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Abstract: Integral inequalities concerned with convexity have many applications in several fields of
mathematics in which symmetry plays an important role. In the theory of convexity, there exist strong
connections between convexity and symmetry. If we are working on one of the concepts, then it can
be applied to the other of them. In this paper, we establish some novel generalizations of Ostrowski
type inequalities for exponentially s-preinvex and s-preinvex functions on time scale by using Holder
inequality and Montgomery Identity. We also obtain applications to some special means. These
results are motivated by the symmetric results obtained in the recent article by Abbasi and Anwar in
2022 on Ostrowski type inequalities for exponentially s-convex functions and s-convex functions on
time scale. Moreover, we discuss several special cases of the results obtained in this paper.

Keywords: Ostrowski type inequalities; s-preinvex functions; exponentially s-preinvex functions;
time scales

1. Introduction

The evolution of the theory of time scales was introduced by Hilger [1] in 1988, which
initiated the survey of dynamic equations on time scales. This helps to demonstrate the
results of differential inequality and again for difference inequality. Ahlbrandt et al. [2]
derived a time scale T as a non-empty subset of the real numbers with the characteristic that
every Cauchy sequence in T converges to a point of T, with the possible exception of Cauchy
sequences converging to a finite infimum or finite supremum of T. Additionally, this concept
has been studied by some authors, see, [3,4]. Time scale calculus has applications in several
fields such as physics, biology, engineering, image processing, fluid dynamics, see [5-8]. If
a function is defined on a time scale, we can consider the derivative and also the integral.
For example: The time scale integral became an ordinary integral, Sum and Jackson integral
when we consider time-scale as a set of real numbers, the set of all integers and the set of all
integer powers of a fixed number, respectively. After that, many authors investigated the
time scale versions of several aspects of the theory of dynamic inequalities that essentially
depend on integral inequalities. Dinu [9] established the Hermite-Hadamard inequality for
convex functions on time scales. Further, Lai et al. [10] obtained Hermite-Hadamard type
inequality for the class of strongly convex function on time scales.

In 1938, Ostrowski gave a formula to evaluate the deviation of differentiable functions
from its integral mean which is discussed in [11] named as the Ostrowski inequality,
as follows:

Let ¢ : [my,mp] — R be a differentiable mapping on (mq, m,) whose derivative

¢' . (my,my) — Risbounded on (mq,my), i.e., |||l = sup [P (h)] < oo. Then, the
he(mllmZ)
following inequality holds:
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gy~ = /mz ¥(g)dg]

my — mq my
p — (mitmz)yo
( 2 ) , Vhe [ml,mz]. (1)

< sup |¢'(h)|(my— ”“)[

my <h<mj

(m2 — m1)2 + Zl
This inequality is proved by using Montgomery identity as shown in [12]. Further, this
identity on time scale was studied by M. Bohner and T. Matthews in [4]. The Ostrowski
inequality has many applications in numerical analysis and in probability, many researchers
have established generalizations, extensions and variants of inequality (1). We refer readers
to [13-16]. This inequality is considered by many researchers as a function of bounded vari-
ation, Lipschitzian, monotonic, absolutely continuous and n-times differentiable mappings
with error estimates with some special means together with some numerical quadrature
rules. In 2019, Basci and Baleanu [17] gave new Ostrowski-type inequalities for both left and
right sided fractional integrals of a function g with respect to another function 1. Further
Erden et al. [18] introduced some fractional Ostrowski-type inequalities for class of function
Lp, L, L1 involving Riemann-Liouville fractional integrals for partially differentiable func-
tions. Sarikaya and Filiz [19] introduced some Ostrowski-type integral inequalities for some
differentiable mapping by using the Riemann-Liouville fractional integrals. In 2022, Hyder
et al. [20] gave the Hermite-Hadamard inequality through generalized Riemann-Liouville
fractional integral for a function with convex absolute values of derivative. In our paper, we
establish Ostrowski type inequalities by using A-integral for a differentiable function and
its delta derivative is exponentially s-preinvex function and also bounded.

The concept of convexity has a great role in the field of integral inequality and math-
ematical analysis. Recently, several researchers have explored the close connection and
interrelated work on convexity and symmetry. Hanson [21] established a new class of
generalized convexity, which is known as invexity. In 1986, B. Isral and B. Mond [22] gave
the concept of preinvex functions which is a special case of invexity. For more instances,
see [23-25].

Recently, Abbasi and Anwar [26] investigated Ostrowski type inequalities for exponen-
tially s-convex functions and s-convex functions on a time scale and also obtained several
results which are essentially based on Ostrowski inequality.

The work is organized in the following way: In Section 2, we give some basic introduc-
tion into the time scales theory. In Section 3, we prove Hermite-Hadamard type inequality
and Ostrowski type inequalities for exponentially s-preinvex functions and s-preinvex
functions on time scales also we discuss some special cases when T = R then A-integral
became a classical integral. In Section 4, we obtain the applications to some special means.
In Section 5, we present the conclusions of the present work.

2. Preliminaries

In this section, we give some definitions and results which is necessary for our main results.

Definition 1 ([260]). A time scale (or measure chain) is a non-empty closed subset of the real
numbers R.

The two most popular examples of time scale are T = R (set of real number) and T = Z (set
of integers). Any (open or closed) interval I of R, It = INT is called a time scale interval.
Limit set {0} U {%}, n=1,2..., Cantor set, etc. are the examples of time scale. The forward and
backward jumped operators o, p : T — R are defined by o(h) = inf{t € T : T > h} € T,
p(h) = sup{t € T : T < h} € T. Supplemented by inf® = supT and supD = infT, where O
denotes the empty set.

A point h is said to be right-scattered or left-scattered if o (h) > hand p(h) < h respectively, h
is said to be isolated if it is both right and left-scattered. If o(h) = h and p(h) = h, then the point h
is called right dense and left dense, respectively, and it is said to be dense if left and right dense both.
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Suppose uy € T is right-scattered minimum, then Ty = T — {u;}, otherwise, Ty = T.
Suppose uy € T is left-scattered maximum, then TX = T — {u,}, otherwise T* = T. Moreover,
T =T N T~

k k

Definition 2 ([26]). Let ¢ : T — R be a function then ¢ : T — R is defined by ¢°(h) =
(o (h)) for h € T, where o(h) is defined as above. We also say that

¢ : T — R is delta derivative function at h € T* is defined to be the number ¢*(h) (if it
exists) satisfying the property that, for any € > 0 there is a neighborhood U of h such that
[p(e () = 9(g)] = 92 ()[o () — gl| < elo(h) — gl forall g € U.

If T = R, then the delta derivative > = ¢/, where ' is the derivative from continuous calculus.

If T = 7Z, then the delta derivative ¢ = A, where Ay is the forward difference operator from
discrete calculus.

Definition 3 ([3]). A function : T — R is continuous at right dense points of T and its left-sided
limit exist at left dense points of T, then 1 is known to be rd-continuous. Denoted by i € C,,.

Theorem 1. Suppose P : T — R to be an rd-continuous function. Then, { has an anti-derivative
E satisfying E = ¢.

Proof. See Theorem 1.74 of [3]. O

Definition 4 ([3]). If ¢ : T — R is an rd-continuous function and my € T, then we define the
integral E(h) = f)ﬁl P(t)Atforh e T.

Therefore, for ¢ € C,4, we have E(my + 1(my, my)) — E(mﬁ:fé"lﬁn(mz’ml) P(T)AT, where
=A

=2E =1

Theorem 2 Ifml, mz, msz €T, € Rand ¢y, ¢, € Cyy, then

(D) [ (1(h) + pa(h)) A= [ ¢1 )l [ o () Al

(ii) f;:f [31/11(]1 )AL = ﬁfﬁff%b

(iii) [o? 1 (h)Ah = — [ (h)Ah

(i0) [y $1 () AR = [y (R)AR + [7% 4 (1) A

(v) fml l[)l Ah =0,

(vi) fm2 P ()5 ()AL = (Y1) (m2) — (Y192) () — [, (o (h))Ah,

Proof. See Theorem 1.77 of [3]. [

Theorem 3. (Hdolder's Inequality) Let my,my € T and (1,9, : T — R be rd-continuous. Then,
1 om 1

L Wi ian < ([ ipmpan)” ([ patnisan)”, @
where p,q > 1 and % + % =1

Proof. See Theorem 6.13 of [3]. [

The Ostrowski inequality on time scale was discussed by M. Bohner and T. Matthews
in [4], which is given as

Lemma 1. Suppose my,my, g, h€ T, my < mpand ¢ : [ml, mz] — R be differentiable. Then,

v = o [ (g + (1 )9 ()23, ®

mp — mq

mp — mq

—my, m < g<h
wherex(h,g):{ g—m;, hl<gg< My



Symmetry 2023, 15, 410

4 of 14

In 2013, Wang et al. [27] introduced a function known as s-preinvex function.
Definition 5. Let S C R" be an invex set with respect ton : S x S — R". A functionp : S —
Rg = [0,00) is said to be s-preinvex with respect to 17 and s € (0, 1] if for every mq,my € S and
Te[0,1]

p(my + 1y (mp,my)) < T9(mz) + (1 —7)°P(m). @

Safdar and Attique [28] introduced the concept of exponentially s-preinvex function.

Definition 6. Let s € (0,1] and a real-valued mapping  on the invex set Q) is said to be
exponentially s-preinvex with respect to (., .), if the inequality

)) < (1 _T)slp(ml) +Tsl/)(m2)

e ety 4 (5)

p(my + T (mz, my
holds for all my, my +n(my,my) € Q, T € [0,1], and « € R.

Condition C: Let A C R" be an open invex subset with respecttor : A x A — R we
say that the function # satisfies the condition C if for any my,m, € Aand any t € [0,1],

n(my, mo + ty(my, my)) = —ty(my, my),
1(my, my + ty(my,mp)) = (1 —t)y(my, my) (6)

and from condition C,
n(my + ton(my, my), my + tiy7(my, my)) = (t2 — t1)n(my, my) ()

3. Main Results

In this section, first, we prove the Hermite-Hadamard inequality for exponentially
s-preinvex functions on time scale.

Theorem 4. Let T be a time scale and H = [my, my +1(my, my)]. Let  : H — R is exponentially
s-preinvex function on H® and A-integrable as well. Then, for mq, my + 1(mp, my) € H with
my < my + 1 (myp, my) and « € R, we have

s—1 n 1 i+ (ma,my) P(t)
2 l/)(ml + E(mz,n’h)) S W /m1 WAt

P(my) 1 (A1)
= 1 /0 e

exm my -+ (ma,my))

®)

P(my +n(ma,my)) /1 T°

e (my+1(ma,my)) 0 ex(my+ty(mym))

Proof. Since ¢ is an exponential s-preinvex function, we have

2p(c+1d,0)) < vie) | y(d)

2 = ec exd

Making use of change of variable ¢ = my + t1(my, my) and d = my + (1 — T)n(my, my)
with using condition C and taking A — integrable with respect to T € [0, 1], we obtain

2 my+n(ma,my) 1p(t)
2y At
1(ma, my) et

251P<m1 + g(mzf ml)) <

my

and

o1 17 1 i (ma,m) qp(t)
27y (m+ Gl m)) < s SN ©)

my
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Now, we prove the second inequality
¥(my + Ty (ma, my)) < (1-1) %7712) + Ts%
e(mi+Ty(mymy))  — e (my+tiy(my,my))
Taking A — integral with respect to T € [0, 1], we obtain
1 1 Y-
Ly ) P
n(my,my) Jo e* exmi  Jo  p(mytrn(mz,m))
¥ (my 4 17(ma, my)) /1 T° AT (10)
et (my+i(ma,mq)) o ex(mit+ty(mamy)) "

Combining (9) and (10), we obtain inequality (8). O

Now, we will discuss Ostrowski inequality for exponentially s-preinvex function on
time scale.

Theorem 5. Let T be a time scale and H CT. Let 1 : H — R be a differentiable function on H°

such that $» € H for my, my + n(mp,my) € K where my < my + n(my, my). If > is expo-

nentially s-preinvex on [my, my + n(my, my)] for s € (0,1] and sup [p2(h)|=M,
my <h<my+1(my,my)

h € [my, my + n(my, my)]. Then, the following inequality holds:

1 /~m1+17(m2,m1)
1(ma, my) .

Mh—m)? 1 [(r2-1)°  T(t—-1)°
b (2 e )

7 (g)Ag

my

etth et

L M —mp)? /(;1 (T(lf)s R >AT. (1)

77(7”2/ ml) eth et (my+i(ma,my))

Proof. Using Montgomery identity,

p(h) —

my+1(my,my)
: /]17 (9088

17 (ma, my)

my

1 my 4+ (ma,my)
/ x(h, )™ (8)Ag

|’7(m2/ my)

my

sl)<ﬁﬂg—mQWNQMg

W(mZI mq
my+(ma,my )
+/h W (8- (ml+f7(mz,m1)))|¢A(g>|Ag>- (12)

Making use of change of variables, we obtain

1 /m1+17(m2,m1)
11 (ma, my)
1

= 3z, m) /ol(h = m)* Tt (h+ (T = )y (my, h)| AT

17(71121/"11) '/0.1 (h — (m1 + W(mz,m1)))2*r]1pA(h + Ti(my, h))|At. (13)

W(h) — ¥ (8)Ag

my

Using the definition of exponential s-preinvexity of ¥*, we obtain
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1 my +1 (ma,m) -
’Wl) - W/m ¢ (2)Ag
(o m) S ) L4 m)
- m/o (T(Z_T) S T M)AT

2
o (= (m - (mg,m)) /01 <T<1_T>s|¢j< )

h
11 (ma, my) o

et (my+(ma,mq))

- M(h — my)? /01 (r(z—r)s . r(r—1)s>m

(o #2m +n<mz,ml>>|>m

n(mzl ml) eth ele]

1 (my, my) eth et (my+1(mp,my))

L M (my -+ (o)) /0-1<T(1T)s ot )AT'

O

This completes the proof.
Remark 1. If we consider a=0 in Theorem 5, we obtain the inequality (21).

Theorem 6. Suppose that  : H — R is a differentiable mapping on H® such that ¢* € H for
my,my + 17(my,my) € H with my < my + n(my, my). If |p>|7 is exponentially s-preinvex on
[mq, mq + 1n(my, mq)] for somes € (0,1], p,q > 1and % + % =1 sup |y (h)| =

my <h<mq -+ (ma,my)
M, h € [mq,my + 17(mg, my)], then the following inequality holds:

1 /m1+’7(m2,m1)

P e ¥ (g)Ag

ny

‘lP(h) -

. W(/Ol TPAT)% </01 ((z;hT)s . (Te;mll)s)m) q

M(h — (my +n(mp,my)))* ¢ 1 7
* 77(17”2/7”1)2 1 (/o o)

1
1, s (1—1’)5 7
- (/0 (M+(MW7%M)AT> : (14)

Proof. By the Montgomery identity, we have

1 /'ml +i(mp,my)
1(my,my) .

W(h) — ¥ (8)Ag

ny

| 1 /ml +11(ma,mq)

11 (ma, m) x(h, )¢ (g)dg

my

< 1</h (5~ m) 9"(s)I6g

n(ma,my) \ Jim

my+11 (mo,my)
+/h ! (8—(ml+77(mz,m1)))lllfA(g)IAg>-
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Making use of change of variables, we obtain

1 my -+ (ma,my) -
‘lp(h)_ﬂ(mz,ml)/ml ¥ (8)Ag

1 1 N
= W/o (h—=m1)*t|[p?(h+ (v = 1) (m, h)| AT

1 1
s [ (1 (-4 m)) el o, )

Using (2), we obtain

1 miti (mymy)
‘lp(h)_ﬂ(mbml)/nn 7 (g)Ag

< S (s ()l et e

= n(my, my

(h— (1 + (o, m))? [ (1,
oy () )

X </01 ’wA(h+Tq(m2,h))’qAr)

Using the definition of exponential s-preinvexity of [¢*|7, we have

1 my+11(ma,my)
- | 97 ()Ag

q

_I_
%
. (15)

<

11(ma, my)
h—my)? (1 v
< sl U )
y <‘/01 ((2 )slPAe(h)| +(T_1)s|lpAe§:le)|q)AT>‘7

+ (h — (m;;(;z(nzz)l my)))? </01 TPAT>%

" </01( S|¢Ae§¢h)| +(1_ !

Z\/M(/Ol TMT)% </01 ((2 e—ahr)s N (Te;m})S>AT> 7

1 (my, my)

— (my+yma,m))? ([, N
M(h (ﬂ(lmtlﬂnil)z 1)) (/0 TPAT)

1 TS (1—’()5 q
) </o (W+WMW)AT> : (16)

|92 (m1 + 5 (ma, my))|?
S
7) et (my+i7(ma,my)) )AT

+

O

This completes the proof.

Remark 2. If we take a=0 in Theorem 6, we obtain inequality (22).
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Theorem 7. Suppose a differentiable mapping ¥ : H — R on H® such that $® € H for my, mq +
7(my,my) € Hwith my < my + n(my, my). If [$*|7 is exponentially s-preinvex on [mq, m1 +
1 (my, my)] for some s € (0,1], g > 1 and

sup |p2(h)| = M, h € [mq, my + n(my, my)], then the following inequality holds:

my <h<my+1(my,my)

my+n(my,my)
: /17] (9088

1(ma, my)

— mq)? 1 7% 1 _ s _1\s q
M) ([ (T )

—(m iy, m 2 1 175
+M(h (W(lmtrﬂril)z 1)) (/O TAT)

1
Lrr(l—1)8 s+1 q
x ( /0 ( eh + et (my+1 (my,my)) )AT : (17)

Proof. By Montgomery identity, we have

-

my

1 /m1+'7(m2/m1)

|¢(h) ~ (g, m) 7 (8)Ag

my

1 /m1+77(mz,m1)
17(my, my)

1 h
< W(/ml(g_ml)lpA(g”Ag

mq (1112,"11)
+/h o (g(m1+17(m2/m1))>|¢A(g)|Ag>'

x(h, )™ (g)Ag

ny

Making use of change of variables, we obtain

1 /’ml +1(ma,my)

‘w(h) ~ q(my,m) . ¥ (8)Ag

my

: n(mzlml) /;l(h —m)>t|yA (h+ (T — 1)y (my, h) | AT

1 (o gt n)|A
bl [ (= G omm,m)) ) el - ey
It follows that
1 m1+7](m2,m1)
- — T(A
’1/)( ) ’7(”12/"11)/ $7(8)Ag

ny

1

<R ) (e mma )

(h = (my + y(ma,m1)))* ¢ [} 1=
+ ’71<m2’m12) ! (/0 TAT)

1
q

(/OlT‘l[JA(h-l-Tﬂ(mz,h))‘qAT) .

Applying the definition of exponential s-preinvexity of |*|7, we have

Q=
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1 my i1 (mg,myq )
|¢<h> - /

1 (ma, my)
h—m)2 1 173
= ’(7("12,”113) (/0 TAT)

> (/01 (T(Z—T)Sll'bigf)q +T(T_1)s|lpA(ml)|q)AT>q

¥ (g)Ag

my

eaml

ol LI ([lea)

X </01 (T(l — T)SM + 5+l | (m +77(m2'm1>)|q)AT> |

eth et (my+i(ma,my))

(2 )

M(h = (my + y(mg,m1)))* ¢ 1 -5
* U(lmz,ml)z 1 (/ TAT)

1
Lrr(1—1)° 5+ q
% (/0 ( eth * e (my+i(ma,my)) )AT> : (18)

O

This completes the proof.

Corollary 1. If we consider T = R in Theorem 7, we get the result for exponentially s-preinvex
function.

g~ T g

1(ma, my) Jm

< M(h — my)? 25F2 (s +3) N 1
T myymy) (@)1 LMD +2) T e (s +1)(5+2)

= =

(19)

N M(h — (my +n(mg,my))) l 1 1
_ ah
nimy,my) (@)1 (&

51 1)(s12) | extmratmm) (s 4 2)

Proof. By Montgomery identity, we have

1 my -+ (ma,my)
‘tp(h) - 7/ ! lﬁ(g)dg‘

1 (ma, my) Jm

1 my+n (g, my)
= ‘71(77127”1)/ X(h,g)lp'(g)dg

my

1 h ,
< ’7(7”217”1)</ﬂ11(g_m1)|¢ (8)|dg

+/hm1+”(m2'ml) (g— (mq +n(my, ml)))W(g)dg)-
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Using change of variable, we get

1 my -+ (ma,my)
‘ll’(h) - W/ml 1p(g)dg‘

1 1 ,
= W/o (h—m1)zr|1p (h+ (T —1)y(my, h))|dt
1 1
+W/0 (h_ (m1 + 1 (m2, my) )) |/ (h+ Ty (ma, b)) |dr.
It follows that
1 my 41 (my,my)
‘l/’(h) - m/ﬂﬁ ¢(g)dg‘
h— 2 1 1-1 1 . ] %
S f](77/121/};:13)(/0 TdT) ' (/O T l/) (h+ (T_ 1)17(77’11,]’[))‘ dT)

+ (= (m;(;Z(rnn?)'ml)))z (/01 TdT)li% (/01 T\’ (h+ 7 (ma, h)) ’qd7> ﬁ'

Applying the definition of exponential s-preinvexity of |¢’|7, we have

1 my+(mo,my)
'¢<h> el A

q(mz,ml) my
(h—m )2 1 1_%
< m(/o TdT)
(h -

m Mo, my)))2 1 1-4
I (;71(:1;7,(7;112) 1)) (/0 rdr)

y (/01 (et — oy T | a9 <m1+n<mz,m1>>|q)dT>”

(g)Ag

ea(my+n(ma,mq))
< Aggiz,::i))z(/()leT)l_;(/;(TQT)S +r(rl)5)dT>

exh ey
M(h—

<=

+

(my +n(ma,my)))? (/01 TdT)l’l

q
1 (mp, my)

1
1/ t(1—1)s stl 1
() (U gy e
M(h — my)? [ 252 _ (54 3) 1

p(my,my)(@)' 7 [+ (5+2) T (s +1)(s+2)

M(h — (my + 5(mz,m))) 1
* ; [eah(s+1)(s+2) *

=

1
e (my+1(ma,my)) (s + 2)

7(ma,my)(2)" 77

(20)
O

This completes the proof.
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Theorem 8. Suppose T be a time scale and H = [mq,my + n(mp, my)] C T such that my <
my + 1 (my, my) € T. Consider  : H — R be a delta differentiable on H° such that p* € H, for
my,my + n(my,my) € H with my < my + n(mo, my). If |p®| is s-preinvex on H for some fixed
s € (0,1] and sup |2 (h)| = M for h € H, then following inequality holds:

my <h<my+i(my,my)

my+1(ma,mq)
\wm L g
: W /01 (T(T -1 +72- T)S)AT
2
* M (Zl(lm—ZZZ;Z/ m1))) /01 (TS“ +1(T— 1)5>AT. (21)

Proof. The proof is related to Theorem 5 only difference is to use definition of s-preinvex
function |*| instead of exponential s-preinvexity. [

Theorem 9. Suppose T be a time scale and H = [my,my + n(mq,my + n(my, my))] C T such
that my < my +n(my,my) € T. Let ¢ : H — R be a delta differentiable on H® such that ¢® € H,
for my, my + 17 (my,my) € Hwith my < my + n(my, my). If [*|7 is s-preinvex on H for some
fixeds € (0,1], p,qg > 1, 5+ = land

sup |p2(h)| = M for h € H, then following inequality holds:

my <h<my+n(my,my)

~my 17 (mg,my )
: /1” T (9)0g

11 (1, my)

= W(/;TMT); (/01 (=1 + (Z—T)S)AT>

+M(h—(ml+17(mz,ml)))2(/OlTpAT)?z(/01 (Ts+(1_f)s)m> . (@)

n (mz, ml)

my

‘w(h) -

q

Proof. The proof is related to Theorem 6 but in place of definition of exponential s-
preinvexity, we use s-preinvexity of [¢p*|7. O

Theorem 10. Suppose T is a time scale and H = [my, mq + n(my, my)] C T such that my <

my +n(my,my) € T. Let p : H — R be a delta differentiable on H® such that $* € H, for

my, my +1(my,my) € Hwith my < my + 17(ma, my). If |p™|7 is s-preinvex on H for some fixed

s€ (0,1, 9 > 1and sup |p2(h)| = M for h € H, then the following inequality
my <h<my+1(my,my)

holds:

1 /mﬁv(mzm)
1(my, my)

- W(/ol TAT)l_% (/ol (T(T* 1) +1(2— T)S)AT>
(/O.l (TS—H—FT(l—T)S)AT)q, (23)

Proof. The proof is related to Theorem 7, but we use definition of s-preinvexity of [ |1
instead of exponential s-preinvexity. [

¥ (g)Ag

ny

‘w(m -

1

M(h — (my +n(my,my)))* ¢ 1 =3
1(ma, my) (/0 TAT)

_|_
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4. Applications

Suppose there are some special means of two positive numbers my, my + 1(my, my)
with my < mq + 1 (my, my).

(i) The arithmetic mean:

my +my + 1 (my,my) _ 2my + 1(m, my)

A(my,my +n(my,my)) = 7 > (24)
(ii) The Harmonic mean:
2mq(mq +n(my, m 2mq(mq + n(mo, m
H (g, 1y + (113, 111)) = 1(my 415 (ma,my))  2my (my + 1 (m,my))
mq +mq + 17(1112, m1) 2mq + 17(77’12,1111)
mq > 0,mq + 1’](7?12, ml) > 0. (25)

(iii) The identric mean:

1
(11 + 1 (g, my )y +1(mamm) \ T2 5)
(1m)™ . (26)

1
I(m1,m1 + 7](7!’[2,1’}’[1)) = E (

where my, my + 1(my, my) > 0.
(iv) The log-mean:

my + 17 (my, my

L = L(my,my + 1(mp, my)) = In (ml+;7(m2,m1)) In(my)
B 1(my, my)
In(my +y(mp,my)) —In(my)’ )
(v) The p-logarithmic mean:
p+1 _ p+1 %
Lp(my,my +n(mp,mq)) = <(m1 JE:EF"%/Z;}ZZ ml))ml > , 0

p € R[{-1,0}
Proposition 1. Let 0 < my < my +y(mp,m1),q > 1,0 < s < 1, then we have

A3 iy, iy 7 (ma 1)) — L3 (g + 1z, )|

M 25+2_ (S+3) 1 7
< 11(7’12,”’11)(2)1_% l(h—m1)2<gah(s+1)(s+2) + eMﬂl(S+1)(S+2))

1 1 i
+ (h - (ml + 77(”12/”71)))2 <e”‘h(s + 1)(5 +2) + eﬂé(m1+77(mz,m1))(s +2)> 1

Proof. The result is satisfied if we consider h = w thatis h = w

in (19) with exponentially s-preinvex function ¢ : (0,00) — R,
p(h) =h*foralla < —1. O

Proposition 2. Let 0 < mq < mq +y(my,my),q > 1and 0 < s < 1. Then, we have
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InA(my, my +n(mp,my)) — Inl(my, my + n(my, my))

. M l(h_m1)2< 22— (s+3) 1

71("12,"11)(2)17% e (s +1)(s+2) e"‘ml(s—l—l)(s—i-z))

1 1 i
+ (h - (ml + 77("12/ ml)))z <etxh(s + 1)(5 + 2) + etx(ml-i-ly(mz,ml))(s + 2)) ]

Proof. The result is satisfied if we consider h = w that is

h = w in (19) with exponentially s-preinvex function ¢ : (0,0) — R,

p(h) =In(h) foralla < —1. O
Proposition 3. Let 0 < my < my +y(myp,my),q > 1and 0 < s < 1. Then, we have

H(my, my +n(my,my)) — L™ (my, my +5(ma, my))

M o 2 25+2—(S+3) 1 7
< ;7(1712,7711)(2)1_% [(h 1) <elxh(s+1)(s+2) + eam1(5+1)(5+2)>

1 1 '
+ (h—(m + 77(7712,7711)))2 <e"‘h(s +1)(s+2) + euc(m1+r](mz,m1))(s —1—2)) 1

(mq+my+n(mp,my))

e (Y ()] (DAL 38

Proof. The result is satisfied if we consider h =

_ 2my+n(mymy) . . . . .
= ml(rlnlJr—M in (19) with exponentially s-preinvex function ¢ : (0,00) — R,

¢(h) =} foralla < —1. O

5. Conclusions

Ostrowski inequalities are of great importance while studying the error bounds of
different numerical quadrature rules, for example, the midpoint rule, Simpson’s rule, the
Trapezoidal rule and other generalized Riemann types. In this article, by generalizing
the inequalities [26], we consider the new integral inequality of Hermite-Hadamard for
exponentially s-preinvex functions on time scale and some novel refinements of Ostrowski
type inequalities for exponentially s-preinvex functions and s-preinvex functions on time
scales and some of our results unify continuous and discrete analysis in the literature and
we discuss some special cases when T= R then A-integral became a classical integral. In
our results, if we take s = 1, then our results reduce to the results for preinvex function.
We have also obtained applications to some special means. In the future research, the
interested reader can search various new interesting inequalities from our results. More-
over, they can investigate (using our technique) applications to special means for various
s-preinvex functions.
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