# On the Traversable Yukawa–Casimir Wormholes

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. A Review of Casimir Wormhole

- (i)
- the non-singularity condition, $b\left(r\right)/r<1$ for $r>{r}_{0}$;
- (ii)
- the existence of the throat, $b\left(r\right)={r}_{0}$ at $r={r}_{0}$;
- (iii)
- the asymptotic flat limit, $b\left(r\right)/r\to 0$ as $r\to \infty $;
- (iv)
- the flare-out condition, ${b}^{\prime}\left(r\right)r-b\left(r\right)<0$.

## 3. Yukawa–Casimir Wormholes

- (i)
- a global modification: $b\left(r\right)=\left(\frac{2{r}_{0}}{3}+\frac{{r}_{0}^{2}}{3r}\right){e}^{-\mu (r-{r}_{0})}$;
- (ii)
- a modification only in the constant term: $b\left(r\right)=\frac{2{r}_{0}}{3}{e}^{-\mu (r-{r}_{0})}+\frac{{r}_{0}^{2}}{3r}$;
- (iii)
- a modification only in the variable term: $b\left(r\right)=\frac{2{r}_{0}}{3}+\frac{{r}_{0}^{2}}{3r}{e}^{-\mu (r-{r}_{0})}$.

#### 3.1. The Global Correction

#### 3.2. Constant Term Correction

#### 3.3. Correction in the Variable Term

#### 3.4. Stability Analysis

- (i)
- ${v}_{s-\mathrm{global}}^{2}>0\phantom{\rule{4pt}{0ex}}\forall \phantom{\rule{4pt}{0ex}}r\in [{r}_{0},\infty )$ if $\mu <2.56$,
- (ii)
- ${v}_{s-\mathrm{constant}}^{2}>0\phantom{\rule{4pt}{0ex}}\forall \phantom{\rule{4pt}{0ex}}r\in [{r}_{0},\infty )$ if $\mu <1.01$,
- (iii)
- ${v}_{s-\mathrm{radial}}^{2}>0\phantom{\rule{4pt}{0ex}}\forall \phantom{\rule{4pt}{0ex}}r\in [{r}_{0},\infty )$ for all values of $\mu $.

#### 3.5. Correction for Small Parameters

#### 3.5.1. First Order Correction

#### 3.5.2. Second Order Correction

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Schwarzschild, K. On the gravitational field of a mass point according to Einstein’s theory. arXiv
**1916**, arXiv:physics/9905030. [Google Scholar] - The Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.
**2019**, 875, L1. [Google Scholar] [CrossRef] - Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett.
**2021**, 910, L13. [Google Scholar] [CrossRef] - Hassan, Z.; Ghosh, S.; Sahoo, P.K.; Rao, V.S.H. GUP Corrected Casimir Wormholes in f(Q) Gravity. arXiv
**2022**, arXiv:2209.02704. [Google Scholar] - Shinkai, H.A.; Hayward, S.A. Fate of the first traversible wormhole: Black hole collapse or inflationary expansion. Phys. Rev. D
**2002**, 66, 044005. [Google Scholar] [CrossRef] - Maldacena, J.; Milekhin, A. Humanly traversable wormholes. Phys. Rev. D
**2021**, 103, 066007. [Google Scholar] [CrossRef] - Gao, P.; Jafferis, D.L.; Wall, A.C. Traversable Wormholes via a Double Trace Deformation. J. High Energy Phys.
**2017**, 12, 151. [Google Scholar] [CrossRef] - Casimir, H.B.G. On the Attraction Between Two Perfectly Conducting Plates. Indag. Math.
**1948**, 10, 261–263. [Google Scholar] - Boyer, T.H. Quantum electromagnetic zero point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev.
**1968**, 174, 1764–1774. [Google Scholar] [CrossRef] - Avino, S.; Calloni, E.; Caprara, S.; Laurentis, M.D.; Rosa, R.D.; Girolamo, T.D.; Errico, L.; Gagliardi, G.; Grilli, M.; Mangano, V.; et al. Progress in a Vacuum Weight Search Experiment. Physics
**2020**, 2, 1–13. [Google Scholar] [CrossRef] - Garattini, R. Casimir Wormholes. Eur. Phys. J. C
**2019**, 79, 951. [Google Scholar] [CrossRef] - Oliveira, P.H.F.; Alencar, G.; Jardim, I.C.; Landim, R.R. Traversable Casimir wormholes in D dimensions. Mod. Phys. Lett. A
**2022**, 37, 2250090. [Google Scholar] [CrossRef] - Garattini, R. Traversable Wormholes and Yukawa Potentials. arXiv
**2019**, arXiv:1907.03622. [Google Scholar] - Garattini, R. Yukawa–Casimir wormholes. Eur. Phys. J. C
**2021**, 81, 824. [Google Scholar] [CrossRef] - Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys.
**1988**, 56, 395–412. [Google Scholar] [CrossRef] - Kim, S.W. Flare-out condition of a Morris–Thorne wormhole and finiteness of pressure. J. Korean Phys. Soc.
**2013**, 63, 1887–1891. [Google Scholar] [CrossRef] - Alnes, H.; Ravndal, F.; Wehus, I.K.; Olaussen, K. Electromagnetic Casimir energy with extra dimensions. Phys. Rev. D
**2006**, 74, 105017. [Google Scholar] [CrossRef] - Sharif, M.; Shah, S.A.A.; Bamba, K. New Holographic Dark Energy Model in Brans-Dicke Theory. Symmetry
**2018**, 10, 153. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Behavior of the flare-out condition and of the moment-energy tensor components associated with the global modification. In all graphs, we have $\overline{\mu}=0.0$ (solid line), $\overline{\mu}=0.1$ (dashdot line), $\overline{\mu}=0.5$ (dashed line) and $\overline{\mu}=1.0$ (dotted line). (

**a**) flare-out condition, $[{b}^{\prime}\left(r\right)r-b\left(r\right)]/{b}^{2}\left(r\right)<0$; (

**b**) energy density, $\rho \left(r\right)$; (

**c**) radial pressure, ${p}_{r}\left(r\right)$; (

**d**) tangential pressure, ${p}_{t}\left(r\right)$.

**Figure 2.**In (

**a**), we have $\mu =0.0$ (solid line), $\mu =0.1$ (dashdot line), $\mu =0.276$ (dashed line), $\mu =0.5$ (dotted line) and $\mu =1.0$ (long dashed line). In (

**b**), the same notations as in Figure 1 are employed. (

**a**) redshift function, $\mathsf{\Phi}\left(r\right)$; (

**b**) embedding diagram, $z\left(r\right)$.

**Figure 3.**Behavior of the flare-out condition and of the moment-energy tensor components associated with the constant term correction. In all graphs, we have $\mu =0.0$ (solid line), $\mu =0.1$ (dashdot line), $\mu =0.5$ (dashed line) and $\mu =1.0$ (dotted line). (

**a**) flare-out condition, $[{b}^{\prime}\left(r\right)r-b\left(r\right)]/{b}^{2}\left(r\right)<0$; (

**b**) energy density, $\rho \left(r\right)$; (

**c**) radial pressure, ${p}_{r}\left(r\right)$; (

**d**) tangential pressure, ${p}_{t}\left(r\right)$.

**Figure 4.**In (

**a**), we have $\mu =0.0$ (solid line), $\mu =0.1$ (dashdot line), $\mu =0.28646$ (dashed line), $\mu =0.5$ (dotted line) and $\mu =1.0$ (long dashed line). In (

**b**), the same notations as in Figure 1 are employed. (

**a**) redshift function, $\mathsf{\Phi}\left(r\right)$; (

**b**) embedding diagram, $z\left(r\right)$.

**Figure 5.**Behavior of the flare-out condition and of the moment-energy tensor components associated with the correction in the variable term. In all graphs, we have $\mu =0.0$ (solid line), $\mu =0.1$ (dashdot line), $\mu =0.5$ (dashed line) and $\mu =1.0$ (dotted line). (

**a**) flare-out condition, $[{b}^{\prime}\left(r\right)r-b\left(r\right)]/{b}^{2}\left(r\right)$; (

**b**) energy density, $\rho \left(r\right)$; (

**c**) radial pressure, ${p}_{r}\left(r\right)$; (

**d**) tangential pressure, ${p}_{t}\left(r\right)$.

**Figure 6.**In all graphs we have $\mu =0.0$ (solid line), $\mu =0.1$ (dashdot line), $\mu =0.5$ (dashed line) and $\mu =1.0$ (dotted line); (

**a**) redshift function, $\mathsf{\Phi}\left(r\right)$; (

**b**) embedding diagram, $z\left(r\right)$.

**Figure 7.**Plot of ${v}_{s}^{2}\left(r\right)$ versus r. In all graphs, we have $\mu =0.0$ (solid line), $\mu =0.5$ (dashdot line) and $\mu =1.0$ (long dashed line). In (

**a**), we have $\mu =2.56$ (dashed line) and $\mu =3.0$ (dotted line). In (

**b**), we have $\mu =1.01$ (dashed line) and $\mu =1.5$ (dotted line). In (

**c**), we have $\mu =1.5$ (dashed line) and $\mu =3.0$ (dotted line). (

**a**) global correction; (

**b**) constant correction; (

**c**) correction in the variable term.

**Figure 8.**Behavior of the second-order modified redshift function on the parameter $\mu $ for Yukawa–Casimir WH.

**Figure 9.**Quantum Weak Energy Condition (QWEC) check. In all graphs, we have $\mu =0.0$ (solid line), $\mu =0.1$ (dashdot line), $\mu =0.5$ (dashed line) and $\mu =1.0$ (dotted line). (

**a**) global correction; (

**b**) constant correction; (

**c**) correction in the variable term.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Oliveira, P.H.F.d.; Alencar, G.; Jardim, I.C.; Landim, R.R.
On the Traversable Yukawa–Casimir Wormholes. *Symmetry* **2023**, *15*, 383.
https://doi.org/10.3390/sym15020383

**AMA Style**

Oliveira PHFd, Alencar G, Jardim IC, Landim RR.
On the Traversable Yukawa–Casimir Wormholes. *Symmetry*. 2023; 15(2):383.
https://doi.org/10.3390/sym15020383

**Chicago/Turabian Style**

Oliveira, Pedro Henrique Ferreira de, Geová Alencar, Ivan Carneiro Jardim, and Ricardo Renan Landim.
2023. "On the Traversable Yukawa–Casimir Wormholes" *Symmetry* 15, no. 2: 383.
https://doi.org/10.3390/sym15020383