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Abstract: The objective of this paper is to examine the augmentation of the heat transfer rate utilizing
graphene (Gr) and multi-walled carbon nanotubes (MWCNTs) as nanoparticles, and water as a
host fluid in magnetohydrodynamics (MHD) flow through an upright plate using Caputo fractional
derivatives with a Brinkman model on the convective Casson hybrid nanofluid flow. The performance
of hybrid nanofluids is examined with various shapes of nanoparticles. The Caputo fractional
derivative is utilized to describe the governing fractional partial differential equations with initial and
boundary conditions on the flow model. Exact solutions are obtained for flow transport, temperature
distribution besides that heat transfer rate and friction drag in terms of Mittag-Leffler function by
using Fourier sine and Laplace techniques as hybrid methods. Further, we provided the limiting
case solutions for classic partial differential equations on obtained governing fluid flow models. The
influence of various physical parameters with different fractional orders are investigated on hybrid
nanofluid’s fractional momentum and energy by plotting velocity and energy curves. Few of the
findings suggest that fractional parameters have significant effect on flow parameters and that blade-
shaped nanoparticles have a high heat transfer rate. The graphical results reveal that the Grashof
number shows a symmetry effect in the case of cooling and heating the plate. Furthermore, the
performance of hybrid nanofluid is considerably more effective with the Caputo-fractional derivatives
rather than in the classic derivative approach.

Keywords: Casson Fluid; Fourier Sine Transform; Laplace Transform; fractional heat equation; shape
factor; Mittag-Leffler function

1. Introduction

Nanotechnology has significantly advanced in heat transfer studies, which has en-
hanced the thermal characteristics of energy-transmitting fluids. Producing nanoparticles
with great heat conductivity is one of the most trending uses of nanotechnology. To increase
the thermal conductivity of fluids, nanofluids have great importance. They are prepared in
laboratories by using nanoparticles with an average diameter of less than 100 nm which
are suspended in typical heat transfer fluids such as oil, water, and ethylene glycol. First,
Maxwell [1] proposed nanofluids after an attempt to optimize the heat transfer rate of regu-
lar fluids by suspending micro-sized particles failed owing to sedimentation and clogging
of the flow patterns. Based on these issues, Choi [2] suggested in 1995 that the dispersion of
nanoparticles into the host fluid might improve the thermal performance of the base fluid.
Subsequently, a diverse range of devices have been developed for a variety of practical
purposes and functions in various fields such as electrical engineering [3], helping to im-
prove the thermal efficiency of horizontal spiral coils used in solar ponds [4], as a coolant
in double pipe heat exchangers [5], stenotic artery [6] and drug agent [7]. Later research
by Imran Siddique et al. [8], Maryam Aleem et al. [9], as well as Anum Shafiq et al. [10]
broadened the literature on nanofluids. The discovery of nanofluids has achieved the major
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part of industry’s requirements, but the suspension of single nanoparticles is inadequate
for the required thermal performance. Therefore, researchers have been attempting to
develop a better and more efficient fluid. Yamada et al. [11] defined an upgraded kind of
nanofluid in 1989 by combining two or more nanoparticles of distinct characteristics with
common fluids. This advanced categorization of nanofluid, known as a hybrid nanofluid,
shows potential improvements in heat transfer rate, which can be applied in many domains
such as biomedicine [12–14], heat exchangers [15], solar energy [16] and so on. Some of
the modern advances in the literature of hybrid nanofluids are observed in the studies
carried by Hafeez et al. [17]; their study provides a numerical modelling of MHD rotational
flow of hybrid nanomaterial by applying a bvp4c technique between two parallel porous
sheets. Iskandar Waini et al. [18] examined the stable mixed convection flow along a vertical
surface immersed in a porous medium using hybrid nanoparticles. Talha Anwar et al. [19]
established two independent fractional models, Caputo–Fabrizio and Atangana–Baleanu,
to analyze the flow patterns and thermal characteristics of a NaAlg/SA-based hybrid
nanofluid. Their study revealed that the CF fractional operator improves the thermal rate
more efficiently than the AB fractional operator.

Heat transmission is crucial for temperature controls in many industrial applications.
Even with increased demand for energy-efficient equipment, achieving good heat trans-
mission of a fluid remains a challenge. As a result, nanoparticles, nanofluids, and hybrid
nanofluids exploration are some of the most significant topics of research. Consequently,
heat transfer becomes more robust. Nepal T. Balaji et al. [20] investigated the micro channel
heat sink, which is used to check the convective heat transfer properties of water-based hy-
brid nanofluids including graphene nanoplatelets and MWCNTs. Mumtaz Khan et al. [21]
examined FDM combined with L1-technique utilization to perform the heat transfer of
fractional transient MHD flow of viscoelastic hybrid nanofluids through an inclined surface
fixed in a Darcy porous medium. Unsteady natural convection and heat transmission
of hybrid nanofluid for two upright parallel plates were analyzed by Chandra Roy and
Ioan Pop [22]. In the fields of biomechanics, aerospace, and chemical engineering, mag-
netohydrodynamics (MHD) free convection flow is extremely important. MHD primarily
focuses on the study of the magnetic characteristics and behavior of electrically conducting
fluids, including magneto fluids such as electrolytes, liquid metals, plasmas and salt water.
Ndolane Sene [23] examined the heat transmission analysis of Brinkmantype fluid with
Caputo derivative. Zar Ali Khan et al. [24] found the analytic solution of the transient
flow of a generalized Brinkman-type fluid in a channel under the influences of MHD with
Caputo–Fabrizio fractional derivative. Ridhwan Reyaz et al. [25] explored the effects of
heat radiation on the MHD Casson Fluid as well as the Caputo fractional derivative on an
oscillating upright plate.

The investigation of non-Newtonian materials is another intriguing research issue due
to its interdisciplinary character and interesting rheological dynamics. Non-Newtonian
fluids are flexible due to their applicability in numerous sectors and production processes.
The relevance of non-Newtonian fluids may be seen in the oil packing, cooling/heating
processes, hydraulics, lubricant industry and opto-electronics. In the literature, scientists
have researched many non-Newtonian models, among which is included the Casson Fluid
model [26], made known in 1959 by Casson, while inspecting the rheological data of pig-
ment ink in a printer. Casson Fluid is a shear-thinning liquid with infinite viscosity at zero
shear stress. When the yield stress is higher than the shear stress, the fluid acts like a solid.
Toothpaste, slurries, blood, paint, molten polymers, honey, jelly, tomato sauce and chocolate
are examples of Casson Fluid. This fluid model has been beneficial to polymer processing in-
dustries, food manufacturers, cosmetics, textiles, biomechanics, pharmaceuticals and many
more. Ali Raza et al. [27] investigated the flow of Casson nanoparticles by applying Laplace
Transform across a vertical moving plate using the Atangana–Baleanu time-fractional
derivative and studies have shown that the fractional, ordinary velocity fields of Casson
Fluid decreases when compared to viscous fluid. Muhammad Nazirul Shahrim et al. [28]
were using the Laplace Transform to study the precise solution of fractional convective
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Casson Fluid over an accelerated plate. M. Veera Krishna et al. [29] explored the radiative
MHD flow of Casson hybrid nanofluid through an infinite exponentially accelerated verti-
cal porous surface using the Laplace methodology, and the temperature of Casson hybrid
nanofluid is considerably superior to that of Casson nanofluid.

In present times, fractional calculus [30] is essential in engineering and applied scien-
tific disciplines such as physics, electronics, mechanics, population modelling, biosciences,
economics and signal processing. Fractional calculus contains two categories singular oper-
ators and nonsingular operators. (1) Caputo derivative (2) Riemann–Liouville derivative
are singular operators. The Caputo–Fabrizio derivative and the Atangana–Baleanu deriva-
tive are non-singular operators. They arose as a result of the application of conventional
differentiation to the concept of non-local derivatives. As per several subject specialists,
the findings obtained through the use of fractional operators are more precise and realistic
than those obtained using classic differentiation. When it comes to understanding fluid
performance, fractional operators are extremely important because of their self-similar
qualities and memory-capturing capabilities. The Caputo derivative is the most commonly
encountered derivative in the fractional calculus literature. The rationale stems from the
fact that this derivative is consistent with the initial conditions utilized in modelling real-
world issues. Michele Caputo proposed the Caputo fractional derivative in his study in the
year 1967 [31]. Talha Anwar et al. [32] analyzed different shape effects of fractal fractional
model for thermal analysis of hybrid nanofluid with a power-law kernel and noticed that
the heat transfer rate was most effective for blade-shaped nanoparticles when graphene
nanoparticles and graphite oxide were equally dispersed. Muhammad Saqib et al. [33]
used the Atangana–Baleanu fractional derivative to examine the time fractional model of
the convective flow of carboxy–methyl–cellulose (CMC)-based CNTs nanofluid through a
porous media in a microchannel and observed that MWCNTs are more efficient than SWC-
NTs in improving the thermal conductivity of the nanofluids. Marjan Mohd Daud et al. [34]
implemented the Caputo fractional derivative principle to Casson Fluid convective flow
in a microchannel with radiant heat flux. M Ahmad et al. [35] described a generalization
for natural convection flow of Maxwell nanofluid in two upright parallel plates adopting
Caputo–Fabrizio utility of fractional order derivatives. Sidra Aman et al. [36] derived
precise estimates for MHD flow of Casson nanofluid with hybrid nanoparticles using the
Caputo time fractional derivatives.

Being motivated by Ndolane Sene [37], who analyzed the exact solution for a class
of fluids model with the Caputo derivative by using Laplace and Fourier Sine Transform
method, it is noticed that there has been no attempt in the prior literature to investigate
MHD and hybrid nanofluids with Caputo fractional derivatives by using Fourier Sine
Transform and Laplace Transform. Hence, the current study proposes to expand on the
work of Ndolane Sene by adopting MHD with different shapes of hybrid nano fluid model
using graphene (Gr), multiwall carbon nanotubes (MWCNTs) as nanoparticles and water
as host fluid to analyze the heat transmission rate. The implementation of the Caputo
derivative and its approach to obtaining the analytical results by employing the Laplace and
Fourier transforms will be novel. The Caputo fractional derivative is used to fractionalize
the MHD free convection Casson hybrid Brinkman-type fluid model. The Fourier sine
and Laplace Transformation is used to transform non-linear governing PDEs into ordinary
differential equations. These exact solutions are shown for temperature and flow fields
of hybrid nanofluid. Eventually, by making α→ 1, β→ ∞ the classic non-Newtonian
solutions are recovered for velocity field. Further, the influence of several parameters on
the fluid flow and thermal characteristics were discussed and shown in graphical and
tabular form. The practical applications of employing these nanoparticles are in wastewater
treatment, 3D printing, solar cell (dye-sensitized solar cells) industries.

The contents of the present paper are outlined as follows. Section 2 describes the
fractional mathematical model using Caputo fractional derivatives. Section 3 gives the
approaches to obtain analytical solutions using Fourier sine and Laplace Transform meth-
ods for temperature and velocity fields. Further discussed are the limiting cases, heat
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transmission rate and shearing stress. Discussion and the interpretations of the influences
of the parameters utilized in the modelling have been provided in Section 4. We conclude
the paper with findings which are discussed in Section 5.

2. Fractional Mathematical Model with Caputo Derivative

Consider an unsteady MHD free convective Casson hybrid flow of water with graphene
and MWCNTs nanoparticles over an infinite upright plate. The system rectilinear coordi-
nate is implemented for the analysis, and the fluid flow is taken in the y-direction, whereas
the x-axis is picked perpendicular to the plate. Magnetic field of strength B0 is applied
normal to the fluid flow direction. The fluid is viscous, incompressible, conducting and
not electrified. The fluid is assumed to be gray, absorbing and emitting radiation but as a
non-scattered medium. Different forms of nanoparticles (cylinder, blade, brick, platelet and
spherical) are disseminated into the host fluid to obtain hybrid nanofluid. At time τ = 0,
the plate and hybrid nanofluid are both in equilibrium state with temperature T∞. As time
progresses, τ > 0, the fluid is driven by the velocity U and at the same time, temperature
of the fluid raised to TW and then far away from the plate its ambient temperature is T∞,
causing free convection to occur, as presented in Figure 1. Body force emerges as buoyancy
force in this circumstance because of the temperature difference. Further, for analyzing the
flow phenomena of the hybrid nanofluid, the Brinkman-type fluid model is being used.
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The following forms can be used to depict the rheological equation for an incompress-
ible Casson Fluid (Nakamura et al. [38]).

πi,j = 2(µγ +
py√
2π

)eij when π > πc

πi,j = 2(µγ +
py√
2πc

)eij when π < πc

 (1)

Here, π = eijeij where eij represents the (i, j)th component of the deformation rate, π
is the product of the component of deformation rate with itself, πc is the critical value of
this product based on the non-Newtonian model, py symbolizes the yields stress, and µγ

denotes the plastic dynamic viscosity of the non-Newtonian flow.
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The mathematical structure of the corresponding conventional flow of Casson hy-
brid nanofluid (graphene–MWCNTs–H2O) can be concise by Boussinesq’s approximation
(Nehad Ali Shah and Ilyas Khan [39]) with the following partial differential governing
equations given under the aforementioned assumptions.

∂u
∂x

+
∂v
∂y

= 0 (2)

ρhn f
∂u
∂t

= µhn f (1 +
1
β
)

∂2u
∂x2 + ρhn f γhn f g(T − T∞)− σhn f B2

0u (3)

(ρCp)hn f
∂T
∂t

= κhn f
∂2T
∂x2 (4)

The dimensional initial and boundary conditions employed in this study are detailed below.

t ≤ 0 : u = 0, T = T∞∀x

t > 0 :
u = U, T = Tw : x = 0

u→ 0, T → T∞ : x → ∞
(5)

Table 1 lists the thermo-physical attributes of hybrid nanofluids and nanofluids.
Table 2 portrays the thermophysical properties of the host fluid (H2O) and nanoparti-
cles (graphene and MWCNT). Table 3 displays the sphericity and shape factor for various
shapes of nanoparticles.

Table 1. Hybrid nanofluid thermophysical description (Talha Anwar et al. [32]).

Properties Hybrid Nanofluid

Viscosity, µ µhn f =
µ f

(1−φGr)
2.5(1−φMWCNT)

2.5 (Brinkman model)

Density, ρ ρhn f =
[
ρ f (1− φ1) + φ1ρp1

]
(1− φ2) + ρp2 φ2

Specific heat capacity, Cρ (ρCp)hn f =
[
φGr(ρCp)Gr + (1− φGr)(ρCp) f

]
(1− φMWCNT) + (ρCp)MWCNTφMWCNT

Thermal conductivity, κ
κhn f = κn f

[
κMWCNT+(n−1)κn f−(n−1)(κn f−κMWCNT)φMWCNT

κMWCNT+(n−1)κn f +(κn f−κMWCNT)φMWCNT

]
(Maxwell model)

where κn f = κ f

[
κnp1+κ f (n−1)−(κ f−κnp1 )(n−1)φnp1

κnp1+κ f (n−1)+(κ f−κnp1 )φnp1

]
Electrical conductivity, σ

σhn f = σn f

[
σp2+(n−1)σn f−(n−1)(σn f−σp2 )φ2

σp2+(n−1)σn f +(σn f−σp2 )φ2

]
where σn f = σf

[
σp1+(n−1)σf−(n−1)(σf−σp1 )φ1

σp1+(n−1)σf +(σf−σp1 )φ1

]
Thermal expansion coefficient, γ (ργ)hn f =

[
(1− φGr)(ργ) f + φGr(ργ)Gr

]
(1− φMWCNT) + (ργ)MWCNTφMWCNT

Table 2. Thermophysical characteristics of the host fluid and nanoparticles (Mumtaz Khan et al. [21],
Reddy SR and Reddy PB [40]).

Physical Properties Water (H2O) Graphene (Gr) Multiwall Carbon
Nanotube (MWCNT)

ρ/Kgm−3 997.1 2250 1600

Cρ/JKg−1K−1 4179 2100 796

κ/Wm−1K−1 0.613 2500 3000

σ/Sm−1 5.5× 10−6 107 107

γ/K−1 210× 10−6 −7× 10−6 2.1× 10−5

The following non-dimensional parameters are constructed using Buckingham’s pi-
theorem (W.D.Curtis [41]).
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Table 3. Sphericity and shape factor of nanoparticles of various shapes (Muhammad Saqib et al. [33]).

Models a b ψ p= 3
ψ

Blade 14.6 123.3 0.36 8.3

Brick 1.9 471.4 0.81 3.7

Platelet 37.1 612.6 0.52 5.7

Cylinder 13.5 909.4 0.62 4.9

Spherical - - 1 3

u∗ = u
U , x∗ = x U

v , τ∗ = U2

v t, v = T−T∞
Tw−T∞

Pr =
(µCp) f

κ f
, Gr =

gv f γ f (Tw−T∞)

U3 , M =
σf ν f B2

0
ρ f U2

(6)

When transforming the Equations (2)–(5) using the dimensionless variables specified
in Equation (6) and further dropping * sign, a more simplified form of the non-dimensional
fluid model is obtained as:

∂u
∂τ

= a7(1 +
1
β
)

∂2u
∂x2 − a10M + a12Grv (7)

∂v
∂τ

=
a4

Pr
∂2v
∂x2 (8)

Fractional calculus is an effective tool for describing real-world phenomena with the so-
called memory effect. The Caputo derivative is used because the memory effect and a constant
function’s derivatives yield zero. Equations (9) and (10) are obtained by replacing the integer
order derivative with the Caputo derivative in Equations (7) and (8) and generalizing the
integer-order derivative to non-integer partial differential equations. They are:

Dα
τu = a7(1 +

1
β
)

∂2u
∂x2 − a10M + a12Grv (9)

Dα
τv =

a4

Pr
∂2v
∂x2 (10)

We treat the following relationships as dimensional initial and boundary conditions
that momentum and temperature satisfy.

τ ≤ 0 : u = 0, v = 0∀x

τ > 0 :
u = 1, v = 1 : x = 0

u→ 0, v→ 0 : x → ∞
(11)

where

a1 =
κp2+(n−1)κn f−(n−1)(κn f−κp2 )φ2

κp2+(n−1)κn f +(κn f−κp2 )φ2
,

a2 =
kp1+(n−1)k f−(n−1)(k f−kp1 )φ1

kp1+(n−1)k f−(k f−kp1 )φ1
,

a3 = (1− φ2)

[
(1− φ1) + φ1

(ρCp)p1
(ρCp) f

]
+

[
(ρCp)p2
(ρCp) f

]
φ2, a4 = a1a2

a3
,

a5 = (1− φ1)
2.5(1− φ2)

2.5, a6 = (1− φ2)
[
(1− φ1) + φ1

ρp1
ρ f

]
+
[

ρp2
ρ f

]
φ2, a7 = 1

a5a6
,

a8 =
σp2+(n−1)σn f−(n−1)(σn f−σp2 )φ2

σp2+(n−1)σn f +(σn f−σp2 )φ2
,

a9 =
σp1+(n−1)σf−(n−1)(σf−σp1 )φ1

σp1+(n−1)σf +(σf−σp1 )φ1
,

a10 = a8a9
a6

, a11 = (1− φ2)

[
(1− φ1) + φ1

(ργ)p1
(ργ) f

]
+

(ργ)p2
(ργ) f

φ2, a12 = a11
a6
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3. Procedure for Solution

There are numerous approaches for solving the fractional differential equations pro-
vided in Equations (9) and (10). This section explains how to use analytical approaches
to find solutions. In this work, Laplace and Fourier Sine Transformation are used to find
exact results for our present model. This approach is mentioned in the following litera-
tures [42,43]. The benefit of this method in this study is that it allows for the development
of linear fractional differential equations. Figure 2 shows a flowchart that summarizes the
solution method used in this study.
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3.1. Integral Transform for Fractional Order Caputo Derivative

The Laplace Transform method is employed for obtaining accurate analytical solutions
in this study, the Laplace Transformation of the Caputo derivative in the following lines
are defined.

The Caputo fractional derivative of f (t) is defined as:

Dα f (t) =
1

Γ1− α

t∫
0

(t− s)−α d f (s)
ds

; 0 < α < 1 (12)

where α is a fractional order, Γ is a gamma Euler function.
In Equation (12), the Laplace Transform and the Convolution theorem is utilized

to obtain:

L

 t∫
0

f ′(u)(t− u)−αdu

 =
(

s f (s)− f (0)
)Γ1− α

s1−α
(13)
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Then, using the Laplace Transform definition, the following is obtained:

L[Dc
α f (t)] = sαL[ f (t)]− sα−1 f (0) (14)

According to the present study Equation (15) is written as:

L[Dc
αv(q, τ)] = sαL[v(q, τ)]− sα−1v(q, 0) (15)

The Laplace Transform in Equation (15) will be significant in the current investigation.

3.2. Hybrid Fractional Temperature Field Calculation

For solving the fractional temperature equation in Equation (10), initial and boundary
conditions given in Equation (11) have been used.

Fourier Sine Transform is applied to Equation (10) as first step in this approach and
the RHS and LHS are obtained as follows:

Fs[Dα
τv(x, τ)] = Dα

τv(q, τ) (16)

Fs

[
∂2v(x, τ)

∂x2

]
= qv(0, τ)− q2v(q, τ) (17)

where the Fourier Sine Transformation is denoted by Fs and the Fourier sine variable is q.
By replacing Equations (16) and (17) in the Fourier Sine Transform of Equation (10),

the below Equation (18) is obtained,

Dα
τv(q, τ) =

a4

Pr
[qv(0, τ)− q2v(q, τ)] (18)

Now proceeding to the second part of the approach, which is to apply the Laplace
Transformation to Equation (18) and use Equation (11) to obtain,

v(q, s) =
qa4

sPr
(

sα + a4q2

Pr

) (19)

After some rearrangement, the Equation (20) is as below.

v(q, s) =
a4q
Pr

[(
1
s
− sα−1

sα + a4q2

Pr

)
Pr

a4q2

]
(20)

To solve Equation (20), the inverse Laplace Transform is used, which generates the
following relationship.

v(q, τ) =
1
q

[
1− L−1

[
sα−1

sα + a4q2

Pr

]]
(21)

In order to obtain the analytical solution for Equation (21), the Mittag-Leffler func-
tion [44] is used. That is:

Let α > 0, β ∈ R and z ∈ C. The Mittag-Leffler function is defined by the series:

Eα,β(z) =
∞

∑
k=0

zk

Γαk + β
when α > 0 and β > 0, the series is convergent. (22)

By doing so, β = 1, z = −λτα and λ = a4q2

Pr in Equation (22) and compare Equations (21)
and (22), which after simplification acquire the following form:

Eα(−
a4q2

Pr
τα) = L−1

[
sα−1

sα + a4q2

Pr

]
(23)
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By replacing Equation (23) in Equation (21),

v(q, τ) =

[
1− Eα

(
− q2a4

Pr
τα

)]
1
q

(24)

This technique is completed by employing the inverse Fourier Sine Transformation to

Equation (24) and use the fact of integration
∞∫
0

sin qx
q dq = π

2 , resulting in:

v(x, τ) =
2
π

∞∫
0

v(q, τ) sin qxdq

v(x, τ) = 1− 2
π

∞∫
0

sin qx
q

Eα(−
a4q2τα

Pr
)dq (25)

3.3. Hybrid Fractional Velocity Field Calculation

For solving the fractional momentum equation, the Fourier Sine Transformation is
applied to Equation (9) and considering µ = 1 + 1

β the simplified equation is

Dα
τu(q, τ) = a7µqu(0, τ)− a7µq2u(q, τ)− a10Mu(q, τ) + a12Grv(q, τ) (26)

and utilizing the Laplace Transform to Equation (26) with the use of Equation (11) yields that,

sαu(q, s) = a7µq
1
s
− a7µq2u(q, s)− a10Mu(q, s) + a12Grv(q, s) (27)

With further simplifications Equation (27), reduces to:

u(q, s) =
µqa7

s(sα + µq2a7 + a10M)
+

Grqa4a12

sPr(sα + µq2a7 + a10M)(sα + a4q2

Pr )
(28)

where,
a(q, s) = µqa7

s(sα+µq2a7+Ma10)
,

b(q, s) = Grqa4a12

sPr(sα+µq2a7+a10 M)(sα+
a4q2

Pr )

The inverse of the function b(q, s) is rewritten as below.

b(q, s) =
Grqa4a12

Pr

[
sα−(1+α)

sα + a4q2

Pr

− sα−(1+α)

sα + µa7q2 + Ma10

]
(29)

b(q, s) =
Gra4a12

Prq(µa7 − a4
Pr +

Ma10
q2 )

[
sα−(1+α)

sα + a4q2

Pr

− sα−(1+α)

sα + µa7q2 + Ma10

]
(30)

The inverse of Laplace Transformation is used to Equation (30) to obtain:

b(q, τ) =
Gra4a12

Prq(µa7 − a4
Pr +

Ma10
q2 )

[
L−1

(
sα−β

sα + a4q2

Pr

)
− L−1

(
sα−β

sα + µa7q2 + Ma10

)]
(31)

where β = 1 + α.
Using the Mittag-Leffler function as described in Equation (22) and further simplifying,

it reduces to:

τα
[
Eα,β(−λtα)

]
= L−1

(
sα−β

sα + λ

)
(32)
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By comparing Equations (31) and (32) and substituting λ = a4q2

Pr , λ = µa7q2 + Ma10
the following form is obtained:

b(q, τ) =
Gra4a12τα

Prq(µa7 − a4
Pr +

Ma10
q2 )

[
Eα,β(−

q2a4

Pr
τα)− Eα,β(−µq2a7 −Ma10)τ

α

]
(33)

Using the inverse Fourier Sine Transform formula:

b(x, τ) =
2
π

∞∫
0

b(q, τ) sin qxdq

b(x, τ) =
2Gra4a12

πPr

∞∫
0

sin qx

q(µa7 − a4
Pr +

Ma10
q2 )

[
Eα,β(−

q2a4

Pr
)τα − Eα,β(−µq2a7 −Ma10)τ

α

]
dq (34)

Again, the function a(q, s) is rewritten as:

a(q, s) =
µa7

q(µa7 +
Ma10

q2 )

[
1
s
− sα−1

sα + µq2a7 + Ma10

]

and employing the inverse Laplace Transformation, solution is written in terms of Mittag-
Leffler function as follows:

a(q, τ) =
µa7

q(µa7 +
Ma10

q2

[
1− L−1

[
sa−1

sα + µq2a7 + Ma10

]]
(35)

Eα,1(−λτα) = L−1
[

sa−1

sα + λ

]
(36)

Using the inverse Fourier Sine Transform, it implies that,

a(q, τ) =
µa7

q(µa7 +
Ma10

q2 )

[
1− Eα(−q2µa7 −Ma10)τ

α
]

where λ = µa7q2 + Ma10

a(x, τ) =
2
π

 ∞∫
0

µa7 sin qx

q(µa7 +
Ma10

q2 )
dq−

∞∫
0

µa7 sin qx

q(µa7 +
Ma10

q2 )
Eα(−q2µa7 −Ma10)τ

αdq

 (37)

The exact solution is,
u(x, τ) = a(x, τ) + b(x, τ) (38)

where,

a(x, τ) =
2
π

 ∞∫
0

µa7 sin qx

q(µa7 +
Ma10

q2 )
dq−

∞∫
0

µa7 sin qx

q(µa7 +
Ma10

q2 )
Eα(−q2µa7 −Ma10)τ

αdq



b(x, τ) =
2Gra4a12

πPr

∞∫
0

sin qx

q(µa7 − a4
Pr +

Ma10
q2 )

[
Eα,β(−

q2a4

Pr
)τα − Eα,β(−µq2a7 −Ma10)τ

α

]
dq
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3.4. Limiting Cases
3.4.1. Temperature Field for Classic Case with Hybrid Nanoparticles

The temperature expression corresponding to α→ 1 in Equation (10) reduces to the
following expression,

v(x, τ) = er f c(
x
√

Pr
2
√

τa4
)

where er f c is a Gaussian error function.

3.4.2. Velocity Field for Classical Case with Hybrid Nanoparticles

The velocity expression corresponding to α→ 1 in Equation (9) reduces to the follow-
ing expression.

u(x, τ) = 1
2

[
ex
√

a15 er f c
(

x
2
√

a7τB +
√

a15a7τB
)
+ e−x

√
a15 er f c

(
x

2
√

a7τB −
√

a15a7τB
)]

+ a13
2a14

[
ex
√

a15 er f c
(

x
2
√

a7τB +
√

a15a7τB
)
+ e−x

√
a15 er f c

(
x

2
√

a7τB −
√

a15a7τB
)]

− a13e
√a14τ

2a14

[
ex
√

a16 er f c
(

x
2
√

a7τB +
√

a16a7τB
)
+ e−x

√
a16 er f c

(
x

2
√

a7τB −
√

a16a7τB
)]

− a13
a14

er f c( x
√

Pr
2
√

τa4
)

+ a13e
√a14τ

2a14

e
x
√

a14Pr
a4 er f c

(
x
√

Pr
2
√

a4τ +
√

a14τ
)
+ e
−x
√

a14Pr
a4 er f c

(
x
√

Pr
2
√

a4τ −
√

a14τ
)

where,

B = 1 +
1
β

, a13 = − Gra4a12

Pra7B− a4
, a14 =

Ma4a10

a7BPr− a4
, a15 =

Ma10

a7B
,a16 =

a14

a7B
+

Ma10

a7B

3.4.3. Velocity Field for Classic Newtonian Fluid with Hybrid Nanoparticles

In the case of velocity for classical Newtonian fluid, the following expression is
obtained by making β→ ∞ , α→ 1 in Equation (9):

u(x, τ) = 1
2

[
ex
√

a19 er f c
(

x
2
√

a7τ +
√

a19a7τ
)
+ e−x

√
a19 er f c

(
x

2
√

a7τ −
√

a19a7τ
)]

+ a18
2a17

[
ex
√

a19 er f c
(

x
2
√

a7τ +
√

a19a7τ
)
+ e−x

√
a19 er f c

(
x

2
√

a7τ −
√

a19a7τ
)]

− a18eτa17
2a17

[
ex
√

a20 er f c
(

x
2
√

a7τ +
√

a20a7τ
)
+ e−x

√
a20 er f c

(
x

2
√

a7τ −
√

a20a7τ
)]

− a18
a17

er f c( x
√

Pr
2
√

τa4
)

+ a18e
√a17τ

2a17

e
x
√

a17Pr
a4 er f c

(
x
√

Pr
2
√

a4τ +
√

a17τ
)
+ e
−x
√

a17Pr
a4 er f c

(
x
√

Pr
2
√

a4τ −
√

a17τ
)

where,

a17 =
Ma4a10

a7Pr− a4
, a18 = − Gra4a12

a7Pr− a4
, a19 =

Ma10

a7
, a20 =

a17

a7
+

Ma10

a7
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3.5. Analytical Expressions for the Heat Transfer and Shear Stress

Heat transmission rate along with shear stress are two important physical quantities
that are analyzed to gain access to a wide range of information, such as efficacy of hybrid
nanofluids, elements that improve or deteriorate hybrid nanofluid thermal efficiency,
the role of accompanying development in deriving hybrid nanofluid flow patterns, and
various others. Utilizing the importance of these values, the following mathematical
relationships are predicted, which are mentioned as skin friction coefficient (C f ) and
Nusselt number (Nu).

Nusselt number from Equation (25), an analytical expression of the dimensionless rate
of heat transfer (Nu) is:

Nu = − ∂v
∂x |x=0 = −L−1

[
lim
x→0

∂v
∂x

]
Nu =

√
Pr
a4

τ−
α
2

Γ1− α
2

Skin friction from Equation (38), an analytical expression of the dimensionless skin
friction is given by:

C f = −
∂u
∂x
|x=0 = −L−1

[
lim
x→0

∂u
∂x

]
C f =

1√
Aa7

[
t−

α
2

Γ− α
2 +1 −

∞
∑

k=1

(2k−2)!(−1)k A1
ktα(k− 1

2 )

22k−1(k)!(k−1)!Γα(k− 1
2 )+1

]

− A4√
Aa7

[
1

Γ− α
2 +1

t∫
0

uα−1Eα,α(A3uα)(t− u)−
α
2 du

]

− A4√
Aa7

[
∞
∑

k=1

(2k−2)!(−1)k A1
k

22k−1(k)!(k−1)!Γα(k− 1
2 )+1

t∫
0

uα−1Eα,α(A3uα)(t− u)α(k− 1
2 )du

]

+ A4√
Aa7

√
Pr
a4

[
1

Γ− α
2 +1

t∫
0

uα−1Eα,α(A3uα)(t− u)−
α
2 du

]
where,

A1 = Ma10, A2 = BPra7, A3 =
A1a4

A2 − a4
, A4 = −Gra4a12

A1 − a4

4. Graphical Findings and Outcomes

This section goes through graphical examination of temperature, flow field domains
obtained for fractional order PDEs and flow parameters appearing in the problem. The frac-
tional fluid model is determined analytically using the Laplace and Fourier Sine Transform
methods. The Prandtl number, time, thermal Grashof number, Casson parameter, magnetic
field, volume fraction parameters φ1 and φ2 are investigated and justified with a physical
perspective. Recognizing the significance of shape effects, nanoparticles are thought to have
five distinct shapes (brick, blade, cylinder, spherical and platelet). The impact of various
flow characteristics is examined by using plotted curves in Figures 3–20 to illustrate various
impacts on flow field, temperature, heat flow rate and friction drag, also illustrated with
tables, bar graphs to analyze different elements of the topic under study. These graphical,
tabular representations aid in understanding the effects of additional processes such as
heat flow and energy fields. This section also includes a pictorial comparison of fractional
and classical model-based solutions to emphasize their importance. A complete tabular
analysis is also used to analyze the Nusselt number and skin friction.



Symmetry 2023, 15, 399 13 of 26

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 30 
 

 

The impact of various flow characteristics is examined by using plotted curves in Figures 
3–20 to illustrate various impacts on flow field, temperature, heat flow rate and friction 
drag, also illustrated with tables, bar graphs to analyze different elements of the topic 
under study. These graphical, tabular representations aid in understanding the effects of 
additional processes such as heat flow and energy fields. This section also includes a pic-
torial comparison of fractional and classical model-based solutions to emphasize their im-
portance. A complete tabular analysis is also used to analyze the Nusselt number and skin 
friction. 

 
Figure 3. Fluid temperature for varied values of order α . 

 
Figure 4. Fluid temperature for varied values of τ . 

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

1.2

Te
m

pe
ra

tu
re

 = 0.2
 = 0.4
 = 0.6
 = 0.8
 = 0.9

pr = 6.2,  = 1.5, 1 = 2 = 0.05,  = 0.62

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

1.2

Te
m

pe
ra

tu
re

 = 1.1
 = 1.3
 = 1.5
 = 1.7
 = 1.9

pr = 6.2,  = 0.4, 1 = 2 = 0.05,  = 0.62

Figure 3. Fluid temperature for varied values of order α.

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 30 
 

 

The impact of various flow characteristics is examined by using plotted curves in Figures 
3–20 to illustrate various impacts on flow field, temperature, heat flow rate and friction 
drag, also illustrated with tables, bar graphs to analyze different elements of the topic 
under study. These graphical, tabular representations aid in understanding the effects of 
additional processes such as heat flow and energy fields. This section also includes a pic-
torial comparison of fractional and classical model-based solutions to emphasize their im-
portance. A complete tabular analysis is also used to analyze the Nusselt number and skin 
friction. 

 
Figure 3. Fluid temperature for varied values of order α . 

 
Figure 4. Fluid temperature for varied values of τ . 

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

1.2

Te
m

pe
ra

tu
re

 = 0.2
 = 0.4
 = 0.6
 = 0.8
 = 0.9

pr = 6.2,  = 1.5, 1 = 2 = 0.05,  = 0.62

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

1.2

Te
m

pe
ra

tu
re

 = 1.1
 = 1.3
 = 1.5
 = 1.7
 = 1.9

pr = 6.2,  = 0.4, 1 = 2 = 0.05,  = 0.62

Figure 4. Fluid temperature for varied values of τ.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 30 
 

 

 

Figure 5. Fluid temperature for varied values of 1φ . 

 

Figure 6. Fluid temperature for varied values of 2φ . 

 

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

Te
m

pe
ra

tu
re

1 = 0.01

1 = 0.02

1 = 0.03

1 = 0.04

pr = 6.2,  = 0.4,  = 1.5, 2 = 0.05,  = 0.62

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

1.2

Te
m

pe
ra

tu
re

2 = 0.01

2 = 0.02

2 = 0.03

2 = 0.04

Pr = 6.2,  = 6.2,  = 1.5, 1 = 0.05,  = 0.62

Figure 5. Fluid temperature for varied values of φ1.



Symmetry 2023, 15, 399 14 of 26

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 30 
 

 

 

Figure 5. Fluid temperature for varied values of 1φ . 

 

Figure 6. Fluid temperature for varied values of 2φ . 

 

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

Te
m

pe
ra

tu
re

1 = 0.01

1 = 0.02

1 = 0.03

1 = 0.04

pr = 6.2,  = 0.4,  = 1.5, 2 = 0.05,  = 0.62

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

1.2

Te
m

pe
ra

tu
re

2 = 0.01

2 = 0.02

2 = 0.03

2 = 0.04

Pr = 6.2,  = 6.2,  = 1.5, 1 = 0.05,  = 0.62

Figure 6. Fluid temperature for varied values of φ2.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 30 
 

 

 

Figure 5. Fluid temperature for varied values of 1φ . 

 

Figure 6. Fluid temperature for varied values of 2φ . 

 

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

Te
m

pe
ra

tu
re

1 = 0.01

1 = 0.02

1 = 0.03

1 = 0.04

pr = 6.2,  = 0.4,  = 1.5, 2 = 0.05,  = 0.62

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

1.2

Te
m

pe
ra

tu
re

2 = 0.01

2 = 0.02

2 = 0.03

2 = 0.04

Pr = 6.2,  = 6.2,  = 1.5, 1 = 0.05,  = 0.62

Figure 7. Fluid temperature for distinct shapes.

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 30 
 

 

Figure 7. Fluid temperature for distinct shapes. 

 
Figure 8. Fluid flow curve for varied values of fractional order α . 

 
Figure 9. Fluid flow curve for varied values of M. 

 
Figure 10. Fluid flow curve for varied values of τ . 

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

 = 0.2
 = 0.4
 = 0.6
 = 0.8
 = 0.9

Pr = 6.2,  = 0.5, Gr = 2,  = 1.5, M = 0.3, 1 = 2 = 0.05,  = 0.62

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

M = 0.1
M = 0.2
M = 0.3
M = 0.4
M = 0.5

pr = 6.2,  = 0.4,  = 0.5,  = 1.5, Gr = 2, 1 = 2 = 0.05,  = 0.62

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

 = 1.1
 = 1.3
 = 1.5
 = 1.7
 = 1.9

pr = 6.2,  = 0.4,  = 0.5, Gr = 2, M = 0.3, 1 = 2 = 0.05,  = 0.62

Figure 8. Fluid flow curve for varied values of fractional order α.



Symmetry 2023, 15, 399 15 of 26

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 30 
 

 

Figure 7. Fluid temperature for distinct shapes. 

 
Figure 8. Fluid flow curve for varied values of fractional order α . 

 
Figure 9. Fluid flow curve for varied values of M. 

 
Figure 10. Fluid flow curve for varied values of τ . 

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

 = 0.2
 = 0.4
 = 0.6
 = 0.8
 = 0.9

Pr = 6.2,  = 0.5, Gr = 2,  = 1.5, M = 0.3, 1 = 2 = 0.05,  = 0.62

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

M = 0.1
M = 0.2
M = 0.3
M = 0.4
M = 0.5

pr = 6.2,  = 0.4,  = 0.5,  = 1.5, Gr = 2, 1 = 2 = 0.05,  = 0.62

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

 = 1.1
 = 1.3
 = 1.5
 = 1.7
 = 1.9

pr = 6.2,  = 0.4,  = 0.5, Gr = 2, M = 0.3, 1 = 2 = 0.05,  = 0.62

Figure 9. Fluid flow curve for varied values of M.

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 30 
 

 

Figure 7. Fluid temperature for distinct shapes. 

 
Figure 8. Fluid flow curve for varied values of fractional order α . 

 
Figure 9. Fluid flow curve for varied values of M. 

 
Figure 10. Fluid flow curve for varied values of τ . 

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

 = 0.2
 = 0.4
 = 0.6
 = 0.8
 = 0.9

Pr = 6.2,  = 0.5, Gr = 2,  = 1.5, M = 0.3, 1 = 2 = 0.05,  = 0.62

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

M = 0.1
M = 0.2
M = 0.3
M = 0.4
M = 0.5

pr = 6.2,  = 0.4,  = 0.5,  = 1.5, Gr = 2, 1 = 2 = 0.05,  = 0.62

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

 = 1.1
 = 1.3
 = 1.5
 = 1.7
 = 1.9

pr = 6.2,  = 0.4,  = 0.5, Gr = 2, M = 0.3, 1 = 2 = 0.05,  = 0.62

Figure 10. Fluid flow curve for varied values of τ.

Symmetry 2022, 14, x FOR PEER REVIEW 18 of 30 
 

 

 

Figure 11. Fluid flow curve for varied values of β . 

 
Figure 12. Fluid flow curve for varied values of Gr. 

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

 = 0.5
 = 1.5
 = 2.5
 = 3.5
 = 4.5

pr = 6.2,  = 0.4, Gr = 2,  = 1.5, M = 0.3, 1 = 2 = 0.05,  = 0.62

Figure 11. Fluid flow curve for varied values of β.



Symmetry 2023, 15, 399 16 of 26

Symmetry 2022, 14, x FOR PEER REVIEW 18 of 30 
 

 

 

Figure 11. Fluid flow curve for varied values of β . 

 
Figure 12. Fluid flow curve for varied values of Gr. 

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

 = 0.5
 = 1.5
 = 2.5
 = 3.5
 = 4.5

pr = 6.2,  = 0.4, Gr = 2,  = 1.5, M = 0.3, 1 = 2 = 0.05,  = 0.62

Figure 12. Fluid flow curve for varied values of Gr.

Symmetry 2022, 14, x FOR PEER REVIEW 19 of 30 
 

 

 

Figure 13. Fluid flow curve for varied values of 1φ . 

 

Figure 14. Fluid flow curve for varied values of 2φ . 

 

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

1 = 0.01

1 = 0.02

1 = 0.03

1 = 0.04

pr = 6.2,  = 0.4,  = 0.5,  = 1.5, Gr = 2, M = 0.3, 2 = 0.05,  = 0.62

0 1 2 3 4 5 6 7 8 9 10
x

0

0.2

0.4

0.6

0.8

1

1.2

ve
lo

ci
ty

2 =  0.01

2 =  0.02

2 =  0.03

2 =  0.04

pr = 6.2,  = 0.4,  = 0.5,  = 1.5, Gr = 2, M = 0.3, 1 = 0.05,  = 0.62

0 0.5 1 1.5 2 2.5
x

0

0.2

0.4

0.6

0.8

1

1.2
MWCNTs - H2O
Gr - H2O - MWCNTs
Gr - H2O
H2O

Figure 13. Fluid flow curve for varied values of φ1.
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4.1. Impact of Physical Parameters on Temperature Field

The energy of Equation (11), whose solution is obtained as presented in Equation (25),
has been used for the figures in this section. The temperature profile for fractional order,
α = 0.4 is considered for various flow parameters.

The impact of fractional parameters against temperature distribution is seen in Figure 3.
When τ = 1.5, the temperature field rises with a growing α. Physically, this is explained by
the fact that as α increases, the thickness of the thermal boundary layer also increases, which
becomes thickest as α approaches 1. The novelty arises from explaining how temperature
rises as the order of the fractional operator advances. Because of the memory effect
inherent in fractional operators, increases in order have a considerable impact on time
value, resulting in a large accumulation. When the order of the fractional operator is raised,
it is seen that an increase in time causes a rise in fluid temperature. A sub-diffusion in the
range of (0, 1) is also noticed. When the order is modified, the literature’s results corroborate
Caputo’s fractional derivative sub-diffusion (0, 1).

Figure 4 represents the impact of time on the temperature field. In the above fractional
case, the temperature rises gradually as the value of time increases. This suggests that
when the time under consideration exceeds one, the Caputo derivative has a slower impact
on the diffusion process.

The temperature field is considerably impacted by the volume fraction of the hybrid
nanofluid, as seen in Figures 5 and 6. The temperature field is noted to grow with increasing
volume fraction values, i.e., φ1 and φ2. The physical factors of the hybrid nanofluid clearly
show that a rise in φ1 and φ2 leads to an increase in the heat transfer of the hybrid nanofluid,
thus resulting in the increase of temperature profile. This is due to the fact that when
density of nanoparticles is enhanced, heat conductivity is improved.

The temperature field for different shapes of nanoparticles is represented in Figure 7.
Due to the shape factor p included in Table 3, it is seen that the temperature of the blade-
shaped nanoparticle is the highest, preceded by the platelet, cylinder, brick, and spherical.
It is critical to remember that viscosity decreases as temperature rises. It is obvious that
the shapes of platelets, cylinders, and bricks have more viscosity, resulting in lower tem-
peratures, whereas blades and spherical ones have the greatest temperature due to the
lowest viscosity. The figure also shows that the spherical form of the nanoparticle has a low
viscosity. This is due to the temperature-dependent shear thinning behavior.

4.2. Impact of Physical Parameters on Flow Field

In this section Equation (10), whose solution is obtained as shown in Equation (39)
has been taken into account to plot all the figures. Velocity dynamics for distinct flow
parameters is illustrated for fractional order situation, α = 0.4.

Figure 8 exhibits the impact of fractional order in relation to time. The velocity falls as
the order of the Caputo derivative rises. Meaning to say, as order α accelerates the velocity
decreases to zero, which also means increasing time causes an increase in the flow field,
thus resulting in this outcome.

Figure 9 demonstrates the velocity curve of the magnetic field M parameter. The graph
shows that as the magnetic field levels increased, the velocity decreased. This resulted from
the application of the transverse magnetic field, which produces the resistive Lorentz force.
The Lorentz force, which tends to oppose the flow of hybrid nanofluid, causes the velocity
to decrease. When M is raised, the Lorentz force becomes more intense, enabling the hybrid
nanofluid to gently come to a halt.

Figure 10 captures the time τ effect on the velocity field, the velocity increases gradu-
ally with time growth. This demonstrates that the Caputo derivative has a lesser influence
on the diffusion process when the time under consideration reaches one.

Figure 11 shows the consequences of the Casson parameter when the other values are
held constant. It illustrates that higher values of β tend to a reduction in fluid velocity. This
is due to the physical impact of β, where a larger value of β will increase viscous forces
while decreasing thermal forces. Thus, fluid velocity will tend to decrease.



Symmetry 2023, 15, 399 20 of 26

Figure 12 represents the impact of the thermal Grashof number in cooling and heating
scenarios. The Grashof number is defined as the ratio of buoyancy force to viscous force
acting on a fluid, with fluid motion being linearly dependent on buoyancy force. In
convection problems, the thermal Grashof number is responsible for heat transmission.
This graph shows how the velocity field rises as the Grashof number increases in case
of cooling of the plate (Gr > 0) and the symmetry phenomenon is noted in the heating
scenario (Gr < 0). In addition, the symmetry effect is observed from the figure. The
Grashof number represents the buoyancy force proportional strength to viscous force;
hence, increase in Grashof number corresponds to increase in thermal buoyancy force. As a
result, the velocity field tends to expand.

Figures 13 and 14 indicate the effect of hybrid nanofluid volume fraction on flow field.
It is noted that the flow field of the hybrid nanofluid decelerates as the values of either φ1 or
φ2 increases. The physical explanation for this phenomenon is that as the volume fraction
φ1 and φ2 of the hybrid nanoparticle increases, fluid becomes more viscous, resulting in
decrement of the nanofluid’s flow field. Adding nanomaterials to a fluid raises its density,
which decreases both boundary layer thickness and nanofluid velocity; velocity decelerates
as time exceeds.

Figures 15 and 16 describe the comparison between the flow field and temperature
distribution of the graphene–H2O–MWCNT hybrid nanofluid to those of the equivalent
nanofluids graphene–H2O and MWCNT–H2O and the base fluid H2O. The profiles of the
afore stated nanofluids are displayed by employing either φGr = 0 or φMWCNT = 0 in the
solutions obtained for hybrid nanofluids. Temperature has been found to be the highest
for graphene–H2O–MWCNT hybrid nanofluid, further observing the trend in temperature
profiles followed by MWCNT–H2O nanofluid, graphene–H2O nanofluid and base fluid
H2O, in that order. MWCNT nanoparticles have a considerably superior heat-conduction
capacity than graphene nanoparticles and water. When MWCNT nanoparticles are dissem-
inated in the host fluid, the resulting MWCNTs–H2O nanofluid has a higher temperature
than graphene–H2O nanofluid temperature, due to improved thermal and physical fea-
tures such as heat capacitance and thermal conductivity. Moreover, the even dispersion of
considered nanoparticles (φGr = 0.05 = φMWCNT) improves the thermal conductivity of H2O
in such a way that the heat transfer capacity of the resulting hybrid nanofluid exceeds the
heat transfer capacity of H2O, graphene–H2O nanofluid and MWCNT–H2O nanofluid. The
performance of the temperature curve is mostly determined by the thermal properties and
volume percentage of the nanoparticles under consideration. This temperature fluctuation
caused by various nanoparticles emphasizes the importance of nanofluids and hybrid
nanofluids in heat control systems. Moreover, H2O has the higher fluid flow velocity in
comparison to other nanoparticles, which is followed by MWCNT–H2O, graphene–H2O
and H2O–graphene–MWCNT. The primary cause of these flow patterns is the disparity
in nanoparticle density. According to Table 2, the density of host fluid is substantially
lower than that of nanoparticles, making it less viscid for everyone. Greater the den-
sity of nanoparticles, the more viscid the resulting nanofluid. According to the figure,
evenly spreading both nanoparticles in host fluid, results in an increase in the density of
hybrid nanofluid.

In Figures 17 and 18, the curves are plotted in order to reveal a comparison between
fractional and classical derivative calculus for both cases of hybrid and non-hybrid nanoflu-
ids. In the case of temperature, the figure reveals that the temperature of fractional hybrid
nanofluid is faster followed by fractional non-hybrid than regular fluids. The fractional
derivative model with hybrid nanofluid reveals a better heat transfer enhancement than the
classical approach. In the velocity case the fractional hybrid fluid shows the high velocity
followed by fractional non- hybrid, Newtonian fluid (α→ 1, β→ ∞) with hybrid while it
has lower velocity for the classical fluid in limiting case.

Figure 19 was plotted to determine the applicability of fractional models for attain-
ing a quicker temperature reduction. In the bar graph shown, numerical values of heat
transmission rate (Nu) for fractional derivatives are in comparison with nanofluids and
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hybrid nanofluids. Moreover, notable emphasis is given to the shape constituent, which
resembles certain shapes of disseminated nanoparticles. Heat transmission from vertical
plate to hybrid nanofluid happens faster when graphene and MWCNT nanoparticles have
a blade form. When spherical-shaped nanoparticles are disseminated in water, the cooling
rate of the plate is slower. This disparity in numerical results of Nusselt’s number empha-
sizes the significance of the shape component. Based on these arguments, it is possible to
conclude that the morphologies of nanoparticles play a critical part in improving the poor
thermal properties of conventional fluids. As a result, evaluating shape factor qualities is
an important aspect of such investigations.

The plotting shown in Figure 20 represents the 3D curves for the Nusselt number.
The impact of flow parameters on the Nusselt number is presented in Table 4. Ac-

cording to the table, increasing fractional parameter α, time τ, φMWCNT and φGr leads to
an decrement in the heat transfer rate, whereas increasing Prandtl number Pr, results in
heat transfer increasing. The Nusselt number is defined as the ratio of convective heat
transfer coefficient to fluid conduction heat transfer; a high Nusselt number value will
almost certainly raise the fluid’s temperature as heat is transferred at a faster pace, as seen
in Figures 3–6.

Table 4. The influence of the various parameters on the Nusselt Number.

φGr φMWCNT Pr α τ Nu

0.02 0.02 6.2 0.6 1.5 1.591572294587753

0.03 - - - - 1.569480227825062

0.04 - - - - 1.547886513587993

- 0.03 - - - 1.562898376223181

- 0.04 - - - 1.534893820304120

- - 8 - - 1.807904639541740

- - 9 - - 1.917572445537878

- - - 0.8 - 1.332170104172774

- - - 0.9 - 1.202904460764115

- - - - 1.7 1.532918522253240

- - - - 1.8 1.506856850036236

Table 5 demonstrates the percent improvement in Nusselt number vs. different volume
fraction values of φGr and φMWCNT . The heat transmission rate of water-based hybrid
nanofluid is shown in table for graphene and MWCNT utilized in this investigation,
because they have a high heat transfer rate in the base fluid water. It is remarkable that
for graphene and multiwall carbon nanotubes in water, the heat flow rate increases by
17.7 percent. This increase in heat transfer rate indicates that radiators used in engines or
machines for cooling might be useful for mechanical engineers. Graphene and MWCNT
are used as a photoanode and counter electrode in industries for manufacturing solar cells
(dye-sensitized solar cells) to increase the efficiency.

Table 6 compares the heat transmission rates for distinct constituents of graphene
and MWCNT nanoparticles as well as changes in their ratio in the base fluid. This table
shows that, as the shape components values are increased from 3.0 to 8.3, Nu increases.
In addition, it is recognized that, of all the investigated combinations, hybrid nanofluid
achieves the best heat transmission rate when it is made of spherical-shaped graphene
nanoparticles and blade-shaped MWCNT nanoparticles, as well as brick-shaped graphene
nanoparticles and spherical-shaped MWCNTs.
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Table 5. The effect of volume fraction on Nusselt number and increased percent.

φGr φMWCNT Pr α τ Nu % Increased

0.00 0.00 6.2 0.4 1.5 1.9721 -

0.01 0.01 6.2 0.4 1.5 1.8751 4.9

0.02 0.02 6.2 0.4 1.5 1.7850 9.5

0.03 0.03 6.2 0.4 1.5 1.7011 13.7

0.04 0.04 6.2 0.4 1.5 1.6229 17.7

Table 6. Nusselt number varies for various combinations of shape components (p1 and p2 ).

φGr φMWCNT
p1 = 3.0 p2 = 3.0

p2 = 3.7 p2 = 4.9 p2 = 5.7 p2 = 8.3 p1 = 3.7 p1 = 4.9 p1 = 5.7 p1 = 8.3

0.01 0.01 1.9506 1.9545 1.9562 1.9594 1.9421 1.9341 1.9301 1.9139

0.02 0.02 1.9291 1.9368 1.9402 1.9467 1.9122 1.8965 1.8888 1.8577

0.03 0.03 1.9076 1.9190 1.9241 1.9338 1.8826 1.8596 1.8482 1.8034

0.04 0.04 1.8860 1.9012 1.9079 1.9208 1.8532 1.8231 1.8085 1.7509

Table 7 portrays the impact of flow parameters on skin friction near the vertical plate.
As observed here, increasing Prandtl number, φMWCNT , M, α, β and time leads to increase
in shear stress whereas increasing φGr and Gr results in decrement of shear stress.

Table 7. The influence of the various parameters on the skin friction.

φGr φMWCNT Pr α τ β Gr M Cf

0.03 0.03 6.2 0.45 0.5 1.5 2 2 0.959525615427890

0.04 - - - - - - - 0.952001945188767

0.05 - - - - - - - 0.944169083022009

- 0.04 - - - - - - 0.966946221691135

- 0.05 - - - - - - 0.974469891930258

- - 12 - - - - - 0.942932315311468

- - 15 - - - - - 0.944117551034069

- - - 0.65 - - - - 1.094127167925078

- - - 0.9 - - - - 1.246661852225108

- - - - 0.7 - - - 1.091373887426613

- - - - 0.9 - - - 1.206821899771669

- - - - - 2.5 - - 1.061352823595748

- - - - - 4.5 - - 1.151739930441103

- - - - - - 4 - 0.877486690628685

- - - - - - 6 - 0.796478405588264

- - - - - - - 3 1.131848583096572

- - - - - - - 5 1.422179803146021

Table 8 shows the comparison of the classic and fractional approaches for various
values of the Prandtl number and t = 0.5 in the temperature field. The two approaches
demonstrate a high level of agreement.
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Table 8. Comparison of classic and fractional approach when φ = 0.

Pr Classic Approach (α = 1)
(Soundalgekar V.M [45])

Fractional Approach
(α = 0.95) Difference

0.71 0.3994 0.4029 0.0035

1.0 0.0082 0.0117 0.0035

1.5 0.3173 0.3234 0.0061

7.0 0.2207 0.2295 0.0088

5. Conclusions

A model for the natural convection MHD flow of generalized non-Newtonian fluid
containing graphene and MWCNT nanoparticles was derived using the Caputo fractional
derivatives. The outcomes of the investigated flow characteristics exhibit several remark-
able behaviours that allow for further research of the various flow models. The following
conclusions are brought up:

• The order of fractional derivatives can induce an increment or decrement in flow field
and temperature depending on the time factor.

• In the case of cooling the plate, the fluid flow trend accelerates as the value of the
Grashof number rises, whereas in the scenario of heating the plate, the reverse trend
is observed.

• Heat transmission rate of water-based hybrid nanofluid with cylindrical shaped
nanoparticles are 4.9%, 9.5%, 13.7% and 17.7% greater as compared to regular fluid for
volume fraction φ = 0.01 to 0.04, respectively.

• The blade-shaped hybrid nanoparticles are the most effective at increasing the heat
transfer rate, whereas spherical nanoparticles perform at a lesser rate. These findings
are significant in the long term because they help us plan for the improvement of heat
transfer in cooling and heating applications.

• When compared to fluids with hybrid and non-hybrid nanofluids, fractional hybrid
nanofluid shows the highest rate of heat transfer, whereas ordinary fluid shows
minimum heat transmission rate. This demonstrates the fractional parameter improves
fluid flow in a benchmark.
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Nomenclature

u Velocity
v Temperature
a, b Shape constants
Pr Prandtl number
Gr Grashof number
Gr Graphene nanoparticle
MWCNT Multi wall carbon nanotube
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MHD Magnetohydrodynamics
x, y Cartesian coordinates
Eα Mittag-Leffler function
Nu Nusselt number
Cf Skin friction coefficient
Greek symbols
ρn f Density of nanofluid (Kgm−3)

(Cp)n f Specific heat capacity of nanofluid (JKg−1K−1)

(γ)n f Thermal expansion coefficient of nanofluid (K−1)

κn f Thermal conductivity of nanofluid (Wm−1K−1)

µn f Dynamic viscosity of nanofluid (Kgm−1s−1)

σn f Electrical conductivity of nanofluid (Sm−1)
ρhn f Density of hybrid nanofluid (Kgm−3)

(Cp)hn f Specific heat capacity of hybrid nanofluid (JKg−1K−1)

(γ)hn f Thermal expansion coefficient of hybrid nanofluid (K−1)

κhn f Thermal conductivity of hybrid nanofluid (Wm−1K−1)

µhn f Dynamic viscosity of hybrid nanofluid (Kgm−1s−1)

σhn f Electrical conductivity of hybrid nanofluid (Sm−1)
g Specific gravity (Kgm−3)

B0 Magnetic field strength (Wbm−1)
α Fractional parameter
β Casson parameter
τ Time
γ Volumetric coefficient of thermal expansion
ψ Sphericity of nanoparticles
φ1 Volume fraction of Graphene
φ2 Volume fraction of MWCNTs
Subscripts
f Fluid
nf Nanofluid
hnf Hybrid nanofluid
np Nanoparticle
w Wall
∞ Ambient condition
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18. Waini, I.; Ishak, A.; Groşan, T.; Pop, I. Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous
medium. Int. Commun. Heat Mass Transf. 2020, 114, 104565. [CrossRef]

19. Anwar, T.; Kumam, P.; Thounthong, P. A comparative fractional study to evaluate thermal performance of NaAlg–MoS2–Co
hybrid nanofluid subject to shape factor and dual ramped conditions. Alex. Eng. J. 2022, 61, 2166–2187. [CrossRef]

20. Balaji, T.; Rajendiran, S.; Selvam, C.; Lal, D.M. Enhanced heat transfer characteristics of water based hybrid nanofluids with
graphene nanoplatelets and multi walled carbon nanotubes. Powder Technol. 2021, 394, 1141–1157. [CrossRef]

21. Khan, M.; Lone, S.A.; Rasheed, A.; Alam, M.N. Computational simulation of Scott-Blair model to fractional hybrid nanofluid
with Darcy medium. Int. Commun. Heat Mass Transf. 2022, 130, 105784. [CrossRef]

22. Roy, N.C.; Pop, I. Analytical investigation of transient free convection and heat transfer of a hybrid nanofluid between two
vertical parallel plates. Phys. Fluids 2022, 34, 072005. [CrossRef]

23. Sene, N. Analytical investigations of the fractional free convection flow of Brinkman type fluid described by the Caputo fractional
derivative. Results Phys. 2022, 37, 105555. [CrossRef]

24. Khan, Z.A.; Haq, S.U.; Khan, T.S.; Khan, I.; Nisar, K.S. Fractional Brinkman type fluid in channel under the effect of MHD with
Caputo-Fabrizio fractional derivative. Alex. Eng. J. 2020, 59, 2901–2910. [CrossRef]

25. Reyaz, R.; Lim, Y.J.; Mohamad, A.Q.; Saqib, M.; Shafie, S. Caputo fractional MHD Casson Fluid flow over an oscillating plate with
thermal radiation. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 85, 145–158. [CrossRef]

26. Casson, N. A flow equation for pigment-oil suspensions of the printing ink type. Rheol. Disperse Syst. 1959, 10021830093.
27. Raza, A.; Khan, S.U.; Farid, S.; Khan, M.I.; Sun, T.C.; Abbasi, A.; Khan, M.I.; Malik, M.Y. Thermal activity of conventional Casson

nanoparticles with ramped temperature due to an infinite vertical plate via fractional derivative approach. Case Stud. Therm. Eng.
2021, 27, 101191. [CrossRef]

28. Shahrim, M.N.; Mohamad, A.Q.; Jiann, L.Y.; Zakaria, M.N.; Shafie, S.; Ismail, Z.; Kasim, A.R. Exact solution of fractional
convective Casson Fluid through an accelerated plate. CFD Lett. 2021, 13, 15–25. [CrossRef]

29. Krishna, M.V.; Ahammad, N.A.; Chamkha, A.J. Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially
accelerated vertical porous surface. Case Stud. Therm. Eng. 2021, 27, 101229. [CrossRef]

30. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics
Studies; Elsevier: Amsterdam, The Netherlands, 2006.

31. Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539.
[CrossRef]

32. Anwar, T.; Kumam, P. A fractal fractional model for thermal analysis of GO− NaAlg− Gr hybrid nanofluid flow in a channel
considering shape effects. Case Stud. Therm. Eng. 2022, 31, 101828. [CrossRef]

33. Saqib, M.; Khan, I.; Shafie, S. Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNT’s
nanofluid through a porous medium. Chaos Solit. Fractals 2018, 116, 79–85. [CrossRef]

34. Daud, M.M.; Jiann, L.Y.; Mahat, R.; Shafie, S. Application of Caputo Fractional Derivatives to the Convective Flow of Casson
Fluids in a Microchannel with Thermal Radiation. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 93, 50–63. [CrossRef]

35. Ahmad, M.; Imran, M.A.; Nazar, M. Mathematical modeling of (Cu− A l 2 O 3) water based Maxwell hybrid nanofluids with
Caputo-Fabrizio fractional derivative. Adv. Mech. Eng. 2020, 12, 1687814020958841. [CrossRef]

36. Aman, S.; Zokri, S.M.; Ismail, Z.; Salleh, M.Z.; Khan, I. Casson model of MHD flow of SA-based hybrid nanofluid using Caputo
time-fractional models. Defect Diffus. 2019, 390, 83–90. [CrossRef]

37. Sene, N. Analytical solutions of a class of fluids models with the Caputo fractional derivative. Fractal Fract. 2022, 6, 35. [CrossRef]
38. Nakamura, M.; Sawada, T. Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis. J. Biomech.

Eng. 1990, 112, 100–103. [CrossRef] [PubMed]
39. Shah, N.A.; Khan, I. Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–

Fabrizio derivatives. Eur. Phys. J. C 2016, 76, 362. [CrossRef]
40. Reddy, S.R.; Reddy, P.B. Entropy generation analysis on MHD flow with a binary mixture of ethylene glycol and water based

silver-graphene hybrid nanoparticles in automotive cooling systems. Int. J. Heat Technol. 2021, 39, 1781–1790. [CrossRef]

http://doi.org/10.1016/j.cmpb.2019.105248
http://doi.org/10.1016/j.molliq.2016.11.062
http://doi.org/10.1139/cjp-2018-0009
http://doi.org/10.3390/en14102892
http://doi.org/10.1016/j.seta.2021.101898
http://doi.org/10.1016/j.icheatmasstransfer.2021.105234
http://doi.org/10.1016/j.icheatmasstransfer.2020.104565
http://doi.org/10.1016/j.aej.2021.06.085
http://doi.org/10.1016/j.powtec.2021.09.014
http://doi.org/10.1016/j.icheatmasstransfer.2021.105784
http://doi.org/10.1063/5.0096694
http://doi.org/10.1016/j.rinp.2022.105555
http://doi.org/10.1016/j.aej.2020.01.056
http://doi.org/10.37934/arfmts.85.2.145158
http://doi.org/10.1016/j.csite.2021.101191
http://doi.org/10.37934/cfdl.13.6.1525
http://doi.org/10.1016/j.csite.2021.101229
http://doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://doi.org/10.1016/j.csite.2022.101828
http://doi.org/10.1016/j.chaos.2018.09.007
http://doi.org/10.37934/arfmts.93.1.5063
http://doi.org/10.1177/1687814020958841
http://doi.org/10.4028/www.scientific.net/DDF.390.83
http://doi.org/10.3390/fractalfract6010035
http://doi.org/10.1115/1.2891118
http://www.ncbi.nlm.nih.gov/pubmed/2308297
http://doi.org/10.1140/epjc/s10052-016-4209-3
http://doi.org/10.18280/ijht.390611


Symmetry 2023, 15, 399 26 of 26

41. Curtis, W.D.; Logan, J.D.; Parker, W.A. Dimensional analysis and the pi theorem. Linear Algebra Its Appl. 1982, 47, 117–126.
[CrossRef]

42. Sene, N. Stokes’ first problem for heated flat plate with Atangana–Baleanu fractional derivative. Chaos Solit. Fractals 2018, 117,
68–75. [CrossRef]

43. Abro, K.A.; Khan, I.; Gómez-Aguilar, J.F. Thermal effects of magnetohydrodynamic micropolar fluid embedded in porous
medium with Fourier Sine Transform technique. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 174. [CrossRef]

44. Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999.
45. Soundalgekar, V.M. Free convection effect on the stokes problem for a vertical plate in an elasto-viscous fluid. Czechoslov. J. Phys.

1978, 28, 721–727. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0024-3795(82)90229-4
http://doi.org/10.1016/j.chaos.2018.10.014
http://doi.org/10.1007/s40430-019-1671-5
http://doi.org/10.1007/BF01595994

	Introduction 
	Fractional Mathematical Model with Caputo Derivative 
	Procedure for Solution 
	Integral Transform for Fractional Order Caputo Derivative 
	Hybrid Fractional Temperature Field Calculation 
	Hybrid Fractional Velocity Field Calculation 
	Limiting Cases 
	Temperature Field for Classic Case with Hybrid Nanoparticles 
	Velocity Field for Classical Case with Hybrid Nanoparticles 
	Velocity Field for Classic Newtonian Fluid with Hybrid Nanoparticles 

	Analytical Expressions for the Heat Transfer and Shear Stress 

	Graphical Findings and Outcomes 
	Impact of Physical Parameters on Temperature Field 
	Impact of Physical Parameters on Flow Field 

	Conclusions 
	References

