
cussion and analysis of random covariates. The introduced model was derived based on the Marshall–
Olkin shock model. After proposing the mathematical form of the new bivariate model, some of its
distributional properties, including joint probability distribution, joint reliability distribution, joint
reversed (hazard) rate distribution, marginal probability density function, conditional probability
density function, moments, and distributions for both Y = max{X1, X2} and W = min{X1, X2}, were
investigated. This novel model can be applied to discuss and evaluate symmetric and asymmetric
data under various kinds of dispersion. Moreover, it can be used as a probability approach to analyze
different shapes of hazard rates. The maximum likelihood approach was utilized for estimating the
parameters of the bivariate model. A simulation study was carried out to assess the performance of
the parameters, and it was noted that the maximum likelihood technique can be used to generate
consistent estimators. Finally, two real datasets were analyzed to illustrate the notability of the novel
bivariate distribution, and it was found that the suggested distribution provided a better fit than the
competitive bivariate models.

Keywords: statistical model; Marshall–Olkin shock model; marginal distributions; simulation; com-
parative study; statistics and numerical data

MSC: 60E05; 62H12; 62P99

1. Introduction

In the field of statistics, data are classified according to the number of variables in a
given study. Depending on how many variables are being considered, the data may be
univariate, “single variable/factor”, or it may be bivariate, “double variables/factors”.
Bivariate data can also be two sets of items that are dependent on each other. These
data are one of the simplest forms of statistical analysis and are used to see if there is a
relationship between two sets of values X1 and X2. Furthermore, the bivariate data could
be temperatures in two different regions, droughts in two different regions, grades for two
different educational courses, two teams’ results per year, etc. Because of these situations,
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many statisticians aim to create flexible bivariate/joint probability models for discussing
and analyzing such data.

To generate a bivariate model, there are different methods that can be used. One
of these techniques is called the shock model (see Marshall and Olkin “MO”, [1]). For a
discussion of the MO technique, suppose we have three independent sources of shocks,
and that these shocks affect a two-component system. The shock from source number one
is supposed to reach the system and destroy the first component instantly, and the shock
from the second source reaches the system and destroys the second component instantly,
but if the shock from the third source hits the system, it instantly destroys both components.
Given the importance of this approach, many statisticians have applied it to construct a
bivariate probability structure. For instance, Domma [2] presented a bivariate MO Burr
type III distribution, Sarhan et al. [3] derived a bivariate MO-generalized linear failure
rate model, Barreto-Souza and Lemonte [4] introduced a bivariate MO Kumaraswamy
family/class of distributions, Kundu and Gupta [5] discussed a bivariate MO Weibull
geometric model, Shahen et al. [6] proposed a bivariate MO exponentiated modified
Weibull distribution, Eliwa and El-Morshedy [7,8] derived and studied two bivariate MO
generators based on Gumbel-G and odd Weibull-G families, Franco et al. [9] introduced
a bivariate MO generator based on Burr type X and inverted Kumaraswamy classes,
Tahir et al. [10] discussed a bivariate MO for a new Kumaraswamy generalized family,
El-Morshedy et al. [11] discussed a bivariate MO generator for a unit interval of (0, 1),
Kundu [12] proposed a semi-parametric singular class based on MO approach, etc.

Although there are many bivariate MO models mentioned in the statistical literature,
there is room for creating bivariate models that are more appropriate to discuss the complex
data that are generated day in and day out. From this point of view, the authors planned to
derive a flexible bivariate model that could be used as a utility for statisticians interested in
discussing bivariate data under different formats. To achieve this goal, the exponentiated
inverse flexible Weibull extension (for short, EIFWE) model (El-Morshedy et al., [13]) was
used as a baseline model of the MO technique, and consequently, the generated model
is called a bivariate EIFWE (for short, BEIFWE). The cumulative distribution function
(CDF) and its corresponding probability density function (PDF) of the EIFWE model can be
determined, respectively, as follows:

F(x; λ, α, β) = e−λe
α
x−βx

; λ, α, β > 0, x ≥ 0 (1)

and
f (x; λ, α, β) = λ(

α

x2 + β)e
α
x−βxe−λe

α
x−βx

; λ, α, β > 0, x ≥ 0. (2)

The method proposed in this paper can be applied for the following reasons: Joint
PDF and joint CDF can be expressed in closed forms, which makes the application more
convenient in practice; the joint PDF and joint hazard rate functions (HRFs) can take
different forms depending on the values of their parameters; margin can be used to analyze
different forms of failure rates; the model can be applied quite easily if there are links/ties
in the data; and the model can be utilized to discuss symmetric and asymmetric datasets
under different forms of scattering.

The article unfolds as follows: In Section 2, the mathematical structure of the BEIFWE
model is derived. Some statistical properties of the BEIFWE distribution are discussed in
Section 3. In Section 4, the parameters of the BEIFWE model are estimated by utilizing the
maximum likelihood method. A simulation study is performed in Section 5. The usefulness
of the BEIFWE distribution and its testing across two real datasets is illustrated in Section 6.
Finally, some concluding remarks and future work are listed in Section 7.

2. Structure of the BEIFWE Model

Suppose Ui (i = 1, 2, 3) are three independent random variables (RVs) such that Ui
∼ EIFWE (λ, α, β). Define X1 = max{U1, U3} and X2 = max{U2, U3}. Then, the bivariate
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vector “BVr” X = (X1, X2) has a BEIFWE distribution with parameters (λ1, λ2, λ3, α, β),
e.g., BEIFWE(λ1, λ2, λ3, α, β). The joint CDF of the BVr X is given as

F(x1, x2) = Pr(X1 ≤ x1, X2 ≤ x2)

= Pr(max{U1, U3} ≤ x1, max{U2, U3} ≤ x2)

= Pr(U1 ≤ x1, U2 ≤ x2, U3 ≤ min(x1, x2))

Pr(U1 ≤ x1)Pr(U2 ≤ x2)Pr(U3 ≤ min(x1, x2))

=

[
e−λ1e

α
x1
−βx1

][
e−λ2e

α
x2
−βx2

][
e−λ3e

α
z −βz

]
, (3)

where z = min(x1, x2). Figure 1 shows the joint CDF plots for the BEIFWE model based
on various values of the BEIFWE parameters “a: λ1 = λ2 = λ3 = 2, α = 0.6, β = 0.9”; “b:
λ1 = 2, λ2 = 3, λ3 = 5, α = 0.9, β = 1.2”; and “c: λ1 = λ2 = λ3 = 5, α = 2, β = 0.8”.

of the BVr X is given as

F (x1, x2) = Pr (X1 ≤ x1, X2 ≤ x2)
= Pr (max{U1, U3} ≤ x1,max{U2, U3} ≤ x2)
= Pr (U1 ≤ x1, U2 ≤ x2, U3 ≤ min (x1, x2))
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=
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α
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α
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α
z
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]
, (3)

where z = min (x1, x2) . Figure 1 shows the joint CDF plots for the BEIFWE model based on various
values of the BEIFWE parameters "a: λ1 = λ2 = λ3 = 2, α = 0.6, β = 0.9"; "b: λ1 = 2, λ2 = 3, λ3 =
5, α = 0.9, β = 1.2"; and "c: λ1 = λ2 = λ3 = 5, α = 2, β = 0.8".
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Figure 1. The joint CDF of the BEIFWE distribution.

The joint PDF corresponding to Equation (3) can be listed as

f(x1, x2) =

 f1(x1, x2) if x1 < x2
f2(x1, x2) if x2 < x1
f0(x, x) if x1 = x2 = x,

(4)

where

f1(x1, x2) = fEIFWE(x2;λ2, α, β)fEIFWE(x1;λ1 + λ3, α, β)

= λ2 (λ1+λ3)

(
α

x21
+ β

)
e
α
x1
−βx1e−λ2e

α
x2

−βx2
(
α

x22
+ β

)
e
α
x2
−βx2e−(λ1+λ3)e

α
x1

−βx1
,

f2(x1, x2) = fEIFWE(x1;λ1, α, β)fEIFWE(x2;λ2 + λ3, α, β)

= λ1 (λ2+λ3)

(
α

x21
+ β

)
e
α
x1
−βx1e−λ1e

α
x1

−βx1
(
α

x22
+ β

)
e
α
x2
−βx2e−(λ2+λ3)e

α
x2

−βx2

and

f3(x, x) =
λ3

λ1 + λ2 + λ3
fEIFWE(x2;λ1 + λ2 + λ3, α, β)

= λ3

( α
x2

+ β
)
e
α
x−βxe−(λ1+λ2+λ3)e

α
x
−βx

.

To derive Equation (4), assume that x1 < x2, then the expression for f1(x1, x2) can be obtained by
differentiating the joint CDF given in Equation (3) with respect to x1 and x2. Similarly, for x2 < x1.
But f3(x, x) cannot be derived in a similar approach. For this reason, when x1 = x2 = x, the following
formula can be applied to derive f3(x, x)

∞∫
0

x2∫
0

f1(x1, x2)dx1dx2 +

∞∫
0

x1∫
0

f2(x1, x2)dx2dx1 +

∞∫
0

f3(x, x)dx = 1, (5)
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The joint PDF corresponding to Equation (3) can be listed as

f (x1, x2) =


f1(x1, x2) if x1 < x2
f2(x1, x2) if x2 < x1
f0(x, x) if x1 = x2 = x,

(4)

where

f1(x1, x2) = fEIFWE(x2; λ2, α, β) fEIFWE(x1; λ1 + λ3, α, β)

= λ2(λ1+λ3)

(
α

x2
1
+ β

)
e

α
x1
−βx1 e−λ2e

α
x2
−βx2

(
α

x2
2
+ β

)
e

α
x2
−βx2 e−(λ1+λ3)e

α
x1
−βx1

,

f2(x1, x2) = fEIFWE(x1; λ1, α, β) fEIFWE(x2; λ2 + λ3, α, β)

= λ1(λ2+λ3)

(
α

x2
1
+ β

)
e

α
x1
−βx1 e−λ1e

α
x1
−βx1

(
α

x2
2
+ β

)
e

α
x2
−βx2 e−(λ2+λ3)e

α
x2
−βx2

and

f3(x, x) =
λ3

λ1 + λ2 + λ3
fEIFWE(x2; λ1 + λ2 + λ3, α, β)

= λ3

( α

x2 + β
)

e
α
x−βxe−(λ1+λ2+λ3)e

α
x−βx

.

To derive Equation (4), assume that x1 < x2; then, the expression for f1(x1, x2) can be
obtained by differentiating the joint CDF given in Equation (3) with respect to x1 and x2.
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Similarly, for x2 < x1. However, f3(x, x) cannot be derived in a similar approach. For this
reason, when x1 = x2 = x, the following formula can be applied to derive f3(x, x)

∞∫
0

x2∫
0

f1(x1, x2)dx1dx2 +

∞∫
0

x1∫
0

f2(x1, x2)dx2dx1 +

∞∫
0

f3(x, x)dx = 1, (5)

where

I1 =

∞∫
0

x2∫
0

f1(x1, x2)dx1dx2 =

∞∫
0

λ2

(
α

x2
2
+ β

)
e

α
x2
−βx2 e−λ2e

α
x2
−βx2

e−(λ1+λ3)e
α

x2
−βx2

dx2

and

I2 =

∞∫
0

x1∫
0

f2(x1, x2)dx2dx1 =

∞∫
0

λ1

(
α

x2
1
+ β

)
e

α
x1
−βx1 e−λ1e

α
x1
−βx1

e−(λ2+λ3)e
α

x1
−βx1

dx1, (6)

then

I3 =

∞∫
0

f3(x, x)dx =

∞∫
0

(λ1 + λ2 + λ3)
( α

x2 + β
)

e
α
x−βxe−(λ1+λ2+λ3)e

α
x−βx

dx

−
∞∫

0

λ2

( α

x2 + β
)

e
α
x−βxe−(λ1+λ2+λ3)e

α
x−βx

dx−
∞∫

0

λ1

( α

x2 + β
)

e
α
x−βxe−(λ1+λ2+λ3)e

α
x−βx

dx.

Thus,
f3(x, x) = λ3

( α

x2 + β
)

e
α
x−βxe−(λ1+λ2+λ3)e

α
x−βx

.

Figure 2 shows the joint PDF plots for the BEIFWE model based on various schemas “a:
λ1 = λ2 = λ3 = 2, α = 0.6, β = 0.9”; “b: λ1 = 2, λ2 = 3, λ3 = 5, α = 0.9, β = 1.2”; and “c:
λ1 = λ2 = λ3 = 5, α = 2, β = 0.8”.
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λ2

(
α

x22
+ β

)
e
α
x2
−βx2e−λ2e

α
x2
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α
x2

−βx2
dx2

and

I2 =
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α
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α
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α
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Figure 2. The joint PDF of the BEIFWE distribution.

The joint PDF of the BEIFWE model can take different forms depending on the values of its parameters.
Thus, the proposed probability tool can be applied to analyze various types of data sets in different fields
including symmetric and asymmetric observations.

3 Distributional Properties

3.1 Joint reliability and joint (reversed) hazard rate functions

Assume the random vector (RmVr) X have the BEIFWE(λ1, λ2, λ3, α, β) distribution, then the joint
RF can be expressed as

R(x1, x2) =

 R1(x1, x2) if x1 < x2
R2(x1, x2) if x2 < x1
R0(x, x) if x1 = x2 = x,

(7)

where

R1(x1, x2) = 1−
[
e−(λ2+λ3)e

α
x2

−βx2
]
−
[
e−(λ1+λ3)e

α
x1

−βx1
]
−
[
e−(λ1+λ3)e

α
x1

−βx1
× e−λ2e

α
x2

−βx2
]
,

4

Figure 2. The joint PDF of the BEIFWE distribution.

The joint PDF of the BEIFWE model can take different forms depending on the values
of its parameters. Thus, the proposed probability tool can be applied to analyze various
types of datasets in different fields including symmetric and asymmetric observations.

3. Distributional Properties
3.1. Joint Reliability and Joint (Reversed) Hazard Rate Functions

Assume the random vector (RmVr) X has the BEIFWE (λ1, λ2, λ3, α, β) distribution;
then, the joint RF can be expressed as

R(x1, x2) =


R1(x1, x2) if x1 < x2
R2(x1, x2) if x2 < x1
R0(x, x) if x1 = x2 = x,

(7)
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where

R1(x1, x2) = 1−
[

e−(λ2+λ3)e
α

x2
−βx2

]
−
[

e−(λ1+λ3)e
α

x1
−βx1

]
−
[

e−(λ1+λ3)e
α

x1
−βx1 × e−λ2e

α
x2
−βx2

]
,

R2(x1, x2) = 1−
[

e−(λ1+λ3)e
α

x1
−βx1

]
−
[

e−(λ2+λ3)e
α

x2
−βx2

]
−
[

e−(λ2+λ3)e
α

x2
−βx2 × e−λ1e

α
x1
−βx1

]
and

R0(x, x) = 1−
(

e−λ1e
α
x−βx

+ e−λ2e
α
x−βx

+ e−(λ1+λ2)e
α
x−βx

)
e−λ3e

α
x−βx

.

Equation (7) can be derived utilizing the following relation:

RX1,X2(x1, x2) = 1− FX1(x1)− FX2(x2) + FX1,X2(x1, x2). (8)

Figure 3 shows the joint RF plots for the BEIFWE according to different schemas “a:
λ1 = λ2 = λ3 = 2, α = 0.6, β = 0.9”; “b: λ1 = 2, λ2 = 3, λ3 = 5, α = 0.9, β = 1.2”; and “c:
λ1 = λ2 = λ3 = 5, α = 2, β = 0.8”.

R2(x1, x2) = 1−
[
e−(λ1+λ3)e

α
x1

−βx1
]
−
[
e−(λ2+λ3)e

α
x2

−βx2
]
−
[
e−(λ2+λ3)e

α
x2

−βx2
× e−λ1e

α
x1

−βx1
]

and
R0(x, x) = 1−

(
e−λ1e

α
x
−βx

+ e−λ2e
α
x
−βx

+ e−(λ1+λ2)e
α
x
−βx
)
e−λ3e

α
x
−βx

.

Equation (7) can be derived utilizing the following relation

RX1,X2
(x1, x2) = 1− FX1

(x1)− FX2
(x2) + FX1,X2

(x1, x2). (8)

Figure 3 shows the joint RF plots for the BEIFWE according to different schemas "a: λ1 = λ2 = λ3 =
2, α = 0.6, β = 0.9"; "b: λ1 = 2, λ2 = 3, λ3 = 5, α = 0.9, β = 1.2"; and "c: λ1 = λ2 = λ3 = 5, α = 2, β =
0.8".
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Figure 3. The joint RF of the BEIFWE distribution.

The joint HRF corresponding to Equation (7) can be expressed as

hX1,X2
(x1, x2) =

 h1(x1, x2) if x1 < x2
h2(x1, x2) if x2 < x1
h0(x, x) if x1 = x2 = x,

(9)

where

h1(x1, x2) =
λ2 (λ1+λ3)

(
α
x21

+ β
)
e
α
x1
−βx1e−λ2e

α
x2

−βx2 ×
(
α
x22

+ β
)
e
α
x2
−βx2e−(λ1+λ3)e

α
x1

−βx1

1−
[
e−(λ2+λ3)e

α
x2

−βx2
]
−
[
e−(λ1+λ3)e

α
x1

−βx1
]
−
[
e−(λ1+λ3)e

α
x1

−βx1 × e−λ2e
α
x2

−βx2
] ,

h2(x1, x2) =
λ1 (λ2+λ3)

(
α
x21

+ β
)
e
α
x1
−βx1e−λ1e

α
x1

−βx1 ×
(
α
x22

+ β
)
e
α
x2
−βx2e−(λ2+λ3)e

α
x2

−βx2

1−
[
e−(λ1+λ3)e

α
x1

−βx1
]
−
[
e−(λ2+λ3)e

α
x2

−βx2
]
−
[
e−(λ2+λ3)e

α
x2

−βx2 × e−λ1e
α
x1

−βx1
]

and

h0(x, x) =
λ3
(
α
x2 + β

)
e
α
x−βxe−(λ1+λ2+λ3)e

α
x
−βx

1− e−λ3e
α
x
−βx ×

(
e−λ1e

α
x
−βx

+ e−λ2e
α
x
−βx

+ e−(λ1+λ2)e
α
x
−βx
) .

Equation (9) can be derived using hX1,X2
(x1, x2) =

fX1,X2 (x1,x2)

RX1,X2 (x1,x2)
, for more detail around the joint HRF

(see Basu, [14]). Figure 4 shows the joint HRF plots for the BEIFWE based on various schemes "a:
λ1 = λ2 = λ3 = 2, α = 0.6, β = 0.9", "b: λ1 = 2, λ2 = 3, λ3 = 5, α = 0.9, β = 1.2" and "c: λ1 = λ2 =
λ3 = 5, α = 2, β = 0.8".
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The joint HRF corresponding to Equation (7) can be expressed as

hX1,X2(x1, x2) =


h1(x1, x2) if x1 < x2
h2(x1, x2) if x2 < x1
h0(x, x) if x1 = x2 = x,

(9)

where

h1(x1, x2) =

λ2(λ1+λ3)

(
α
x2

1
+ β

)
e

α
x1
−βx1 e−λ2e

α
x2
−βx2 ×

(
α
x2

2
+ β

)
e

α
x2
−βx2 e−(λ1+λ3)e

α
x1
−βx1

1−
[

e−(λ2+λ3)e
α

x2
−βx2

]
−
[

e−(λ1+λ3)e
α

x1
−βx1

]
−
[

e−(λ1+λ3)e
α

x1
−βx1 × e−λ2e

α
x2
−βx2

] ,

h2(x1, x2) =

λ1(λ2+λ3)

(
α
x2

1
+ β

)
e

α
x1
−βx1 e−λ1e

α
x1
−βx1 ×

(
α
x2

2
+ β

)
e

α
x2
−βx2 e−(λ2+λ3)e

α
x2
−βx2

1−
[

e−(λ1+λ3)e
α

x1
−βx1

]
−
[

e−(λ2+λ3)e
α

x2
−βx2

]
−
[

e−(λ2+λ3)e
α

x2
−βx2 × e−λ1e

α
x1
−βx1

]
and

h0(x, x) =
λ3

(
α
x2 + β

)
e

α
x−βxe−(λ1+λ2+λ3)e

α
x−βx

1− e−λ3e
α
x−βx ×

(
e−λ1e

α
x−βx

+ e−λ2e
α
x−βx

+ e−(λ1+λ2)e
α
x−βx

) .

Equation (9) can be derived using hX1,X2(x1, x2) =
fX1,X2 (x1,x2)

RX1,X2 (x1,x2)
; more details on the joint

HRF are provided in a study by Basu, [14]). Figure 4 shows the joint HRF plots for
the BEIFWE based on various schemes “a: λ1 = λ2 = λ3 = 2, α = 0.6, β = 0.9”, “b:
λ1 = 2, λ2 = 3, λ3 = 5, α = 0.9, β = 1.2” and “c: λ1 = λ2 = λ3 = 5, α = 2, β = 0.8”.
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Figure 4. The joint HRF of the BEIFWE distribution.

As we can see, the joint HRF of the BEIFWE model can take various shapes depending on the values of
its parameters. Thus, the presented distribution can be utilized to discuss different kinds of data sets in
several fields. The corresponding joint reversed HRF "RHRF" to Equation (7) can be formulated as

rX1,X2
(x1, x2) =

 r1(x1, x2) if x1 < x2
r2(x1, x2) if x2 < x1
r0(x, x) if x1 = x2 = x,

(10)

where

r1(x1, x2) = λ2 (λ1+λ3)

(
α

x21
+ β

)
e
α
x1
−βx1

(
α

x22
+ β

)
e
α
x2
−βx2 ,

r2(x1, x2) = λ1 (λ2+λ3)

(
α

x21
+ β

)
e
α
x1
−βx1

(
α

x22
+ β

)
e
α
x2
−βx2

and

r0(x, x) = λ3

( α
x2

+ β
)
e
α
x−βx.

Equation (10) can be derived using rX1,X2
(x1, x2) =

fX1,X2 (x1,x2)

FX1,X2 (x1,x2)
, for more detail around the RHRF

(Bismi, [15]).

3.2 Marginal probability density functions

Lemma 1. If the RmVr X have a BEIFWE(λ1, λ2, λ3, α, β), then the marginal PDFs of Xi; i = 1, 2
can be proposed as

f(xi) = (λi + λ3)

(
α

x2i
+ β

)
e
α
xi
−βxie−(λi+λ3)e

α
xi

−βxi
= fEIFWE(xi;λi + λ3, α, β), (11)

where xi > 0 and i = 1, 2.

Proof. Since the marginal CDFs for Xi Xi; i = 1, 2 can be defined by

F (xi) = Pr (Xi ≤ xi) = Pr (max{Ui, U3} ≤ xi)
= Pr (Ui ≤ xi, U3 ≤ xi) ,

and the RVs Ui (i = 1, 2, 3) are mutually independent, we directly obtain

F (xi) = Pr (Ui ≤ xi) Pr(U3 ≤ xi)
= FEIFWE(xi;λi, α, β)× FEIFWE(x3;λ3, α, β)

= e−(λ3+λi)e
α
xi

−βxi
= FEIFWE(xi;λi + λ3, α, β).

Then, it is easy to get the marginal PDFs where f(xi) = ∂
∂xi

F (xi).
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As we can see, the joint HRF of the BEIFWE model can take various shapes depending
on the values of its parameters. Thus, the presented distribution can be utilized to discuss
different kinds of datasets in several fields. The corresponding joint reversed HRF “RHRF”
to Equation (7) can be formulated as

rX1,X2(x1, x2) =


r1(x1, x2) if x1 < x2
r2(x1, x2) if x2 < x1
r0(x, x) if x1 = x2 = x,

(10)

where

r1(x1, x2) = λ2(λ1+λ3)

(
α

x2
1
+ β

)
e

α
x1
−βx1

(
α

x2
2
+ β

)
e

α
x2
−βx2 ,

r2(x1, x2) = λ1(λ2+λ3)

(
α

x2
1
+ β

)
e

α
x1
−βx1

(
α

x2
2
+ β

)
e

α
x2
−βx2

and
r0(x, x) = λ3

( α

x2 + β
)

e
α
x−βx.

Equation (10) can be derived using rX1,X2(x1, x2) =
fX1,X2 (x1,x2)

FX1,X2 (x1,x2)
; for more detail on the

RHRF, readers can refer to Bismi, [15].

3.2. Marginal Probability Density Functions

Lemma 1. If the RmVr X have a BEIFWE(λ1, λ2, λ3, α, β), then the marginal PDFs of Xi; i = 1, 2
can be proposed as

f (xi) = (λi + λ3)

(
α

x2
i
+ β

)
e

α
xi
−βxi e−(λi+λ3)e

α
xi
−βxi

= fEIFWE(xi; λi + λ3, α, β), (11)

where xi > 0 and i = 1, 2.

Proof. Since the marginal CDFs for Xi Xi; i = 1, 2 can be defined by

F(xi) = Pr(Xi ≤ xi) = Pr(max{Ui, U3} ≤ xi)

= Pr(Ui ≤ xi, U3 ≤ xi),

and the RVs Ui (i = 1, 2, 3) are mutually independent, we directly obtain

F(xi) = Pr(Ui ≤ xi)Pr(U3 ≤ xi)

= FEIFWE(xi; λi, α, β)× FEIFWE(x3; λ3, α, β)

= e−(λ3+λi)e
α
xi
−βxi

= FEIFWE(xi; λi + λ3, α, β).

Then, it is easy to obtain the marginal PDFs where f (xi) =
∂

∂xi
F(xi).
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3.3. The Distribution of Y = max{X1, X2} and W = min{X1, X2}
Consider that the RmVr X has the BEIFWE distribution; then, the CDF for the RV Y

and W can be expressed as

FY(y) = Pr(max{X1, X2} ≤ y) = Pr(X1 ≤ y, X2 ≤ y)
= Pr(max{U1, U3} ≤ y, max{U2, U3} ≤ y)
= Pr(U1 ≤ y, U2 ≤ y, U3 ≤ y) = Pr(U1 ≤ y)Pr(U2 ≤ y)Pr(U3 ≤ y)

= e−(λ1+λ2+λ3)e
α
y−βy

and

FW(w) = Pr(W ≤ w) = Pr(min{X1, X2} ≤ w)

= 1− Pr(min{X1, X2} > w) = 1− Pr(X1 > w, X2 > w)

= e−λ1e
α
w−βw

+ e−λ2e
α
w−βw − e−(λ1+λ2)e

α
w−βw

.

The distributions of the RVs Y and W can be used in reliability theory, especially in manu-
facturing and maintenance. Another application of the RVs Y and W is that they can be
applied to read and evaluate signals received from space via satellites.

3.4. Conditional Probability Density Functions

Lemma 2. Assume the RVr X has the BEIFWE(λ1, λ2, λ3, α, β); then, the conditional PDF of Xi
given Xj = xj ,

(i, j = 1, 2; i 6= j) can be expressed as

fXi |Xj
(xi | xj) =


f (1)Xi |Xj

(xi | xj) if 0 < xi < xj

f (2)Xi |Xj
(xi | xj) if 0 < xj < xi

f (3)Xi |Xj
(xi | xj) if xi = xj > 0,

(12)

where

f (1)Xi |Xj
(xi | xj) =

λj(λi + λ3)

(
α
x2

i
+ β

)
e

α
xi
−βxi e−λje

α
xj
−βxj

e−(λi+λ3)e
α
xi
−βxi

(λj + λ3)e−(λj+λ3)e
α
xj
−βxj

,

f (2)Xi |Xj
(xi | xj) = λi

(
α

x2
i
+ β

)
e

α
xi
−βxi e−λie

α
xi
−βxi

and

f (3)Xi |Xj
(xi | xj) =

λ3

λi + λ3
e−λie

α
xi
−βxi

.

Proof. It is easy to prove this lemma by using the following relation:

fXi |Xj
(xi | xj) =

fXi ,Xj(xi, xj)

fXi (xi)
; i = 1, 2.
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3.5. Marginal Expectation

Lemma 3. Consider that the RVr X has a BEIFWE distribution; then, the rth moment of Xi
(i = 1, 2) can be formulated as

E(Xr
i ) =

∞

∑
n=0

∞

∑
m=0

(−1)nαm(λi + λ3)
n+1Γ(r−m− 1)

n!m!βr−m−1(n + 1)r−2m+1

[
(r−m)(r−m + 1)

β
+ α(n + 1)2

]
. (13)

Proof. Since the expectation of the RVs Xi can be defined as

E(Xr
i ) =

∞∫
0

xr
i fXi (xi)dxi,

based on Equation (11), we obtain

E(Xr
i ) = (λi + λ3)

∞∫
0

xr
i

(
α

x2
i
+ β

)
e

α
xi
−βxi e−(λi+λ3)e

α
xi
−βxi

dxi

= β

∞∫
0

(λi + λ3)xr
i e

α
xi
−βxi e−(λi+λ3)e

α
xi
−βxi

dxi

+α

∞∫
0

(λi + λ3)xr−2
i e

α
xi
−βxi e−(λi+λ3)e

α
xi
−βxi

dxi,

let

I1 =

∞∫
0

(λi + λ3)xr
i e

α
xi
−βxi e−(λi+λ3)e

α
xi
−βxi

dxi

and

I2 =

∞∫
0

(λi + λ3)xr−2
i e

α
xi
−βxi e−(λi+λ3)e

α
xi
−βxi

dxi,

Then,
E(Xr

i ) = βI1 + αI2, (14)

using the series expansion of e−(λi+λ3)e
α
xi
−βxi

and e(n+1)( α
xi
), we obtain

I1 =
∞

∑
n=0

(−1)n(λi + λ3)
n+1

n!

∞∫
0

xr
i e(n+1)( α

xi
−βxi)dxi

=
∞

∑
n=0

∞

∑
m=0

(−1)nαm(n + 1)m(λi + λ3)
n+1

n!m!

∞∫
0

xr−m
i e−(n+1)βxi dxi

∞

∑
n=0

∞

∑
m=0

(−1)nαm(λi + λ3)
n+1Γ(r−m + 1)

n!m!βr−m+1(n + 1)r−2m+1 , (15)

where Γ(z) =
∫ ∞

0 e−ttz−1dt ; z > 0. Similarly, we obtain

I2 =
∞

∑
n=0

∞

∑
m=0

(−1)nαm(λi + λ3)
n+1Γ(r−m− 1)

n!m!βr−m−1(n + 1)r−2m−1 . (16)

Substituting Equations (15) and (16) into Equation (14), we get Equation (13).
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4. Maximum Likelihood Estimation (MLE)

In this segment, the technique of maximum likelihood is applied to estimate the
unknown parameters λ1, λ2, λ3, α, β of the BEIFWE distribution. Suppose we have a sample
of size n in the form {(x11, x21), (x12, x22),..., (x1n, x2n)} from the BEIFWE distribution. We
utilize the following notations: I1 = {x1i < x2i}, I2 = {x1i > x2i}, I3 = {x1i = x2i = xi},
I = I1 ∪ I2 ∪ I3,|I1| = n1, |I2| = n2, |I3| = n3, and n1 + n2 + n3 = n. Based on the
observations, the likelihood function is given as

l(λ1, λ2, λ3, α, β) =
n1

∏
i=1

f1(x1i, x2i)
n2

∏
i=1

f2(x1i, x2i)
n3

∏
i=1

f3(xi, x). (17)

The log-likelihood function can be written as

L(λ1, λ2, λ3, α, β) = n1 ln(λ2(λ1 + λ3)) +
n1

∑
i=1

ln(
α

x2
1i
+ β) +

n1

∑
i=1

ln(
α

x2
2i
+ β)

+α
n1

∑
i=1

1
x1i
− β

n1

∑
i=1

x1i + α
n1

∑
i=1

1
x2i
− β

n1

∑
i=1

x2i − λ2

n1

∑
i=1

e
α

x2i
−βx2i

−(λ1 + λ3)
n1

∑
i=1

e
α

x1i
−βx1i + n2 ln(λ1(λ2 + λ3)) +

n2

∑
i=1

ln(
α

x2
1i
+ β)

+
n2

∑
i=1

ln(
α

x2
2i
+ β) + α

n2

∑
i=1

1
x1i
− β

n2

∑
i=1

x1i + α
n2

∑
i=1

1
x2i
− β

n2

∑
i=1

x2i

−λ1

n2

∑
i=1

e
α

x1i
−βx1i − (λ2 + λ3)

n2

∑
i=1

e
α

x2i
−βx2i + n3 ln(λ3) +

n3

∑
i=1

ln(
α

x2
i
+ β)

+α
n3

∑
i=1

1
xi
− β

n3

∑
i=1

xi − (λ1 + λ2 + λ3)
n3

∑
i=1

e
α
xi
−βxi . (18)

Using Equation (18) to obtain the first partial derivatives with respect to λ1, λ2, λ3, α, and
β and setting the results equal zeros, we obtain the likelihood equations in the following
form:

∂L
∂λ1

=
n1

λ1 + λ3
−

n1

∑
i=1

e
α

x1i
−βx1i +

n2

λ1
+

n2

∑
i=1

e
α

x1i
−βx1i −

n3

∑
i=1

e
α
xi
−βxi , (19)

∂L
∂λ2

=
n1

λ2
−

n1

∑
i=1

e
α

x2i
−βx2i +

n2

λ2 + λ3
−

n2

∑
i=1

e
α

x2i
−βx2i −

n3

∑
i=1

e
α
xi
−βxi , (20)

∂L
∂λ3

=
n1

λ1 + λ3
+

n2

λ2 + λ3
−

n2

∑
i=1

e
α

x2i
−βx2i +

n3

λ3
−

n1

∑
i=1

e
α

x1i
−βx1i −

n3

∑
i=1

e
α
xi
−βxi , (21)

∂L
∂α

=
n1

∑
i=1

1
α + βx2

1i
+

n1

∑
i=1

1
α + βx2

2i
+

n1

∑
i=1

1
x1i

+
n1

∑
i=1

1
x2i
− λ2

n1

∑
i=1

1
x2i

e
α

x2i
−βx2i

−(λ1 + λ3)
n1

∑
i=1

1
x1i

e
α

x1i
−βx1i +

n2

∑
i=1

1
α + βx2

2i
+

n2

∑
i=1

1
α + βx2

1i
+

n2

∑
i=1

1
x1i

+
n2

∑
i=1

1
x2i
− λ1

n2

∑
i=1

1
x1i

e
α

x1i
−βx1i − (λ2 + λ3)

n2

∑
i=1

1
x2i

e
α

x2i
−βx2i +

n3

∑
i=1

1
xi

+
n3

∑
i=1

1
α + βx2

i
− (λ1 + λ2 + λ3)

n3

∑
i=1

1
xi

e
α
xi
−βxi (22)
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and

∂L
∂β

=
n1

∑
i=1

x2
1i

α + βx2
1i
+

n1

∑
i=1

x2
2i

α + βx2
2i
−

n1

∑
i=1

x1i −
n1

∑
i=1

x2i + λ2

n1

∑
i=1

x2ie
α

x2i
−βx2i

+(λ1 + λ3)
n1

∑
i=1

x1ie
α

x1i
−βx1i +

n2

∑
i=1

x2
2i

α + βx2
2i
+

n2

∑
i=1

x2
1i

α + βx2
1i
−

n2

∑
i=1

x1i

−
n2

∑
i=1

x2i + λ1

n2

∑
i=1

x1ie
α

x1i
−βx1i + (λ2 + λ3)

n2

∑
i=1

x2ie
α

x2i
−βx2i −

n3

∑
i=1

xi

+
n3

∑
i=1

xi

α + βx2
i
+ (λ1 + λ2 + λ3)

n3

∑
i=1

xie
α
xi
−βxi . (23)

To determine the MLEs of the parameters λ1, λ2, λ3, α, and β, we have to solve the above
system of five non-linear equations. A numerical technique should be used to solve these
equations.

5. MLE Performance: A Simulation Study

In this segment, the MLE approach was used to estimate the parameters λ1, λ2, λ3, α,
and β of the BEIFWE distribution under different sample sizes n = 5(5) . . . 150 from
N = 10,000 replications. The generated samples were based on the quantile function of the
marginal distributions of the BEIFWE model. The population parameters were generated
utilizing the R software package. The primary aim of this section is to introduce an
assessment of the properties of the MLE in terms of bias and mean-squared error (MSE) for
the parameters. To test the performance of the MLE technique, two schemes are considered
and discussed under different sample sizes. The experimental schemas can be formulated
as follows:

• Schema I: BEIFWE(0.5, 0.7, 0.9, 0.2, 0.5);
• Schema II: BEIFWE(0.2, 0.4, 0.6, 0.8, 1.1).

The empirical results can be displayed in Figure 5.

and

∂L

∂β
=

n1∑
i=1

x21i
α+ βx21i

+

n1∑
i=1

x22i
α+ βx22i

−
n1∑
i=1

x1i −
n1∑
i=1

x2i + λ2

n1∑
i=1

x2ie
α
x2i
−βx2i

+(λ1 + λ3)

n1∑
i=1

x1ie
α
x1i
−βx1i +

n2∑
i=1

x22i
α+ βx22i

+

n2∑
i=1

x21i
α+ βx21i

−
n2∑
i=1

x1i

−
n2∑
i=1

x2i + λ1

n2∑
i=1

x1ie
α
x1i
−βx1i + (λ2 + λ3)

n2∑
i=1

x2ie
α
x2i
−βx2i −

n3∑
i=1

xi

+

n3∑
i=1

xi
α+ βx2i

+ (λ1 + λ2 + λ3)

n3∑
i=1

xie
α
xi
−βxi . (23)

To get the MLEs of the parameters λ1, λ2, λ3, α and β, we have to solve the above system of five non-linear
equations. A numerical technique should be used to solve these equations.

5 MLE Performance: A Simulation Study

In this segment, the MLE approach is used to estimate the parameters λ1, λ2, λ3, α and β of the BEIFWE
distribution under different sample sizes n = 5(5)...150 from N = 10000 replications. The generated
samples are based on the quantile function of the marginal distributions of the BEIFWE model. The
population parameters are generated utilizing software R package. The primary aim of this section is to
introduce an assessment of the properties for the MLE in terms of bias and mean squared error (MSE)
for the parameters. To test the performance of the MLE technique, two schemes are considered and
discussed under different sample sizes. The experimental schemas can be formulated as:

• Schema I: BEIFWE(0.5, 0.7, 0.9, 0.2, 0.5).

• Schema II: BEIFWE(0.2, 0.4, 0.6, 0.8, 1.1).

The empirical results can be displayed in Figures 5 and 6.
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Figure 5. Simulation results of the BEIFWE(0.5, 0.7, 0.9, 0.2, 0.5) model.
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Figure 5. Simulation results of the BEIFWE(0.2, 0.4, 0.6, 0.8, 1.1) model.

The following observations can be noted: The MSEs for the MLE always decrease to zero when n
grows; and the magnitude of bias in general always close to zero when n grows. Based on the MSE, the
performance of the MLE approach is good; and the confidence in the results increases as the sample size
increases.

6 Comparative Study: Statistics and Real Data Analysis

In this section, we illustrate the importance of the BEIFWE distribution using two applications to real
data. The fitted distributions are compared with several famous bivariate models to explicate that the
BEIFWE distribution can be a good lifetime model, comparing with bivariate Gompertz (BGz) (see Al-
Khedhairi and El-Gohary, [16]), bivariate Burr X bivariate Gompertz (BBUXGz) (see El-Morshedy et al.,
[17]), bivariate generalized exponential (BGE) (see Kundu and Gupta, [18]), Marshall-Olkin bivariate ex-
ponential (MOBE) (see Marshall and Olkin, [1]; and Jose, [19]), bivariate exponentiated Weibull (BEW),
bivariate Gumbel exponential (BGuE) (see Eliwa and El-Morshedy, [7]), bivariate generalized linear fail-
ure rate (BGLFR) (see Sarhan et al., [3]), bivariate generalized Gompertz (BGGz) (see Al-Khedhairi
and El-Gohary, [16]), bivariate Burr X bivariate exponential (BBUXE) (see El-Morshedy et al., [17]),
bivariate exponentiated Weibull-Gompertz (BEWGz) (see El-Bassiouny et al. [20]), bivariate Gumbel
Gompertz (BGuGz) (see Eliwa and El-Morshedy, [7]), bivariate exponentiated modified Weibull extension
(BEMWEx) (see El-Gohary et al., [21]), and bivariate Weibull exponential (BWE) (see Hanagal, [22])
distributions. The fitted models are compared utilizing some criteria, namely, the negative maximized
log-likelihood (−L), Akaike information criterion (AIC), corrected AIC (CAIC), Bayesian IC (BIC) and
Hannan-Quinn IC (HQIC); in addition to the Kolmogorov-Smirnov (KS) statistic and its p-value for the
marginals.

6.1 Data set I: Football data

The data set has been obtained from Meintanis [23]. This data represents football (soccer) data of the
UEFA Champion’s League. It represents soccer data where at least one goal has been scored by a kick
goal (like penalty kick, foul kick or any other direct kick) by any team and one goal has been scored by
the home team. Here (X1, X2) represents the bivariate data, where X1 represents the time in minutes of
the first kick goal scored by any team, and X2 represents the first goal scored by the home team. Note
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Figure 5. (Top) simulation results of the BEIFWE (0.5,0.7,0.9,0.2,0.5) model; (bottom) simulation
results of the BEIFWE (0.2,0.4,0.6,0.8,1.1) model.

The following observations can be noted: The MSEs for the MLE always decreased
to zero when n grew, and the magnitude of bias, in general, was always close to zero
when n grew. Based on the MSE, the performance of the MLE approach was good, and the
confidence in the results increased as the sample size increased.

6. Comparative Study: Statistics and Real Data Analysis

In this section, we illustrate the importance of the BEIFWE distribution using two ap-
plications of real data. The fitted distributions were compared with several famous bivariate
models to explicate that the BEIFWE distribution can be a good lifetime model, compar-
ing with bivariate Gompertz (BGz) (Al-Khedhairi and El-Gohary, [16]), bivariate Burr X
bivariate Gompertz (BBUXGz) (El-Morshedy et al., [17]), bivariate generalized exponential
(BGE) (Kundu and Gupta, [18]), Marshall–Olkin bivariate exponential (MOBE) (Marshall
and Olkin, [1]and Jose, [19]), bivariate exponentiated Weibull (BEW), bivariate Gumbel
exponential (BGuE) (Eliwa and El-Morshedy, [7]), bivariate generalized linear failure rate
(BGLFR) (Sarhan et al., [3]), bivariate generalized Gompertz (BGGz) (Al-Khedhairi and
El-Gohary, [16]), bivariate Burr X bivariate exponential (BBUXE) (El-Morshedy et al., [17]),
bivariate exponentiated Weibull–Gompertz (BEWGz) (El-Bassiouny et al. [20]), bivariate
Gumbel Gompertz (BGuGz) (Eliwa and El-Morshedy, [7]), bivariate exponentiated modi-
fied Weibull extension (BEMWEx) (El-Gohary et al., [21]), and bivariate Weibull exponential
(BWE) (Hanagal, [22]) distributions. The fitted models were compared utilizing some cri-
teria, namely the negative maximized log-likelihood (−L), Akaike information criterion
(AIC), corrected AIC (CAIC), Bayesian IC (BIC), and Hannan–Quinn IC (HQIC), in addition
to the Kolmogorov–Smirnov (KS) statistic and its p-value for the marginals.

6.1. Dataset I: Football Data

The dataset was obtained from Meintanis [23]. These data represent football (soccer)
data from the UEFA Champions League. They represent soccer data for when at least one
goal is scored by a kick goal (such as a penalty kick, foul kick, or any other direct kick) by
any team, and one goal is scored by the home team. Here, (X1, X2) represents the bivariate
data, where X1 represents the time in minutes of the first kick goal scored by any team,
and X2 represents the first goal scored by the home team. Note that all possibilities are
there, namely (i) X1 > X2, (ii) X1 < X2, and (iii) X1 = X2. Nonparametric plots are listed



Symmetry 2023, 15, 411 12 of 18

in Figures 6–9 to discuss the behavior of data. Figure 6 shows the scatter and box plots for
the bivariate data, whereas the kernel densities, violin, box, and quantile–quantile (QQ)
plots for the marginals are displayed in Figures 7–9.
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­2 ­1 0 1 2

0
20

40
60

80

QQ Plot X1

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

­2 ­1 0 1 2

0
20

40
60

80

QQ Plot X2

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

­2 ­1 0 1 2

0
10

20
30

40
50

60
70

QQ Plot Min(X1,X2)

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

Figure 9. The QQ plots for the marginals of data sat I.

Before trying to analyze the data using the BEIFWE model, we fit at first the marginals X1, X2 and
min(X1, X2) separately on the UEFA Champion’s League data. The MLEs of the parameters (α, β, λ)
for X1, X2 and min(X1, X2) are (0.3300, 0.05432, 5.3005), (1.3062, 0.0479, 2.5079) and (2.7244, 1.1797,
0.0569), respectively. The −L, K-S and its p-value for the marginalsX1, X2 andmin(X1, X2) can be listed
as (163.4554, 0.09218, 0.9116), (162.7615, 0.1026, 0.8308) and (157.6972, 0.0636, 0.9983), respectively.
Based on p-values, it is clear that the BEIFWE model fits the data for the marginals. Figures 11, 12 and
13 show the fitted PDFs, estimated CDF and probability-probability (PP) plots for the marginals X1,
X2 and min(X1, X2), which prove our results.
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Figure 11. The fitted PDFs plots for the marginals of data set I.
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Before trying to analyze the data using the BEIFWE model, we fit at first the marginals X1, X2 and
min(X1, X2) separately on the UEFA Champion’s League data. The MLEs of the parameters (α, β, λ)
for X1, X2 and min(X1, X2) are (0.3300, 0.05432, 5.3005), (1.3062, 0.0479, 2.5079) and (2.7244, 1.1797,
0.0569), respectively. The −L, K-S and its p-value for the marginalsX1, X2 andmin(X1, X2) can be listed
as (163.4554, 0.09218, 0.9116), (162.7615, 0.1026, 0.8308) and (157.6972, 0.0636, 0.9983), respectively.
Based on p-values, it is clear that the BEIFWE model fits the data for the marginals. Figures 11, 12 and
13 show the fitted PDFs, estimated CDF and probability-probability (PP) plots for the marginals X1,
X2 and min(X1, X2), which prove our results.
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Figure 11. The fitted PDFs plots for the marginals of data set I.
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Before trying to analyze the data using the BEIFWE model, first, we fit the marginals
X1, X2, and min(X1, X2) separately on the UEFA Champions League data. The MLEs of
the parameters (α, β, λ) for X1, X2, and min(X1, X2) are (0.3300, 0.05432, 5.3005), (1.3062,
0.0479, 2.5079), and (2.7244, 1.1797, 0.0569), respectively. The −L, K-S, and its p-value for
the marginals X1, X2, and min(X1, X2) can be listed as (163.4554, 0.09218, 0.9116), (162.7615,
0.1026, 0.8308), and (157.6972, 0.0636, 0.9983), respectively. Based on p-values, it is clear
that the BEIFWE model fits the data for the marginals. Figures 10–12 show the fitted PDFs,
the estimated CDF, and probability–probability (PP) plots for the marginals X1, X2, and
min(X1, X2), which prove our results.

X1
X2

M
in

(X
1,

X2
)

0

20 40 60 80

Bo x­plots

0
20

40
60

80

X1 X2 Min(X1,X2)

Violin Plots

Figure 8. The box and violin plots for the marginals of data set I.

­2 ­1 0 1 2

0
20

40
60

80

QQ Plot X1

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

­2 ­1 0 1 2

0
20

40
60

80

QQ Plot X2

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

­2 ­1 0 1 2

0
10

20
30

40
50

60
70

QQ Plot Min(X1,X2)

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

Figure 9. The QQ plots for the marginals of data sat I.

Before trying to analyze the data using the BEIFWE model, we fit at first the marginals X1, X2 and
min(X1, X2) separately on the UEFA Champion’s League data. The MLEs of the parameters (α, β, λ)
for X1, X2 and min(X1, X2) are (0.3300, 0.05432, 5.3005), (1.3062, 0.0479, 2.5079) and (2.7244, 1.1797,
0.0569), respectively. The −L, K-S and its p-value for the marginalsX1, X2 andmin(X1, X2) can be listed
as (163.4554, 0.09218, 0.9116), (162.7615, 0.1026, 0.8308) and (157.6972, 0.0636, 0.9983), respectively.
Based on p-values, it is clear that the BEIFWE model fits the data for the marginals. Figures 11, 12 and
13 show the fitted PDFs, estimated CDF and probability-probability (PP) plots for the marginals X1,
X2 and min(X1, X2), which prove our results.
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Figure 11. The fitted PDFs plots for the marginals of data set I.

13

Figure 10. The fitted PDF plots for the marginals of dataset I.
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Now, we fit the BEIFWE model on this data. In the enclosed Tables 1 and 2, we provide the MLEs, −L,
AIC, CAIC, BIC and HQIC values for the competitive distributions.
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Now, we fit the BEIFWE model on this data. In the enclosed Tables 1 and 2, we provide the MLEs, −L,
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Table 1. The MLEs for the competitive distributions’ parameters.

Model â b̂ λ̂1 λ̂2 λ̂3 α̂ β̂

BW 0.0837 − 0.3974 0.2738 0.3389 − −
BGPW 0.0377 − 3.2294 1.9831 4.0840 − −
BGz 0.0406 − 0.0036 0.0023 0.0213 − −
BBUXGz 0.0063 0.0154 0.1320 0.1873 0.2014 − −
BGE 0.0393 − 1.5532 0.4993 1.1563 − −
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Table 1. Cont.

Model â b̂ λ̂1 λ̂2 λ̂3 α̂ β̂

MOBE − − 0.0121 0.0141 0.0221 − −
BEW 0.0123 1.2683 1.2269 0.3820 0.6611 − −
BGuE 5.0111 4.0814 2.6784 0.9621 2.0653 − −
BGLFR 0.0002 0.0008 0.4520 0.1567 0.3604 − −
BGGz 0.0117 0.0294 0.7428 0.2621 0.5984 − −
BBUXE 0.0122 − 0.3855 0.1362 0.3101 − −
BEWGz 0.4117 0.0795 0.5477 0.1917 0.4446 0.0050 1.3587
BGuGz 0.0092 0.0473 0.5784 0.2044 0.4756 2.2784 −
BEMWEx 85.9183 4.5057 0.1673 0.0613 0.1391 0.0254 −
BWE 0.0251 − 0.1351 0.3024 0.2650 − −
BEIFWE − − 1.4907 1.7412 4.0235 0.6704 0.0532

Table 2. The goodness-of-fit results for the competitive distributions.

Model −L AIC CAIC BIC HQIC

BW 346.0174 700.0102 701.3145 706.4336 702.2892
BGPW 344.8012 697.5412 698.8110 703.9036 699.8124
BGz 303.4996 614.9220 616.2036 621.4336 617.2302
BBUXGz 301.1889 612.3892 614.3302 620.5289 615.2447
BGE 299.9142 607.7419 608.8894 614.2301 609.9163
MOBE 298.9362 607.9303 609.8102 615.9102 610.7330
BEW 298.9336 607.9396 609.8396 615.8793 610.7399
BGuE 297.8028 605.5696 607.5102 613.6426 608.4036
BGLFR 296.8389 603.7339 605.6396 611.6896 606.5012
BGGz 294.9170 599.8145 601.7163 607.9017 602.7147
BBUXE 294.8127 597.6223 598.9336 604.0427 599.9744
BEWGz 294.6036 603.2112 607.1745 614.5107 607.2338
BGuGz 294.2397 600.5336 603.3202 610.1230 603.9336
BEMWEx 294.0745 600.3396 603.1032 609.9325 603.7703
BWE 291.1437 592.3103 594.2147 600.3223 595.1196
BEIFWE 285.8012 581.6302 583.5415 589.6520 584.4415

As we can see, the BEIFWE distribution fits the data better than the other tested
models, because it has the smallest value among −L, AIC, CAIC, BIC, and HQIC.

6.2. Dataset II: Motor Data

These data are reported in Relia [24], and they represent the failure times of a parallel
system constituted by two identical motors in days. Nonparametric plots are reported in
Figures 13–16 to discuss the shape of data. Figure 13 shows the scatter and box plots for
data, whereas the kernel densities, violin, box, and QQ plots for the marginals are listed in
Figures 14–16.
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two identical motors in days. Nonparametric plots are reported in Figures 13-16 to discuss the shape of
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Figure 14. The kerenel densities for the marginals of data set II.
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Figure 16. The QQ plots for the marginals of data set II.

We fit at first the marginals X1, X2 and min(X1, X2) separately on the motors data. The MLEs of the
parameters (α, β, λ) for X1, X2 and min(X1, X2) are (2.9254, 0.0155, 12.9952), (2.3991, 0.0145, 11.8768)
and (2.6118, 0.0164, 10.9977), respectively. The −L, K-S and its p-value for the marginals X1, X2 and
min(X1, X2) can be listed as (102.0146, 0.2566, 0.1867), (103.6497, 0.0892, 0.9961) and (101.1782, 0.1908,
0.5291), respectively. According to p-values, it is noted that the BEIFWE distribution fits the data for the
marginals. Figures 17, 18 and 19 show the fitted PDFs, estimated CDF and PP plots for the marginals
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We fit at first the marginals X1, X2 and min(X1, X2) separately on the motors data. The MLEs of the
parameters (α, β, λ) for X1, X2 and min(X1, X2) are (2.9254, 0.0155, 12.9952), (2.3991, 0.0145, 11.8768)
and (2.6118, 0.0164, 10.9977), respectively. The −L, K-S and its p-value for the marginals X1, X2 and
min(X1, X2) can be listed as (102.0146, 0.2566, 0.1867), (103.6497, 0.0892, 0.9961) and (101.1782, 0.1908,
0.5291), respectively. According to p-values, it is noted that the BEIFWE distribution fits the data for the
marginals. Figures 17, 18 and 19 show the fitted PDFs, estimated CDF and PP plots for the marginals
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We fit at first the marginals X1, X2 and min(X1, X2) separately on the motors data. The MLEs of the
parameters (α, β, λ) for X1, X2 and min(X1, X2) are (2.9254, 0.0155, 12.9952), (2.3991, 0.0145, 11.8768)
and (2.6118, 0.0164, 10.9977), respectively. The −L, K-S and its p-value for the marginals X1, X2 and
min(X1, X2) can be listed as (102.0146, 0.2566, 0.1867), (103.6497, 0.0892, 0.9961) and (101.1782, 0.1908,
0.5291), respectively. According to p-values, it is noted that the BEIFWE distribution fits the data for the
marginals. Figures 17, 18 and 19 show the fitted PDFs, estimated CDF and PP plots for the marginals
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First, we fit the marginals X1, X2, and min(X1, X2) separately on the motor data. The
MLEs of the parameters (α, β, λ) for X1, X2, and min(X1, X2) are (2.9254, 0.0155, 12.9952),
(2.3991, 0.0145, 11.8768), and (2.6118, 0.0164, 10.9977), respectively. The −L, K-S and its
p-value for the marginals X1, X2, and min(X1, X2) can be listed as (102.0146, 0.2566, 0.1867),
(103.6497, 0.0892, 0.9961), and (101.1782, 0.1908, 0.5291), respectively. According to p-values,
it is noted that the BEIFWE distribution fits the data for the marginals. Figures 17–19 show
the fitted PDFs, estimated CDF, and PP plots for the marginals X1, X2, and min(X1, X2),
which prove our results.
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X1, X2 and min(X1, X2), which prove our results.
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Figure 17. The fitted PDFs plots for the marginals of data set II.
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Figure 18. The estimated CDFs plots for the marginals of data set II.
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Figure 19. The fitted PP plots for the marginals of data set II.
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Now, we fit the BEIFWE model on dataset II. In the enclosed Tables 3 and 4, we report
the MLEs, −L, AIC, CAIC, BIC, and HQIC values for the tested models.

Table 3. The MLEs for the competitive distributions’ parameters of dataset II.

Model â b̂ λ̂1 λ̂2 λ̂3 α̂ β̂

BW 0.0391 − 0.2003 0.2383 0.3387 − −
BGPW 0.0292 − 1.5591 1.8581 3.7189 − −
BE − − 0.0023 0.0019 0.0053 − −
BGE 0.0144 − 2.4544 2.8803 6.0641 − −
BEW 0.5201 0.3254 30.1383 24.1350 61.8048 − −
BGuE 6.3113 10.5332 3.0661 4.4849 8.0431 − −
BGLFR 6.99× 10−5 0.0011 0.4174 0.4862 1.0193 − −
BBUXE 0.003 − 0.3622 0.4241 0.9071 − −
BEIFWE − − 0.3625 0.3412 0.4125 2.0365 0.0789
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Table 4. The goodness-of-fit results for the competitive distributions of dataset II.

Model −L AIC CAIC BIC HQIC

BW 422.9506 853.9012 856.9781 857.46269 854.3923
BGPW 431.7917 871.5834 874.6603 875.14489 872.0745
BE 355.7320 717.4642 719.1785 720.1353 717.8325
BGE 335.2297 678.4593 681.5362 682.0208 678.9504
BEW 339.2717 688.5434 693.5434 692.9953 689.1573
BGuE 334.6306 679.2612 684.2612 683.7131 679.8751
BGLFR 331.7717 673.5433 678.5433 677.9952 674.1572
BBUXE 329.7607 667.5214 670.5983 671.0829 668.0125
BEIFWE 327.1826 664.3652 669.3652 668.8171 664.9791

Based on the empirical results, it was found that the BEIFWE model fits the data better
than the other competitive distributions.

7. Conclusions and Future Work

In this article, a novel bivariate probabilistic distribution was presented and discussed
based on the Marshall–Olkin shock model. The proposed bivariate model can be used as
a probabilistic tool for discussing and analyzing only the common continuous random
variables. After introducing the mathematical structure of the bivariate distribution, some
of its statistical properties were derived. The new model revealed interesting features;
for instance, the joint PDF can be used as a statistical approach to model different shapes
of data, including symmetric and asymmetric forms under various kinds of dispersion;
detailed HRFs can be applied to discuss and evaluate different forms of failure rates; and
it can be utilized quite conveniently if there are ties in the data. Based on a simulation
study, the maximum likelihood technique was applied to estimate the model parameters.
Finally, two real datasets were analyzed to demonstrate the ability and observation of the
presented bivariate model, and it was found that the presented model provided a better fit
than competitive bivariate distributions. As a future study, a bivariate fuzzy time series
will be discussed for forecasting. Moreover, the Bayesian technique will be discussed under
different approaches, including a priori and non-information, to model complete, censored,
and recorded data.
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