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Abstract: Drug-drug interaction (DDI) extraction has seen growing usage of deep models, but
their effectiveness has been restrained by limited domain-labeled data, a weak representation of
co-occurring entities, and poor adaptation of downstream tasks. This paper proposes a novel EMSI-
BERT method for drug–drug interaction extraction based on an asymmetrical Entity-Mask strategy
and a Symbol-Insert structure. Firstly, the EMSI-BERT method utilizes the asymmetrical Entity-
Mask strategy to address the weak representation of co-occurring entity information using the drug
entity dictionary in the pre-training BERT task. Secondly, the EMSI-BERT method incorporates four
symbols to distinguish different entity combinations of the same input sequence and utilizes the
Symbol-Insert structure to address the week adaptation of downstream tasks in the fine-tuning stage
of DDI classification. The experimental results showed that EMSI-BERT for DDI extraction achieved
a 0.82 F1-score on DDI-Extraction 2013, and it improved the performances of the multi-classification
task of DDI extraction and the two-classification task of DDI detection. Compared with baseline
Basic-BERT, the proposed pre-training BERT with the asymmetrical Entity-Mask strategy could
obtain better effects in downstream tasks and effectively limit “Other” samples’ effects. The model
visualization results illustrated that EMSI-BERT could extract semantic information at different levels
and granularities in a continuous space.

Keywords: drug–drug interaction; BERT; entity-mask strategy; symbol-insert structure; symmetry
and asymmetry; machine learning

1. Introduction

Drug–drug interaction (DDI) refers to extracting the relation of the combination and
interaction of two or more drugs in the human body, which is the most common task in
the field of biomedical relation extraction [1,2]. Recent studies have shown that a growing
number of people need to take multiple drugs simultaneously, and the interaction among
these drugs could severely affect their health [3]. Further understanding of drug–drug
interaction and designing a DDI classification system is critical to reducing drug abuse
or accidents [4]. As a result, researchers have paid increasing attention to DDI-related
work [3,5,6]. Various DDI databases, including DrugBank [7], Mint [8], and IntAct [9], have
emerged. Meanwhile, the literature on biological drug mechanisms has dramatically in-
creased as biomedicine develops rapidly [5]. DDI extraction is likely to no more be analyzed
and discovered manually. Therefore, an automatic and accurate DDI extraction system
using the massive unlabeled literature data on drug mechanisms is highly desired [10,11].
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Simultaneously taking multiple drugs has caused frequent human body injuries
and drug abuse accidents [2,12,13]. Exploring drug–drug interactions through various
medical diaries or records has gained significant research interest recently. Early DDI
extraction methods are mainly based on traditional machine learning techniques typified by
feature engineering [1,2]. These methods are poorly suited to relation extraction due to the
limitations of sparse data and templates. In addition, they are also challenging to extend due
to the non-reusability of the feature extraction strategies. Recently, the methods based on
deep learning have been rapidly applied to DDI extraction, especially pre-training models
typified by Bidirectional Encoder Representations from Transformers (BERT), garnering
widespread attention in the field of relation extraction [14–16]. However, how to improve
the pre-training effect of BERT and better adapt to downstream DDI classification tasks still
needs to be further explored. Furthermore, although massive amounts of data describing
drug mechanisms are available at present, the DDI annotation requires a large amount of
medical professional knowledge; however, the supervised datasets by manual annotation
are only maintained at the level of 100,000, which is far lower than the data scale in natural
language processing, such as text classification and entity recognition. For deep neural
network models, including convolutional neural network (CNN) [17], recurrent neural
network (RNN) [18], and long short-term memory network (LSTM) models [14,19], their
accuracy and generalizability are difficult to guarantee with small amounts of supervised
data. Even for a small amount of supervised data, introducing and combining unsupervised
learning strategies for extracting drug–drug interaction also needs to be studied.

To address the above problems, we propose a novel method called Entity-Mask
Symbol-Insert BERT (EMSI-BERT) that incorporates the asymmetrical Entity-Mask strategy
into the pre-training and the Symbol-Insert structure into the fine-tuning of BERT to realize
end-to-end DDI extraction. The framework of the proposed method is shown in Figure 1.
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drug–drug interaction extraction based on BERT (FNN represents Feed-forward Neural Network).

Firstly, after using a web crawler to collect massive drug text data, we construct a drug
entity dictionary and explore drug entities with string matching algorithms. Secondly, to
address the lack of entity orientation in the random masking of the original pre-training
BERT, we propose an asymmetrical Entity-Mask strategy to improve the expression of
co-occurring entity information using the drug entity dictionary. Finally, we design the
Symbol-Insert structure to address DDI classifications without destroying the pre-training
BERT. Four symbols (S1, E1, S2, and E2) are inserted in the same input sequence according
to the position of entity pairs to ensure that the same input sequence has different forms in
the input layer. More specifically, this paper makes the following contributions:

1. The pre-training strategy of random masking is improved. In the pre-training BERT,
an asymmetrical Entity-Mask strategy is proposed to compensate for the lack of entity
orientation in the random masking strategy. Based on prior knowledge, the mask
probability of drug entities is increased to better retain entities’ co-occurrence infor-
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mation. Ablation experiments confirm that the pre-training BERT with asymmetrical
Entity-Mask strategy effectively improves the effect of downstream DDI classification.

2. The fine-tuning structure to adapt to downstream tasks is investigated. In the fine-
tuning BERT, a Symbol-Insert structure is proposed to preserve most of the structural
information of the pre-training BERT and overcome the problem of different entity
combinations sharing the same input sequence. The same input sequence is given
different forms in the input layer by adding four symbols to the entity combinations,
thereby allowing DDI extraction without destroying the structure of pre-training
BERT. The experimental results show that the proposed structure can be adapted to
the DDI extraction task effectively.

3. The migration scheme of combining pre-training and fine-tuning is proposed. An
EMSI-BERT method, which incorporates the asymmetrical Entity-Mask strategy into
the pre-training and the Symbol-Insert structure into the fine-tuning of BERT, is
proposed to realize DDI extraction with few labeled data. Compared with related
methods, the proposed EMSI-BERT method is insensitive to data preprocessing and
demonstrates comprehensive improvement in the two-classification task of DDI
detection and the multi-classification task of DDI extraction, including Advise, Effect,
Mechanism, and Int.

After Section 2 discusses related work on DDI extraction, Section 3 introduces the
pre-training BERT. The proposed EMSI-BERT for DDI extraction is detailed in Section 4.
Section 5 then presents the results and discussion of the proposed method, and compares
them with those of other related methods. Finally, Section 6 summarizes this study.

2. Related Work

Researchers have recently developed many DDI extraction methods, which fall pri-
marily into two categories: rule-based and statistical machine learning-based methods [1,2],
as shown in Table 1. Rule-based methods [20–23] mainly use predefined rules and template
matching techniques to extract the relationship of drug entities in the sentences. These
methods with customized templates are highly accurate with a relatively low recall rate
because templates are limited. Statistical machine learning methods, which include tradi-
tional machine learning-based and deep learning-based methods, regarded DDI extraction
as a classification problem, i.e., whether the two entities in the same sentence interact
with each other is judged. The traditional machine learning-based methods need to define
many features, including an n-gram, syntactic tree, dependency tree, and other informa-
tion [24–30]. The advantages of these methods offer a balance between accuracy and recall
through various classification models, including the maximum entropy model and support
vector machine (SVM). Thus, the traditional machine learning-based methods have better
effects and advantages in early DDI classification research [5,24–26].

The traditional machine learning-based methods require manual feature extraction
and cascading of different features. Unlike these, deep learning-based DDI classification
methods achieve DDI extraction by directly inputting the text description of the drug–drug
relation. This end-to-end style reduces the complexity of manual feature extraction and
avoids the error accumulation of cascading external models (such as syntactic analysis
models). The relevant literature shows that the experimental effects of CNN-, RNN-, and
BERT-based methods surpass traditional machine learning-based methods [6,31,32]. This
improvement is mainly attributed to the following reasons: (1) Words are expressed as
dense vectors instead of sparse one-hot variables. Representing words as dense vectors,
such as word2vec [33], allows previously incomparable features to be effectively measured
in the vector space. For instance, in DDI extraction, both “rely” in “rely on” and “depend”
in “depend on” indicate dependence. This connection is lost in one-hot representation
but can be calculated in the vector space through the dot product between word vectors.
(2) Deep neural network-based methods can fit in a high dimensional space by constructing
various hyper-plane spaces through massive parameters. Representative works, including
CNN-, RNN-, and BERT-based methods, have shown promising results in DDI tasks [18,34].
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In CNN-based methods [6,17,35–38], words in an input sentence containing entity pairs
are first converted into word vector representations. Next, the CNN structure is used
to capture the n-gram related information and acquire the semantic representation of
the input sentence. The relationship between entity pairs is then classified based on
semantic representation. In RNN-based methods [14,17–19,31,34,39–44], a sentence is
directly subjected to sequence modeling to obtain its semantic representation between entity
pairs. In BERT-based methods [15,45], BERT is regarded as a feature extractor for obtaining
entity-level representations, and entity pair classification and relation extraction are then
conducted through downstream domain tasks [16]. However, most existing methods
require a large amount of external information to achieve a better understanding [32,46].
On the whole, insufficient domain-labeled data, weakly expressed co-occurring entities,
and poor adaptation of downstream tasks can be factors limiting the classification ability of
a pre-training BERT model.

Table 1. Comparison with the advantages and disadvantages of different methods (Rule-based
methods, Traditional machine, and Deep learning-based methods).

Taxonomy Method Advantages Disadvantages

Rule-based methods

Bunescu et al. [20],
Fundel et al. [21],
Segura-Bedmar et al. [22],
An et al. [23]

These methods with
customized templates
are highly accurate for
DDI extraction.

(1) The design of patterns or
rules is sophisticated;
(2) These methods suffer from
low recall because of
limited templates.

Traditional machine
learning-based methods

Cui et al. [24],
Segura-Bedmar et al. [25],
Kim et al. [26],
FBK-irst [27],
WBI [28],
UTurku [29],
RBF-Linear [30]

These methods offer a
balance between accuracy
and recall through various
classification models.

(1) The design of hand-crafted
features is sophisticated;
(2) The cascading strategy of
different features requires is
elaborate designed.

Deep learning-based
methods

CNN [10,35–38],
RNN [9–14,14–17,31,34,40–44],
BERT [15,45]

These end-to-end methods
reduce the complexity of
manual feature extraction
and avoid the error
accumulation of cascading
external models.

(1) These methods require a
large amount of external
information to achieve a better
understanding for
DDIs extraction;
(2) These methods are poorly
suited to co-occurring entities
expression and adaptation of
downstream tasks.

3. Materials and Methods

In recent years, pre-training models have received increasing attention from researchers,
such as the ELMO (an RNN-based structure) [47] and BERT (a Transformer-based struc-
ture) [45,48]. BERT, which is a pre-training model based on bidirectional encoder repre-
sentations from Transformers, has been proved to be effective for improving many natural
language processing tasks. In order to better adapt downstream tasks and reduce the
consumption of computing power and time, BERT only embeds the encoder structure of
Transformers for two subtasks: masking language prediction and sentence pair classification.

As shown in Figure 2, the pre-training BERT model consists of three layers: input,
encoding, and output. For the masking language prediction subtask, in the input layer,
[CLS] and [SEP] symbols are firstly added at the beginning and end of an input sentence.
Then, the words in the input sentence are randomly masked, that is, the randomly selected
words are covered with the [MASK] symbol. Researchers generally use three masking
strategies to simulate the data distribution in real-world scenarios: replacing 80% of the
masked words with [MASK], replacing 10% of the masked words with random words, and
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keeping 10% of the masked words unchanged [48]. Figure 2 shows the masking strategy,
replacing the words “the” and “of” with [MASK]. Finally, the embedding sequence, which
can be obtained by token embedding, segment embedding, and position embedding from
the masking sentence, is fed into the encoding layer based on the Transformer blocks.
Generally, multi-layers of Transformer blocks are stacked to improve the expression ability
of the pre-training model. In the output layer, the masked words in the input layer are
predicted according to contextual information extracted from the encoding layer. The
masked language prediction task in Figure 2 involves predicting the masking words “the”
and “of” in the output layer. The masking language prediction subtask reveals that the
pre-training process of BERT requires no labeled data. Hence, a large batch of unsupervised
text data can be fully used. In essence, the BERT mask prediction task is considered a
mask-based reconstruction with added noise. Through this reconstruction in the input layer,
the pre-training model can learn the internal connection between the masked words and
the remaining words, which is conducive to representing the general semantic information
of the input sentence. Sentence pair classification is another BERT subtask, and it mainly
concerns whether a pair of sentences appears in the same document. Considering it has
a small correlation with DDI extraction and consistent with [16,49], this paper will also
discard the sentence pair classification subtask.
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Token embedding, Segment embedding, and Position embedding, respectively; Ei and hi represent
Embedding vector and Latent semantics of the i-th word, respectively).

4. EMSI-BERT for DDI Extraction

To address the shortcomings of a lack of entity propensity in the random masking
strategy of the pre-training BERT, we propose an asymmetrical Entity-Mask strategy to
improve the masking language model combining with drug entity recognition. Then, a
Symbol-Insert structure for fine-tuning BERT is designed based on the pre-training BERT
with an asymmetrical Entity-Mask strategy.

4.1. An Asymmetrical Entity-Mask Strategy for Pre-Training BERT

As shown from the training strategy of the mask language prediction task in Figure 2,
BERT masks words in the input sequence randomly. Due to the absence of prior knowledge,
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such a propensity-free random strategy masks words that contain less information, as well
as words of less relevance and attention to the relation extraction task. In Figure 2, the
words “the” and “of” have a relatively low amount of information but are still masked and
predicted. These masked input sequences carrying redundant information not only constrain
the representation capability of the encoding layer, but also reduce the training difficulty,
causing the model to encode shallow information. To eliminate random masking, we propose
an Entity-Mask-BERT with an asymmetrical Entity-Mask strategy, presented in Figure 3.
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Figure 3. Asymmetrical Entity-Mask strategy for pre-training BERT (FNN represents Feed-forward
Neural Network; X and XM represent Input sequence and Masking sequence, respectively; ET

XM
,

EP
XM

, and EXM represent Token embedding sequence, Position embedding sequence, and Embedding
representation of XM, respectively; cMASK represents unnormalized category probability vector;
VMASK represents normalized category probability vector).

4.1.1. Entity-Mask-BERT Model Construction

For the drug relationship description sequence X = (x1, x2, · · · , xn) with the input
length of n, drug entity detection is firstly realized by string matching based on the self-built
drug entity dictionary during the sequence masking stage in the input layer. If the number
of drug entities is fewer than 2 in the input sequence, the completely random mask strategy
will be followed. Otherwise, the asymmetrical Entity-Mask strategy is addressing drug
entity masking. An example is shown in Table 2.

Table 2. Asymmetrical Entity-Mask strategy for the sentence “terbinafine increases the clearance of
cyclosporine by 15%”.

Drug Entity A Drug Entity B Example

Replaced with [MASK] Reserved [MASK] increases the clearance of cyclosporine by 15%
Reserved Replaced with [MASK] Terbinafine increases the clearance of [MASK] by 15%

In Table 2, the words “terbinafine” and “cyclosporine” in the sentence “terbinafine
increases the clearance of cyclosporine by 15%” are recognized as the drug entity names.
Instead of randomly selecting a word from the sentence, we firstly replace “terbinafine”
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with [MASK] and reserve “cyclosporine” to obtain a new entity-making sequence “[MASK]
increases the clearance of cyclosporine by 15%” for pre-training. Secondly, we reserve
“terbinafine” and replace “cyclosporine” with [MASK] to obtain another entity-making
sequence “terbinafine increases the clearance of [MASK] by 15%” for pre-training. Table 2
shows that two entity-making sequences are generated for the sequence containing two
drug entities based on the asymmetrical Entity-Mask strategy. Similarly, C2

N entity-making
sequences will be generated for pre-training when the input sequence contains N drug
entities. The proposed entity masking strategy is mainly inspired by the concept of distant-
supervised relation extraction [50,51]. When multiple entities appear in the input sequence,
the proposed strategy masks one entity and utilizes other drug entities to predict the
currently masked entity. This strategy can achieve unsupervised high frequency drug–drug
relation modeling and complete pre-training tasks with a large amount of unlabeled drug
mechanism data. Except for the entity words, the remaining words refer to the completely
random mask strategy.

Suppose the input sequence after the drug entity masking is XM = (x1, · · · , [MASK],
· · · , xi · · · , xn). In addition, we add the [CLS] and [SEP] symbols to the beginning and end
of XM, respectively. To obtain the word token embedding representation ET

XM
, words in the

input sequence are then divided into a limited set of common word units according to the
WordPiece Embedding technique [15,45,46]:

ET
XM

= (ET
CLS, · · · , ET

MASK, · · · , ET
i , · · · , ET

SEP)= WordPiece([CLS, XM, SEP]) (1)

where ET
XM
∈ Rd×m is the word token embedding representation of the masking sequence

XM; d = 768 and m (m ≥ n + 2) represent the dimension of word embedding and the
number of common word units divided from the masking sequence, respectively. However,
the word token embedding only reflects the word information in the sequence and lacks
the sequential relation between words. Experience has shown that the same word has
completely different meanings depending on where it appears in a sequence. To reflect the
position information of different words in the sequence, we adopt absolute position coding
to realize the position embedding of the sequence.

EP
XM

= (EP
CLS, · · · , EP

MASK, · · · , EP
i , · · · , EP

SEP) (2)

where EP
XM
∈ Rd×m is the position embedding representation of the masking sequence XM.

After word token embedding and position embedding, the final embedding representation
of XM can be expressed as

EXM = (ECLS, E2, · · · , EMASK, · · · , ESEP) = ET
XM

+ EP
XM

(3)

Different from Figure 2, the sentence pair classification task is discarded in Entity-
Mask-BERT. Therefore, the sentence embedding is not required in the input layer.

After obtaining the embedding sequence EXM , we then extract the global semantic
feature of each word by inputting EXM into a 12-layer transformer encoder.

H = (hCLS, · · · , hMASK , · · · , hi , · · · , hSEP) = Encoder(ECLS, · · · , EMASK , · · · Ei , · · · , ESEP) (4)

where hi is the global semantics of the embedding vector Ei and Encoder(·) represents a
12-layer transformer blocks. As can be seen from the model structure, it contains the context
information of the sequence and enhances its own characteristics, allowing the model to
capture information Ei based on all contexts.

Finally, to predict the masked entity xMASK in the output layer, the global semantic
feature hMASK is fed to a full connection layer:

cMASK = FNN(hMASK) = W1hMASK + b1 (5)
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where FNN(·) represents feed-forward neural network. W1 ∈ RN×d and b1 ∈ RN is weight
matrix and bias, respectively. cMASK = (c1, · · · , cj, · · · , cN) ∈ RN represents the unnor-
malized category probability. N represents the number of piece words in the dictionary.
Moreover, a Softmax function is used to obtain the normalized category probability:

vj =
ecj

N
∑

j=1
ecj

(6)

where VMASK = (v1, · · · , vj, · · · , vN) ∈ RN is the normalized category probability vector.
vj (1 ≤ j ≤ N) represents the normalized probability that the masking entity xMASK belongs
to the j-th word.

4.1.2. Pre-Training of Entity-Mask-BERT

To train Entity-Mask-BERT, we regard the mask-entity prediction task as a multi-
classification containing N types of words. Let the masking words in the input
layer be S = {xi}s

i=1 and their category probability obtained by Entity-Mask-BERT be{
Vi = (v1

i , · · · , vj
i , · · · , vN

i ) ∈ RN
}s

i=1
, the objective function is constructed as follows:

L1(θB, θM) = −
m

∑
i=1

N

∑
j=1

uj
i log vj

i (7)

where m is the number of masked drug entities; θB and θM are the parameters of en-
coder layer and output layer in Entity-Mask-BERT, respectively; log(·) is a logarithmic
function; and ui = (u1

i , · · · , uj
i , · · · , uN

i ) and vi = (v1
i , · · · , vj

i , · · · , vN
i ) represent the true

label vector and the predicted label vector of the masking entity xi, respectively. Related
hyperparameters of Entity-Mask-BERT are shown in Table 3.

Table 3. Related hyperparameters of Entity-Mask-BERT.

Hyperparameter Value

Optimizer Adam
Learning rate 1 × 10−5

Warm-up rate 0.1
Batch-size 256

Sentence length m Dynamic padding
Dimension of word embedding d 768

Number of Transformer blocks 12

4.2. A Symbol-Insert Structure for Fine-Tuning BERT

In addition to the entity masking strategy introduced in the pre-training BERT, DDI
extraction quality is also closely related to constructing the downstream domain task. If
the input sequence contains N entities, C2

N entity combinations must be ascertained. How
to distinguish C2

N combinations and to classify the relation of each combination in the
same input sequence is a pivotal issue to be solved in this paper. Specifically, in the input
sequence “Grepafloxacin, like other quinolones, may inhibit the metabolism of caffeine
and theobromine”, the words “Grepafloxacin”, “caffeine”, and “theobromine” represent
three drug entities. Mathematically, the relations among three drug entity combinations
[Grepafloxacin, caffeine], [Grepafloxacin, theobromine], and [caffeine, theobromine] need
to be identified in the downstream domain task. However, the same input sequence is
shared among these entity combinations. To realize combination discrimination, we design
a Symbol-Insert structure to extract entity relations among different drugs in the same
input sequence by introducing four symbols.
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4.2.1. Symbol-Insert-BERT Model Construction

To distinguish different entity combinations in the same input sentence and not
destroy the structure of the original BERT, we introduce four novel positional symbols
S1, E1, S2, and E2. For the input sequence above, to validate the relations between entity
combinations [Grepafloxacin, caffeine], we insert the symbols S1 and E1 before and after
“Grepafloxacin” to mark the position of the first entity, and then insert the symbols S2 and
E2 before and after “caffeine” to mark the position of the second entity. Likewise, these
operations are performed in the entity combinations [Grepafloxacin, theobromine] and
[caffeine, theobromine]. The different symbol inserting results for three entity combinations
are shown in Figure 4.
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Figure 4. Symbol inserting sequence for different entity combinations (S1 and E1 represent the
position of the first entity; S2 and E2 represent the position of the second entity).

According to Figure 4, an input sentence containing N entities generates C2
N kinds

of symbol inserting sequences by introducing four positional symbols, thus facilitating
different representations of the same input sequence in the input layer. The specific
construction form is presented in Figure 5. In Figure 5, the parameters of Entity-Mask-BERT
are utilized for the initialization of fine-tuning BERT with Symbol-Insert structure. The
constructed Symbol-Insert structure has the following two advantages: firstly, the positional
symbols are only added in the input layer, avoiding changing the internal Transformer
structure in the encoding layer or the overall framework, and ensuring that the pre-training
BERT with the asymmetrical Entity-Mask strategy can favorably be transferred to the
downstream task of DDI classification; secondly, the insertion of the position symbols
only alters the relative position relation among the original input words. It is well known
that the attention mechanism of the Transformer is insensitive to positional alternation,
which permits a relative concordance between the improved pre-training strategy and the
fine-tuning scheme with the Symbol-Insert structure.

4.2.2. Fine-Tuning of Symbol-Insert-BERT

The transformer blocks are the fundamental encoding unit in the fine-tuning BERT
with the Symbol-Insert structure, and its parameters are all initialized by Entity-Mask-BERT.
Consistent with other BERT classification tasks, the output of the [CLS] node is also adopted
as a relational representation of drug entity pairs and used to predict the result of DDI
classification. During the model training stage, the output representation of the [CLS] node
is assumed to be r ∈ Rk. Firstly, the full connection layer is adopted to map the output from
the representation space to the category probability space:

o = FNN(r) = W2r + b2 (8)

where O = (o1, · · · , oi, · · · , oc) ∈ RC represents the unnormalized probability of each
category; W2 ∈ RC×k and b2 ∈ RC are transfer matrix and bias, respectively; k and
C represent the output vector dimension and the number of categories of drug entity
relations, respectively.
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, and EXM represent Token embedding

sequence, Position embedding sequence, and Embedding representation, respectively; O represents
the unnormalized category probability).

Secondly, the unnormalized probability O is transformed into the normalized proba-
bility S by the Softmax function:

Sl,p
j = p

(
cj
∣∣Xl

p

)
=

eoj

C
∑

i=1
eoi

(9)

where Xl
p represents the pth drug entity pair in the lth input sentence (sample), and Sl,p

j

denotes the probability that Xl
p belongs to the category cj.

Finally, Symbol-Insert-BERT is trained by the following optimization objective:

L2 =
L

∑
l=1

nl

∑
p=1

C

∑
j=1
−yl,p

j log Sl,p
j (10)

where L represents the total number of samples in the training set; nl indicates the number
of drug entity pairs in the lth sample; yl,p

j and Sl,p
j denote the actual and predicted values

of the pth drug entity pair in the lth sample, respectively.
In the fine-tuning of Symbol-Insert-BERT, the output vector dimension is k = 768 and

the number of categories is C = 5, the hyperparameter of batch-size is set to 16, while other
hyperparameters are consistent with Entity-Mask-BERT. In particular, if the word vectors
for the position symbols S1, E1, S2 and E2 are added as additional parameters, the size of
the word vector dictionary in the pre-trained BERT model will inevitably be disrupts. Since
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BERT reserves part of the word vector units for the new symbols, we map the positional
symbols to the [unseen] symbol in the BERT’s vocabulary without increasing the BERT
vocabulary size. The proposed fine-tuning Symbol-Insert with pre-training parameters will
converge in about 20 iterations. We provided the implementation details and source code
of the proposed method on the GitHub repository [52].

5. Results and Discussion
5.1. Biomedical Corpus for Pre-Training BERT with Asymmetrical Entity-Mask Strategy

The pre-training corpus for Google’s BERT model is mainly from Wikipedia. Applying
the BERT model to DDI extraction, we use the pre-training model of Google’s BERT as
a basis and select the abstract data in the PubMed dataset as the corpus for pre-training
Entity-Mask-BERT. PubMed dataset [53], which contains medical and health literature
published from 1966, is a free biomedical network resource. Currently, this database is up-
dated weekly, and 35 million citations for biomedical literature are collected as biomedical
corpus for pre-training Entity-Mask-BERT. In addition, drug entity detection is needed
for the asymmetrical Entity-Mask strategy. Hence, a large number of drug entity names
are collected via web crawlers at PharmNet [54] for the drug entity dictionary construc-
tion. The self-built dictionary, including 100,000 drug entity names, is addressed to drug
entity recognition by string matching. In Entity-Mask-BERT, when the word in one se-
quence matches the drug entity in the dictionary, we regard it as drug entities and adopt
the improved asymmetrical Entity-Mask strategy to obtain the entity-making sequence
for masking language prediction. After preparing pre-training data and the drug entity
dictionary, the pre-training BERT with asymmetrical Entity-Mask strategy is performed.

5.2. Domain-Labeled Dataset for Fine-Tuning BERT with Symbol-Insert Structure

The DDI-Extraction 2013 dataset provides a more extensive annotated corpus for DDI
extraction. The training and test sets of DDI-Extraction 2013 are composed of two main
aspects, DrugBank and MedLine. The original data statistics of this dataset is shown in
Table 4. In the dataset, drug entity pairs with five types of DDI, including Advice, Effect,
Mechanism, Int, or Other (no relation between two entities) [19] is labeled for the five-label
multi-classification task. Each label is briefly described as follows.

(1) Advice: describes the relevant opinion about the simultaneous use of two drugs, i.e.,
interaction may be expected, and UROXATRAL should not be used in combination
with other alpha-blockers;

(2) Effect: describes the interaction of drug effects, i.e., methionine may protect against
the ototoxic effects of gentamicin;

(3) Mechanism: describes the pharmacokinetic mechanism, i.e., Grepafloxacin, like other
quinolones, may inhibit the metabolism of caffeine and theobromine;

(4) Int: describes the DDI without any information, i.e., the interaction of omeprazole
and ketoconazole has been established;

(5) Other: describes co-occurrence but no relation between two entities, i.e., concomitantly
given thiazide diuretics did not interfere with the absorption of a tablet of digoxin.

Table 4. Data statistics of the original DDI-Extraction 2013 dataset.

Relation
Train Test

DrugBank MedLine Overall DrugBank MedLine Overall

Advice 818 8 826 214 7 221
Effect 1535 152 1687 298 62 360

Mechanism 1257 62 1319 278 24 302
Int 178 10 188 94 2 96

Other 22,118 1547 23,665 4367 345 4712



Symmetry 2023, 15, 398 12 of 22

As can be seen from Table 4, the number of instances belonging to different types is
extremely unbalanced, which makes it difficult to classify the drug relationship with fewer
instances. For example, there are more than 100 times as many instances of “Other” as
instances of “Int” in the training set. To eliminate the effect of massive “Other” samples
and enhance the effect of the model, we filter out partial “Other” sample pairs in the
data processing stage via the text preprocessing approach proposed by Quan [36]. The
pre-processed DDI-Extraction 2013 dataset is shown in Table 5. Table 5 illustrates that
the text preprocessing approach allows the reduction of “Other” samples from 22,118 to
14,445 in the training set and the reduction of “Other” samples from 4367 to 2819 in the test
set. The preprocessing approach reduces the unbalance of the classification while saving
training time. Finally, the training and testing samples in Table 5 are used as the training
set and testing set for Symbol-Insert BERT in fine-tuning stage, respectively.

Table 5. Data statistics of DrugBank and MedLine after preprocessing.

Relation
Train Test

DrugBank MedLine Overall DrugBank MedLine Overall

Advice 815 7 822 214 7 221
Effect 1517 152 1669 298 62 360

Mechanism 1257 62 1319 278 21 299
Int 178 10 188 94 2 96

Other 14,445 1179 15,624 2819 243 3062

5.3. Experimental Results and Analysis

To evaluate the performance of different methods, precision (P), recall (R), and F1
score are regarded as the evaluation indicators of the DDI classification task. The indicator
values for the jth (1 ≤ j ≤ C) drug relationship are calculated as follows:

Pj =
TPj

TPj + FPj
, Rj =

TPj

TPj + FNj
, F1j =

2PjRj

Pj + Rj
(1 ≤ j ≤ C) (11)

where TPj represents the number of both the predicted relations and the true relations
belonging to the j-th category. FPj represents the number of predicted relations that does
belong to the j-th category but the true relation does not. FNj represents the number
of predicted relations that do not belong to the j-th category but the true relation does.
TPj + FPj and TPj + FNj represent the total number of the predicted relation and the true
relation belonging to the j-th relation, respectively. In addition, considering that DDI
extraction is a multi-class classification, the micro-averaged F1-score F1micro is calculated to
evaluate the overall classification performance of different methods:

Pmicro =

C
∑

j=1
TPj

C
∑

j=1
TPj +

C
∑

j=1
FPj

, Rmicro =

C
∑

j=1
TPj

C
∑

j=1
TPj +

C
∑

j=1
FNj

, F1micro =
2PmicroRmicro

Pmicro + Rmicro
(12)

To ensure the stability of statistical indicators and illustrate the convergence of the
proposed method, 10-fold cross-validation is used to train the Entity-Mask-BERT and Symbol-
Insert-BERT. Meanwhile, to make the experimental results more reliable, 10-fold cross-
validation is conducted 10 times, and the average is used as the final result of indicators.

5.3.1. Performance Evaluation of the Proposed Method

To illustrate the performance of the proposed method, we compare the effect of
Symbol-Insert-BERT initialized with Basic-BERT and Entity-Mask-BERT on DDI extraction.
The Basic-BERT model and parameters can be obtained from the Hugging Face website [55].



Symmetry 2023, 15, 398 13 of 22

The proposed Entity-Mask-BERT and Basic-BERT both adopt a 12-layer-768 structure. The
experimental results of two initialization strategies are shown in Table 6, and the confusion
matrix for two initialization strategies are shown in Tables 7 and 8, respectively.

Table 6. Evaluation of DDI classification performance with Basic-BERT initialization and Entity-
Mask-BERT initialization.

Relation

Basic-BERT Initialization +
Symbol-Insert-BERT

Entity-Mask-BERT Initialization +
Symbol-Insert-BERT (EMSI-BERT)

P R F1-Score P R F1-Score

Advice 87.85 85.84 86.83 85.52 88.20 86.86
Effect 77.89 81.18 79.50 79.56 82.2 80.77

Mechanism 82.97 76.84 79.79 88.46 84.89 86.64
Int 66.17 46.8 54.87 72.13 45.83 56.05

Other 80.83 77.50 79.13 83.22 80.74 81.96

Table 7. Confusion matrix of DDI classification with Basic-BERT initialization.

Relation Advice Effect Mechanism Int Other

Advice 85.8 0.4 0 0.9 12.7
Effect 1.6 81.1 2.8 0.2 14

Mechanism 2 1.3 76.8 3.3 16.4
Int 0 40.6 2 46.8 10.4

Other 0.4 1.3 1.2 0.3 96.6

Table 8. Confusion matrix of DDI classification with Entity-Mask-BERT initialization.

Relation Advice Effect Mechanism Int Other

Advice 88.2 0.4 0 0.9 10.4
Effect 3.3 82 0.8 0 13.7

Mechanism 2.3 1.6 84.8 0 11
Int 0 38.5 2 45.8 13.5

Other 0.2 0.6 0.5 0.3 98.1

Table 6 shows that three statistics of EMSI-BERT achieve better results compared with
the Basic-BERT initialization. The overall P, R, and F1-score are increased by 2.39, 3.24,
and 2.83, respectively. For individual DDI classification, EMSI-BERT also obtains a high
F1-score, which illustrates the importance and effectiveness of the asymmetrical Entity-
Mask strategy. Specifically, three indicators of “Effect” and “Mechanism” are significantly
improved. The confusion matrix for two initialization strategies in Tables 7 and 8 show
that main errors focus on two areas: (1) four relation categories (Advice, Effect, Int, and
Mechanism) are misclassified as “Other”. The main reason for this phenomenon is that
the data ratio of four relation categories is still much lower than that of “Other” category.
Even though the data is imbalanced, the misclassification of EMSI-BERT is well suppressed
compared with Basic-BERT initialization. (2) Three indicators of “Int” are comparatively
low, “Int” and “Effect” misclassify each other. The main reason for this phenomenon is
that the number of “Int” instances is too small, and some instances of “Int” and “Effect”
have similar semantics. Moreover, our statistics indicates that about 10% of the drug pairs
labeled as “Int” are also labeled as “Effect” in the training set.

In addition, we further discuss the impact of epochs on the performance of EMSI-BERT,
as show in Figure 6. Figure 6 shows that the micro-averaged F1-score is an upward trend
with the increase of the number of epochs. When the epoch reaches 16 times, the micro-
averaged F1-score attains a peak and tends to be stable. This indicates that the proposed
EMSI-BERT has good convergence. Furthermore, the output feature hCLS of the final (12-th)
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layer in Transformer blocks is fed to the output layer for DDI extraction in EMSI-BERT.
To illustrate the impact of different output features of Transformer layers on the micro-
averaged F1-score, the output feature of the 6th, 9th and 12th layer is fed to the output layer,
respectively. Figure 7 shows that the features learned by Transformer layers are different
and taking the deepest semantic features as input can obtain the best performance.
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5.3.2. Comparison of DDI Classification with Related Methods

Using the DDI-Extraction 2013 dataset, this section compares the effectiveness of the
proposed EMSI-BERT method for DDI classification with other related work. In addition
to considering four DDI multi-classification tasks, including Advice, Effect, Mechanism,
and Int, we compare the effectiveness of the two-classification task of drug relationship
detection, that is, Dec in Table 9, and Table 10 is introduced to describe the presence or
absence of DDI without distinguishing the kind of relationship.

Table 9. Comparison of DDI classification with traditional statistical machine learning-based methods.

Method Advice Effect Mechanism Int Dec Micro-Averaged F1-Score

Kim et al. [26] 72.5 66.2 69.3 48.3 77.5 67.0
FBK-irst [27] 69.2 62.8 67.9 54.0 80.0 65.1

WBI [28] 63.2 61.0 61.8 51.0 75.9 60.9
UTurku [29] 63.0 60.0 58.2 50.7 69.6 59.4

RBF-Linear [30] 77.4 69.6 73.6 52.4 81.5 71.1
EMSI-BERT 86.8 80.7 86.6 56.0 88.0 82.0
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Table 10. Comparison of DDI classification with deep learning-based methods (CNN, RNN and BERT).

Model Method Advice Effect Mechanism Int Dec Micro-Averaged
F1-Score

CNN

CNN [35] 77.7 69.3 70.2 46.3 - 69.8
SCNN [37] - * - - - 77.2 68.4
MCNN [36] 78.0 68.2 72.2 51.0 79.0 70.2

RHCNN [38] 80.5 73.5 78.3 58.9 - 75.5
AGCN [10] 86.2 74.2 78.7 52.6 - 76.9

RNN

Hierarchical RNN [18] 80.3 71.8 74.0 54.3 - 72.9
TM-RNN [40] 76.5 70.6 76.4 52.3 - 72.4
DREAM [31] 84.8 76.1 81.6 55.1 - 78.3

Joint-LSTM [34] 79.4 67.6 76.3 43.1 - 71.5
M-BLSTM [19] 80.1 70.4 73.0 48.0 78.5 71.8

PM-BLSTM [19] 81.6 71.3 74.4 48.6 78.9 73.0
Att-BLSTM [41] 85.1 76.6 77.5 57.7 84.0 77.3

BLSTML-SVM [42] 71.4 69.9 72.8 52.8 - 69.0
Hierarchical BLSTMs [14] 81.9 77.4 78.0 58.4 - 78.5

GRU [43] - - - - - 72.2
SGRU-CNN [17] 82.8 72.2 78.0 50.4 - 74.7
UGC-DDI [44] 76.4 68.5 76.5 45.5 - 71.2

BERT
Basic-BERT [45] - - - - - 79.9

BioBERT [15] 86.1 80.1 84.6 56.6 - 80.9
EMSI-BERT 86.8 80.7 86.6 56.0 88.0 82.0

*—No value is provided in the literature.

Firstly, the proposed method is compared with traditional statistical machine learning-
based methods, including three baseline models (FBK-irst [27], WBI [28], and UTurku [29]),
Kim et al.’s method [26], and the RBF-Linear method [30]. Comparison results are shown
in Table 9. For all five methods, the SVM classifier is adopted for the interaction of the
input drug entities, but they have significant differences in model structure, strategy, and
feature selection. For the FBK-irst and Kim et al. methods, a binary classification model is
firstly used to detect whether there is a relationship between a pair of entities, and then
a multi-classification model is used to distinguish the specific class of an entity pair. In
terms of the SVM model-based multi-classification strategy, the one-against-all strategy is
adopted in FBK-irst method, while the one-against-one strategy is adopted in the Kim et al.
method. Specially, WBI and UTurku, unlike Kim et al. and FBK-irst, directly used a multi-
classification SVM to accomplish all tasks. In addition to the adjustment of the strategy,
the kernel function design of the SVM can also affect the result of DDI, for example, the
RBF-linear kernel function [30] achieves much better results than traditional SVM methods.
However, as shown in Table 9, the proposed EMSI-BERT method significantly improves
the F1-score of Advice, Effect, Mechanism, Int, and Dec compared with those traditional
statistical machine learning-based DDI classification methods. For example, compared with
the RBF-linear method currently offering a better result in traditional machine learning, the
proposed EMSI-BERT method improved the micro-averaged F1-score from 71.1% to 82.0%.
The classification effect also grows as the F1-score of each classification is improved by
more than 10%. In addition, features still have an important role in the above five methods.
Some commonly used features, such as n-gram, word pair, and part of speech information,
are introduced into the models, and some higher-order features, such as syntax tree,
dependence grammar, and syntax path information, are integrated into the model [27,29].
These traditional DDI classification methods manually integrating extracted features have
obtained good results to some extent but have limited reusability and propagate errors
due to a cascade of manually extracted features. As a result, the application of traditional
DDI classification methods and the improvement of DDI extraction has been limited. The
proposed deep learning-based DDI classification method, which directly uses an end-to-
end approach for DDI extraction, reduces the complexity of manual feature extraction to a
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certain extent, and avoids the error accumulation problem of cascaded multiple steps (such
as syntactic analysis).

To evaluate the proposed EMSI-BERT, we sequentially compare it with CNN-, RNN-
and BERT-related DDI classification models. In CNN-related models [10,35–38], related
work first transforms the input text into word vectors, then uses the window convolution
operation of CNN to achieve sequence modeling and feature extraction of entity pairs, and
finally, an external classifier such as Softmax is utilized to classify the entity-relationship. The
effects of classification of these methods are all improved based on the CNN network, such
as changing a single-channel to a multi-channel CNN [36], combining typical convolutions
and dilated convolutions to model far word distance [38], and integrating syntax information
to modeling input sequence [10]. Unlike CNN-related models, RNN-related models such as
Joint-LSTM [34], TM-RNN [40], DREAM [31], BLSTM [14,19,41,42], GRU [17,43], and UGC-
DDI [44] directly perform sequence modeling. In order to enhance the effect of classification,
there have been many improvements: (1) using an attention or memory mechanism to
achieve soft sequence modeling; (2) using richer external information to achieve a better
understanding, e.g., entity position information or general user context; (3) achieving a
better understanding through the combination of LSTM, CNN, and SVM.

Considering that the limited domain-labeled data for DDI extraction cannot guarantee
the sufficient model classification effect, we incorporate the asymmetrical Entity-Mask
strategy and Symbol-Insert structure for DDI extraction. Compared with CNN- and
RNN-related DDI classification methods, the micro-averaged F1-score of the proposed
EMSI-BERT method has significant improvement, as shown in Table 10. Furthermore,
Table 10 shows that the effect of the RNN-based sequence modeling methods is slightly
better than that of the CNN-based methods, while the deep learning-based methods
also have far better results than SVM-related models. It is worth noting that BERT-based
methods [15,45] have also been used in DDI tasks recently. Table 10 shows the representative
BERT-related work. Compared with Basic-BERT and BioBERT, the proposed EMSI-BERT
has two different points: (1) the novel entity masking strategy for pre-training BERT is
proposed. In contrast, other methods require a large amount of external information to
achieve a better understanding. (2) The Symbol-Insert structure for fine-tuning BERT is
designed to overcome the problem of different entity combinations sharing the same input
sequence. In terms of accuracy, the proposed EMSI-BERT is also better than Basic-BERT
and BioBERT.

The experimental results in Tables 9 and 10 illustrate that the EMSI-BERT method is
superior to the SVM-, CNN-, RNN-, and BERT-related models. The proposed EMSI-BERT
method obtains the highest micro-average F1-score and has a better classification effect
for the four categories (Advice, Effect, Mechanism, and Int) than SVM-, CNN-, and RNN-
related models. Moreover, the proposed EMSI-BERT method also obtains the best results
for the two-classification task of drug relationship detection, and its micro-average F1-score
exceeds that of Att-BLSTM by 4%.

5.3.3. Ablation Experiment

To further validate the effectiveness of the proposed pre-training BERT with the
asymmetrical Entity-Mask strategy in this paper, we compare the effect of the Symbol-
Insert structure with Basic-BERT initialization and Entity-Mask-BERT initialization. The
experimental results in Table 11 show that the fine-tuning BERT under the asymmetrical
Entity-Mask strategy initialization is better than that under Basic-BERT initialization, with
its micro-average F1-score improved by 3.0%. In addition, the sensitivity of different
methods to preprocessing rules is further analyzed in this paper. As shown in Table 12, the
presence or absence of preprocessing has a 1.0% influence on the proposed EMSI-BERT.
Before and after preprocessing, the difference with other models, especially CNN-related
models, reaches about 4%. The findings indicate that the robustness of the proposed
method is better and can effectively restrict the influence of “Other” samples.
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Table 11. Comparison results with different model initialization.

Model Structure Micro-Average F1-Score

Basic-BERT initialization+ Symbol-Insert structure 79.0
Entity-Mask-BERT+ Symbol-Insert structure (EMSI-BERT) 82.0

Table 12. Sensitivity of different methods to the preprocessing rule.

Method No-Preprocessing Preprocessing Variation of
Micro-Average F1-Score

CNN [35] 65.0 69.7 4.7
MCNN [36] 67.8 70.2 2.4
SCNN [37] 64.5 68.4 3.9

Joint-LSTM [34] 67.2 69.4 2.2
TM-RNN [40] 70.8 72.4 1.6

PM-BLSTM [19] 71.6 73.0 1.4
EMSI-BERT 81.0 82.0 1.0

5.3.4. Model Visualization

To further explore the depth features learned by EMSI-BERT and the influence weight
of words, we visualize the attention weight between the current [CLS] node and other words
on each layer of BERT, as shown in Figure 8. For convenient analysis and visualization,
entity 1 and entity 2 are presented as A and B, respectively, and S1, E1, S2, and E2 are
mapped to the special symbols [unseen1], [unseen2], [unseen3], and [unseen4] in the
BERT word list, respectively. In Figure 8, the thickness of the lines represents the weight
relation between the [CLS] node and other nodes. The following conclusions can be made
qualitatively through visual weight analysis: (1) in shallow feature learning, EMSI-BERT
mainly focuses on some features at the overall level of sentences. For example, the weights
are mainly concentrated on the nodes [CLS] and [SEP] in layer0-layer7. (2) In the slightly
higher-level feature learning, EMSI-BERT focuses on some detailed features at the non-
overall level. For example, the weights are mainly concentrated on nodes other than [CLS]
and [SEP] in layer8-layer11. (3) There are differences in each layer’s focal features. For
example, some entity boundary features are focused in layer6 and layer7, while some
keywords containing entity relationships are focused, such as “increases”. From these
qualitative analyses, it can be seen that the proposed EMSI-BERT method can extract
semantic information at different levels and granularities in continuous space.

The above result of performance evaluation, comparison and ablation experiments,
and visualization illustrates that the proposed EMSI-BERT method has a comprehensive
improvement in the two-classification task of DDI detection and the multi-classification
task of DDI extraction. The improvement is mainly attributed to the following reasons:

(1) Compared with traditional machine learning-based methods, which measure seman-
tics in discrete space and design handcrafted features, the proposed EMSI-BERT
method introduces probability embedding to measure semantics in continuous space
and uses the end-to-end approach for DDI extraction, thus reducing the complexity of
manual feature extraction and the accumulation error of multiple steps.

(2) Compared with deep learning-based methods, such as BILSTM, CNN and BERT-
related models, which are limited to the quality of the dataset and the amount of
labeled data, the improved asymmetrical Entity-Mask strategy can compensate for the
lack of entity orientation and retain entities’ co-occurrence information on the basis of
the idea of distance supervision. Ablation experiments show that the asymmetrical
Entity-Mask strategy alleviates the problem of data sparsity and effectively improves
the effect of downstream DDI classification.

(3) The Symbol-Insert structure, designed for fine-tuning BERT, overcomes the problem
of different entity combinations sharing the same input sequence and achieves the
end-to-end DDI extraction without destroying the structure of Entity-Mask-BERT.
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The experimental results show that the designed structure can be adapted to the DDI
extraction task effectively. Moreover, the visualization in Section 5.3.4 illustrates that
Symbol-Insert-BERT can extract entity-level features, syntactic features, and semantic
features for DDI extraction from shallow to deep layers.
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6. Conclusions

Considering that discovering the drug–drug interaction relationship through medical
experimentation requires a significant amount of human and material resources, EMSI-
BERT is proposed for DDI extraction from the biomedical literature, which is a branch
of artificial intelligence technology. To address the problems of limited domain-labeled
data, weakly expressed co-occurring entities, and poor adaptation of downstream tasks in
DDI extraction, the asymmetrical Entity-Mask strategy for pre-training BERT is improved
and the Symbol-Insert structure for fine-tuning BERT is designed. In the pre- training
stage of DDI extraction, the random masking approach in BERT is improved to the entity
masking strategy, which preserved a certain amount of the co-occurring information of high
frequency entities. The experimental results reveal that the proposed pre-training BERT
with the asymmetrical Entity-Mask strategy can obtain better effects in downstream tasks
than the baseline Basic-BERT. In the fine-tuning stage of DDI classification, the Symbol-
Insert structure is designed to better adapt to the task of relational classification and retain
as much parameter information of the pre-training BERT as possible. The experimental
results on the DDI-Extraction 2013 dataset show that the proposed method comprehensively
improved the multi-classification task of DDI extraction and the two-classification task of
DDI detection. The proposed EMSI-BERT method needs to predict all combinations of
entities, so its classification efficiency remains to be improved. Future studies should further
address the pre-training strategy (such as the masking of other types of entities) and adjust
the insertion way of positional symbols to account for both effect and efficiency. Moreover,
the subsequent research will apply the proposed EMSI-BERT method to other biology-
related fields, such as protein–protein relation extraction, and study its performance from
different perspectives. Finally, we shall introduce fuzzy learning [56–58] to the proposed
EMSI-BERT method, which may help make it more practical.
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