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Abstract: 3D human action recognition is crucial in broad industrial application scenarios such as
robotics, video surveillance, autonomous driving, or intellectual education, etc. In this paper, we
present a new point cloud sequence network called PointMapNet for 3D human action recognition.
In PointMapNet, two point cloud feature maps symmetrical to depth feature maps are proposed
to summarize appearance and motion representations from point cloud sequences. Specifically, we
first convert the point cloud frames to virtual action frames using static point cloud techniques. The
virtual action frame is a 1D vector used to characterize the structural details in the point cloud frame.
Then, inspired by feature map-based human action recognition on depth sequences, two point cloud
feature maps are symmetrically constructed to recognize human action from the point cloud sequence,
i.e., Point Cloud Appearance Map (PCAM) and Point Cloud Motion Map (PCMM). To construct
PCAM, an MLP-like network architecture is designed and used to capture the spatio-temporal
appearance feature of the human action in a virtual action sequence. To construct PCMM, the MLP-
like network architecture is used to capture the motion feature of the human action in a virtual action
difference sequence. Finally, the two point cloud feature map descriptors are concatenated and fed
to a fully connected classifier for human action recognition. In order to evaluate the performance
of the proposed approach, extensive experiments are conducted. The proposed method achieves
impressive results on three benchmark datasets, namely NTU RGB+D 60 (89.4% cross-subject and
96.7% cross-view), UTD-MHAD (91.61%), and MSR Action3D (91.91%). The experimental results
outperform existing state-of-the-art point cloud sequence classification networks, demonstrating the
effectiveness of our method.

Keywords: 3D human action recognition; point cloud sequence; point cloud feature map

1. Introduction

The rapid development of low-cost sensors has drawn much attention from computer
vision researchers. 3D human action recognition is crucial in application scenarios such
as robotics, video surveillance, medical services, autonomous driving, video analysis, or
intellectual education, etc. [1]. The depth sequence research [2] is active in the human
action recognition area. In the depth sequence, pixel values in depth frames represent the
distance information from human bodies to the depth camera. Depth sequences provide
the extra body shape, rich 3D structural information, and 3D motion information of the
subject in the scene, with insensitivity to lighting conditions, texture, or color changes,
and protection of personal privacy. Therefore, we focus on depth sequence-based 3D
human action recognition methods.

Early depth sequence-based human action recognition was based on the feature map
approach [3], which compressed the entire sequence on one or several feature maps and
simultaneously maintained rich spatio-temporal information. After that, some hand-
crafted feature extraction methods are applied to the feature maps to extract action features
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for recognizing actions. With the rapid development of computing capability and the
emergence of large-scale datasets [4], deep neural networks have attracted increasing
attention and are widely used in action recognition tasks. The combination of depth
feature maps and CNNs [5] network architecture is a kind of representative model [6].
Although this network architecture has gained comparable results, it cannot directly learn
the action spatio-temporal patterns from depth sequences in the end-to-end learning way.
To deal with the relevant limitations, 2D CNNs are extended to 3D CNNs [7] to model
spatio-temporal features by using both spatial convolutional and temporal convolution on
action sequences. However, 3D CNNs have a large number of model parameters, which
directly affect the training time and limit the training performance on a small human action
recognition dataset.

To preserve rich spatio-temporal information while reducing computational costs,
researchers have recently focused their attention on converting depth sequences into point
cloud data. Static point clouds are a collection of points dispersed in three dimensions and
can be considered the simplest representation of shapes. Ordered point cloud frames further
form a point cloud sequence. Point cloud sequences are a lightweight data type with rich
geometry and shape information. To classify point cloud sequences, 3DV-PointNet++ [8]
voxelizes point cloud sequences for 3D human action recognition. In 3DV-PointNet++,
3D dynamic voxel (3DV) is proposed as a novel 3D motion representation and input
into PointNet++ for extracting the motion features of human action. The appearance
features of human action are learned by using the shared PointNet++ to directly model
key point cloud frames. However, due to the fact that voxelization is a pre-processing
process and is very time-consuming, the 3DV-PointNet++ method is very slow to train
and is not an end-to-end deep network model. Therefore, point cloud sequence network
methods are necessary, which directly consume the point cloud sequence for 3D human
action classification. To directly model point cloud sequences, point spatio-temporal local
neighborhoods are constructed, based on which point spatio-temporal operations [9–11]
are designed to extract action features. However, point spatio-temporal operations are
complex and time consuming and require a large number of parameters to capture the
precise appearance and motion features. Moreover, in the point spatio-temporal operations,
the spatial information encoding is easily affected by the temporal information encoding,
leading to inferior recognition performance.

In this paper, we propose a point cloud feature map-based network called PointMap-
Net for effective and low-cost 3D human action recognition on point cloud sequences. The
core idea of PointMapNet is to utilize two point cloud feature maps to summarize the
motion and appearance information in the point cloud sequence for human action recog-
nition. Point cloud feature maps can simplify the point cloud sequence classification task
while achieving excellent recognition performance. PointMapNet avoids the computational
complexity of voxelization, thus greatly simplifying the point cloud sequence modeling
task. In addition, it effectively improves the accuracy of point cloud sequence-based human
action recognition by capturing motion and appearance features using two point cloud
feature maps, respectively. Specifically, in the data preprocessing stage, we transform the
depth sequence data into a point cloud sequence as the input of our PointMapNet. In
PointMapNet, we first abstract the point cloud sequence into a virtual action sequence
based on the static point cloud technique. Then, we design two parallel point cloud feature
map modules with the virtual action sequence and its differential sequence as input to gen-
erate PCAM and PCMM, preserving the spatio-temporal appearance and dynamic motion,
respectively. Point cloud feature map modules are slightly modified MLP-Mixer structures,
in which the MLP-Mixer structure is adopted for inter-frame and intra-frame information
communication, and the pooling operations are used to fuse information across frames.
Finally, we aggregate the two point cloud feature map representations before performing
3D human action recognition.

Our main contributions are summarized as follows:
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• We propose a simple and effective point cloud sequence network, called PointMapNet
for 3D human action recognition. PointMapNet is a fully end-to-end optimized
network architecture;

• According to our technical contribution, we abstract the point cloud sequences into
virtual action sequences, based on which we propose two point cloud feature maps,
Point Cloud Appearance Map (PCAM) and Point Cloud Motion Map (PCMM) to
obtain the spatio-temporal appearance structure and the motion dynamics for 3D
human action recognition;

• Our PointMapNet achieves a cross-view accuracy of 96.7% on the NTU RGB+D
60 dataset, a cross-subject accuracy of 91.61% on the UTD-MHAD dataset, and a
cross-subject accuracy of 91.91% on the MSR Action3D dataset, outperforming state-
of-the-art methods.

The remainder of the paper is organized as follows. In Section 2, related works
are introduced. We present a new point cloud sequence network named PointMapNet
in Section 3. In Section 4, experimental results and comparisons are demonstrated and
analyzed. In Section 5, the differences from existing methods and limitations of our method
are discussed. Finally, conclusions and recommendations are drawn in Section 6.

2. Related Work
2.1. Feature Map-Based Human Action Recognition on Depth Sequence

Depth sequence-based human action recognition approaches usually capture the
motion information by computing depth feature maps. Researchers use one or several
feature maps instead of an entire depth sequence to study human actions. Depth feature
maps are a compact and effective representation used to characterize human actions.
Bobick et al. [3] extract masks of human shapes from video sequences, constructing Motion
History Images (MHI) and Motion Energy Images (MEI). Wang et al. [12] employ random
occupancy patterns to extract semi-local features. Yang et al. [2] propose the Depth Motion
Map (DMM) as a representation of human action, where the differences between every
two consecutive frames are accumulated over time and then HOGs are calculated from the
DMM. Liu et al. [13] present Gabor filters to encode texture data from Adaptive Hierarchical
Depth Motion Maps (AH-DMMs) to extract motion and shape cues. Aouaidjia et al. [6]
propose the Depth Motion Image (DMI), which assembles depth frames of action to capture
the change in the depth sequences of human motion.

2.2. Deep Learning for Static Point Clouds

Our work uses the static point cloud technique to abstract the point cloud sequence
into a virtual action sequence. Existing 3D shape classification methods of static point
clouds can be classified as multi-view based [14], voxel-based [15], and point-based meth-
ods [16–21]. Multi-view based approaches first project a 3D shape into multiple views and
extract view-side features. Then, these features are fused for accurate shape classification.
Voxel-based methods typically voxelize the point cloud into a 3D mesh and then apply a 3D
convolutional neural network (CNN) to the shape classification of the volume representa-
tion. Depending on the network structure used for feature learning at each point, the class
of point-based methods can be divided into pointwise MLP [16,17], convolution-based [18],
graph-based [19,20], and other typical methods [21]. PointNet [16], a pioneering static
point cloud work that deals directly with point sets, is a simple, efficient, and powerful
feature extractor. PointNet++ [17], a modified method of PointNet, is a hierarchical net-
work that obtains local-global features of different sizes and integrates local neighborhoods
with sampling and grouping. In SpiderCNN [18], SpiderConv is presented to define the
convolution as the product of a step function and a Taylor expansion defined over k nearest
neighbors. 3D deep learning work DGCNN [19] proposes to exploit the local geometric
structure from a set of 3D points in each local neighborhood. In LDGCNN [20], the transfor-
mation network is removed and the layered features of different layers in DGCNN [19] are
linked to improve performance and reduce model size. In Ref. [21], the PointSIFT module
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is integrated into the network to capture the orientation information of the point cloud,
achieving strong robustness for shape scaling.

2.3. Deep Learning for Point Cloud Sequences

Early methods extract manual features from point cloud sequences for human action
recognition [22,23]. Currently, researchers are focusing on developing deep learning ar-
chitectures to model point cloud sequences, which yield better recognition performance.
Deep learning for point cloud sequence-based 3D human action recognition is a fairly
new and challenging task. One solution is to voxelize the point cloud sequence and then
transform the voxelized point cloud sequence into existing data to perform the modeling
task indirectly [8,24,25]. Fast and Furious (FaF) [24] converts a point cloud frame into
a bird’s view voxel and then extracts features via 3D convolutions. MinkowskiNet [25]
transforms the voxelized point cloud sequence into grid-based videos and then jointly
captures the 4D spatio-temporal structure via a 4D convolution kernel. 3DV-PointNet++ [8]
converts the voxelized point cloud sequence into static point clouds and then uses a Point-
Net++ model for human action recognition. Voxel-based point cloud sequence methods
have extremely complex data pre-processing operations and cannot model point cloud
sequences in an end-to-end manner. Another solution is to develop point cloud sequence
networks [9–11], which directly consume point cloud sequences for action recognition.
MeteorNet [9] proposes the concept of the spatial-temporal neighborhood by creating
direct grouping and chain flow grouping to capture the dynamic points of point cloud
sequences. In Ref. [10], a point spatio-temporal (PST) convolution is proposed to achieve
informative representations of point cloud sequences. Fan et al. [11] propose a novel Point
4D Transformer (P4Transformer) network including a point 4D convolution to model raw
point cloud videos. However, all these point cloud sequence networks have to construct
4D spatio-temporal local neighborhoods to capture the action features. Constructing 4D
spatio-temporal local neighborhoods and performing point spatio-temporal operations
are computationally complex due to the disordered property of point clouds. In the point
spatio-temporal operations, the spatial information encoding is easily affected by the tempo-
ral information encoding, leading to inferior recognition performance. In addition, a large
number of parameters are necessary for these point cloud sequence networks to obtain
fine appearance and motion features. To improve recognition performance and simplify
the task of point cloud sequence classification, we propose two point cloud feature maps
inspired by depth feature maps to effectively and efficiently characterize the appearance
and motion information from point cloud sequences. Based on point cloud feature maps,
we propose a lightweight end-to-end point cloud sequence network called PointMapNet,
which simplifies the point cloud sequence classification task while achieving impressive
recognition performance.

3. Methodology

In this section, we propose a simple and effective point cloud sequence network called
PointMapNet for 3D human action recognition. By designing Point Cloud Appearance
Map (PCAM) and Point Cloud Motion Map (PCMM) to model the appearance features and
motion features of human actions, we explore the spatio-temporal learning capability of
PointMapNet on dynamic point cloud sequences. Figure 1 shows the overall flowchart of
the proposed framework. Specifically, in the data preprocessing stage, the depth sequence is
transformed into a point cloud sequence as the input of our PointMapNet. In PointMapNet,
we first abstract the point cloud sequence into a virtual action sequence based on the static
point cloud technique. Then, two parallel point cloud feature map modules are designed
to generate PCAM and PCMM, preserving the dynamic motion and spatio-temporal
appearance, respectively. Finally, we fuse the two point cloud feature map descriptors and
send them into a fully-connected classifier for recognizing human actions.
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Figure 1. The overall flowchart of the proposed PointMapNet.

3.1. Data Preprocessing

Depth sequences provide the extra body shape, rich 3D structural information, and 3D
motion information of the subject in the scene, with insensitivity to lighting conditions,
texture or color changes, and protection of personal privacy. Point cloud sequences also
have the advantages of depth sequences, while the 3D information is more prominent and
the computational cost is lower. Therefore, utilizing point cloud sequences as input for
human action recognition is more efficient.

Since the original depth sequence contains a large number of redundant frames, we
use a frame selection strategy to select a set of depth frames with the same time interval as
input. Specifically, we divide each original depth sequence into T segments of equal length.
In the training phase, we randomly select one frame in each segment. In the test phase, we
take one frame at a fixed time position in each segment. Then, the depth sequence of T
frames is converted to an original point cloud sequence by converting the pixel position,
and the pixel value in the selected point cloud frames to the 3D coordinates (X, Y, Z). We
randomly select N points in each original point cloud frame to form the final point cloud
sequence S = {St}T

t=1. St =
{

x1
t , x2

t . . . , xN
t
}

represents the unordered point set of the t-th
point cloud frame.

3.2. Virtual Action Sequence

Each frame of the point cloud sequence describes the spatial distribution of the static
appearance of the human body. In this paper, we use the virtual action frames as a static
summary of the appearance information in the point cloud frames. The core idea of
PointMapNet is point cloud feature maps, which represent action spatio-temporal features
by collecting the appearance and motion information from virtual action sequences. To this
end, the static point cloud technique is used to abstract point cloud sequences into virtual
action sequences.

To generate the virtual action sequence, we first perform twice set abstraction opera-
tions [17] to downsample the point clouds in each frame. Then, the PointNet layer [16] is
used to merge the information of all the downsampled points to form the virtual action
frame. Finally, T virtual action frames constitute the virtual action sequence V ∈ RT×C.

3.3. Point Cloud Appearance Map (PCAM) Module

Review on Depth Motion Image (DMI): As shown in Figure 2a, DMI describes the
spatio-temporal appearance of actions by finding the most prominent appearance features
from the same spatial location in all depth frames, producing a unified representation
that defines each action with its own specific spatio-temporal appearance, and providing
unique features for each action.
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(a) DMI (b) DMM

Figure 2. Depth feature maps.

The following equation illustrates the calculation of DMI:

DMI(i, j) = MAX
t=1,...,T

(I(i, j, t)) (1)

where I(i, j, t) is the pixel value at tth depth frame on pixel position (i, j). The range of t is
from frame 1 to T, T denotes the total number of frames. The pixel value of the DMI is the
maximum value of the same pixel position, which represents the most prominent action
appearance feature in the depth sequence.

Point Cloud Appearance Map: Inspired by DMI, PCAM describes spatial-temporal
appearance by finding the most prominent features at the same spatial location of all static
appearances for 3D human action recognition. A PCAM module based on the slightly
modified MLP-Mixer [26] is designed to aggregate the appearance information in virtual
action frames.

The PCAM module is a slightly modified MLP-Mixer structure shown in Figure 3
with the virtual action sequence V ∈ RT×C as input. It contains an MLP-Mixer structure
of two types of MLP blocks and one pooling operation. In the PCAM module, the MLP-
Mixer structure is used to enhance the human appearance information in virtual action
frames, and the max-pooling operation is adopted to select the most remarkable appearance
features along the time dimension to form the PCAM descriptor.
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Figure 3. The network structure of the slightly modified MLP-Mixer.

The first MLP block in the PCAM module is the inter-frame MLP block, which allows
information communication between different virtual action frames. The inter-frame MLP
block acts on columns of V (i.e., the transposition of input V>), maps RT → RT , and is
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shared across all columns. Each inter-frame MLP block consists of two fully-connected
layers, a non-linearity, and a skip-connection. The inter-frame MLP can be formalized
as follows:

Y∗,d = V∗,d + W2σ(W1 LayerNorm(V)∗,d), d = 1 . . . D (2)

where σ is an element-wise nonlinearity (GELU). W1, W2 are fully connected layers. Layer-
Norm imposes additional constraints on the distribution of the data, thus enhancing the
generalization capability of the model. Y is the intermediate feature matrix of the virtual
action sequence. The skip-connection solves the problem of gradient disappearance during
the training process.

Then, the second MLP block, i.e., the intra-frame MLP block, acts on each intermediate
feature to refine the intra-frame appearance information. The intra-frame MLP block acts on
rows of Y , maps RT → RT , and is shared across all virtual action frames. The intra-frame
MLP block can be written as follows:

Mt,∗ = Yt,∗ + W4σ(W3 LayerNorm(Y)t,∗), t = 1 . . . T (3)

where W3, W4 are fully connected layers in the intra-frame MLP block. M denotes the
updated feature matrix of the virtual action sequence. Finally, the PCAM module uses a
global max-pooling layer to select the most remarkable appearance features along the time
dimension to form the PCAM descriptor. To simplify the formula of the PCAM module, we
use the function MLP-Mixer(·) instead of the two MLP blocks. The calculation procedure
of M can be rewritten as:

Mt = MLP-Mixer(Vt) (4)

Based on Equation (4), the PCAM module can be formalized as follows:

PCAMd = MAX
t=1,...,T

{
Mt,d

}
= MAX

t=1,...,T
{MLP-Mixer(Vt)d}

(5)

where d is the channel position. PCAM is the PCAM descriptor.

3.4. Point Cloud Motion Map (PCMM) Module

Review on Depth Motion Map (DMM): As shown in Figure 2b, the DMM describes
the accumulated motion distribution and intensity of the action. To calculate the DMM,
the motion energy is first acquired by computing the difference between two consecutive
depth video frames. Then, the motion energy is stacked over the entire video sequence.
The depth feature map DMM for depth video sequences can be represented as:

DMM(i, j) =
T−1

∑
t=1

(|I(i, j, t + 1)− I(i, j, t)|) (6)

The DMM reflects the accumulation of motion energy in human actions. It provides a
strong cue to the category of motion in progress.

Point Cloud Motion Map: The PCMM inspired by DMM captures dynamic move-
ments by accumulating all motion energy over the whole time for 3D human action
recognition. In order to obtain the motion characteristics, the PCMM sequentially calcu-
lates the motion energy between two virtual action frames. The motion energy sequence
E = {Et}T−1

t=1 is different from the virtual action sequence V , which computes the difference
between two consecutive virtual action frames:

Et = {|Vt+1 −Vt|} t = 1, 2, . . . , T − 1 (7)
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The PCMM module still uses the slightly modified MLP-Mixer to enhance and aggre-
gate motion feature information. Unlike the PCAM module, a sum-pooling operation is
used instead of the max-pooling operation in the PCMM module:

PCAMd = ∑T−1
t=1 (Mt,d)

= ∑T−1
t=1 (MLP-Mixer(Et)d)

= ∑T−1
t=1 (MLP-Mixer(|Vt+1 −Vt|)d)

(8)

where M denotes the updated feature matrix in the PCMM module. PCMM is the
PCMM descriptor.

3.5. Two Maps Fusion

To generate the final feature of each action sequence, we simply concatenate the
descriptors of two point cloud feature maps, including the PCAM descriptor and the
PCMM descriptor. Finally, we use a set of fully connected layers as a classifier for 3D
action recognition.

4. Experiments

In this section, we introduce the datasets and experimental implementation details.
We choose the three most widely used 3D human action recognition datasets to evaluate
the performance of our proposed method, NTU RGB-D 60 [4], UTD-MHAD [27], and MSR
Action3D [28]. Then, we compare PointMapNet with existing state-of-the-art methods
and perform ablation studies to further validate the contributions of different components
in PointMapNet. Finally, we compare the running time of our PointMapNet and 3DV-
PointNet++ on CPU and GPU.

4.1. Datasets

We conduct extensive experiments on a large-scale public dataset (i.e., NTU RGB+D
60 [4]) and two small-scale public datasets (i.e., UTD Multimodal Human Action Dataset [27]
(UTD-MHAD), and MSR Action3D [28]).

The NTU RGB+D 60 dataset contains RGB sequences, infrared sequences, depth
sequences, and skeleton point sequences, including over 56,000 video sequences. This
dataset includes 4 million frames performed by 40 different subjects from 60 different
action classes. Two protocols, namely the cross-view (CV) evaluation protocol and the
cross-subject (CS) evaluation protocol, are defined for performance evaluation.

The UTD Multimodal Human Action Dataset (UTD-MHAD) consists of 861 depth
video sequence samples of 27 actions performed by 8 subjects. Each subject performs each
action 4 times. We use the same experimental setting as in [27], half of the subjects are used
for training, and the other half for testing.

The MSR Action3D dataset is one of the most classical action recognition datasets, con-
taining 567 sequences from 20 different human actions performed by 10 subjects. The same
cross-subject test setting as [28] is adopted. in which odd subjects (1, 3, 5, 7, and 9) are
used for training and even subjects (2, 4, 6, 8, and 10) are used for testing. In Figure 4,
the point cloud sequence of horizontal arm wave in the MSR Action3D dataset is shown as
an example of action samples.

Figure 4. The point cloud sequence of horizontal arm wave in the MSR Action3D dataset.
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4.2. Implementation Details

The implementation details about our network architecture are provided as follows.
First, 512 points are randomly selected from each original point cloud frame to generate the
point cloud sequence. Then, in the virtual action sequence generation stage, we perform
two set abstraction operations on each point cloud frame to obtain the downsampled point
set. In the first set abstract operation, 128 centroid points are selected to determine point
groups, and the output channels of MLPs are set to 64, 64, and 128, respectively. The group
radius is set to 0.06. The point number k1 in each point group is set to 48. In the second
set abstract operation, 32 centroid points are selected to determine point groups, and the
output channels of MLPs are set to 128, 128, and 256, respectively. The group radius is set
to 0.1. The point number k2 in each point group is set to 16. A PointNet layer is used to
integrate all downsampled points, in which the output channels of MLPs are set to 256, 512,
and 1024, respectively. In the point cloud feature map generation stage, two groups of MLPs
are used in the inter-frame MLP block and intra-frame MLP block. The output channels of
the inter-frame MLP block are set to 1024 and 1024, respectively. The output channels of the
intra-frame MLP block are set to 1024 and 1024, respectively. The output channels of the
final set of MLPs used as the classifier are set as 256 and the number of action categories.

4.3. Comparison with the State-of-the-Art Methods
4.3.1. NTU RGB+D 60 Dataset

To validate the performance of the proposed network, we compared PointMapNet
with the state-of-the-art method on the NTU RGB+D 60 dataset. In Table 1, we com-
pare PointMapNet with the depth sequence methods and the skeletal sequence methods.
The depth sequence methods include HON4D [29], Multi-view Dynamic Images [30],
HDDPDI [31], Dynamic images (HRP) [32], 3DFCNN [33], Stateless ConvLSTM [34],
and 3DV-PointNet++ [8]. The skeletal sequence methods include VA-CNN [35], SGN [36],
DGNN [37], DC-GCN+ADG [38], and ST-GCNs [39]. The recognition results of the pro-
posed PointMapNet are tabulated in Table 1, which shows that our approach yields a
perfect recognition accuracy of 96.7% and 89.4% under the cross-view setting and cross-
subject setting, respectively. Impressively, PointMapNet results in the highest recognition
accuracy among all depth sequence methods under the cross-view setting. Compared to
the methods with depth sequences as input, PointMapNet transforms the depth sequence
into a point cloud sequence to enhance the 3D shape structure of human actions. Compared
to the method with point cloud sequences as input, PointMapNet directly consumes point
cloud sequences instead of voxelized point cloud sequences for human action recognition,
which avoids the expensive computational cost of voxelization operations. PointMapNet
proposes two point cloud feature maps to effectively extract the spatio-temporal appear-
ance and aggregate the motion energy of human actions. Furthermore, the performance of
our PointMapNet is the second-best method under the cross-subject setting, slightly lower
than DGNN by 0.5%. Compared to the skeletal sequence approaches, PointMapNet does
not require extra pose estimation algorithms and the point cloud sequence has more details
of the body structure than the skeletal sequence.
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Table 1. Action recognition accuracy (%) on the NTU RGB+D 60 dataset.

Method Input CS CV

HON4D [29] Depth 30.6 7.3
Multi-view Dynamic Images [30] Depth 84.6 87.3

HDDPDI [31] Depth 82.4 87.6
Dynamic images (HRP) [32] Depth 87.1 84.2

3DFCNN [33] Depth 78.1 80.3
Stateless ConvLSTM [34] Depth 75.3 75.5

3DV-PointNet++ [8] Depth/Point 88.8 96.3

VA-CNN [35] Skeleton 88.7 94.3
SGN [36] Skeleton 89.0 94.5

DGNN [37] Skeleton 89.9 96.1
DC-GCN+ADG [38] Skeleton 88.2 95.2

ST-GCNs [39] Skeleton 81.5 88.3

PointMapNet (ours) Depth/Point 89.4 96.7

4.3.2. UTD-MHAD Dataset

To comprehensively measure the performance of our network, we perform com-
parative experiments on the small-scale UTD-MHAD dataset. In Table 2, we compare
PointMapNet with the depth sequence method. The depth sequence methods include
Baseline [27], DMM-HOG [2], 3DHOT-MBC [40], DMI [6], HP-DMM-CNN [41], HP-DMM-
HOG [42], DSIEM [43], and DRDIS [44]. As shown in Table 2, PointMapNet proposed
in this paper achieves a recognition accuracy of 91.61%, which is superior to other state-
of-the-art methods. The key success of our PointMapNet lies in the extra spatial shape
information of human movements provided by the point cloud sequences and the pow-
erful action characterization capability of the point cloud feature maps. In contrast to the
manual feature maps in depth sequence approaches, the point cloud feature maps are
automatically learned through network optimization, enhancing the ability to characterize
action sequences.

Table 2. Action recognition accuracy (%) on the UTD-MHAD dataset.

Method Input Accuracy

Baseline [27] Depth 66.1
DMM-HOG [2] Depth 81.5

3DHOT-MBC [40] Depth 84.4
DMI [6] Depth 82.79

HP-DMM-CNN [41] Depth 82.75
HP-DMM-HOG [42] Depth 73.72

DSIEM [43] Depth 88.37
DRDIS [44] Depth 87.88

PointMapNet (ours) Depth/Point 91.61

4.3.3. MSR Action3D Dataset

Another small-scale MSR Action3D dataset is adopted to evaluate the performance
of our network. In Table 3, we compare PointMapNet with the depth sequence method.
The depth sequence methods include Baseline [28], HON4D [29], STOP [12], DSTIP [45],
PointNet++ [17], MeteorNet [9], PSTNet [10], and P4Transformer [11]. As shown in Table 3,
PointMapNet has the highest recognition accuracy of 91.91% when 24 frames are selected
from the depth map sequence, which proves the superiority of the proposed PointMapNet.
The two-stream architecture in PointMapNet decomposes the appearance structure encod-
ing and motion energy encoding in the point cloud sequence, which avoids the mutual
interference between temporal and spatial information. Similar to our method, MeteorNet,
PSTNet, and P4Transformer are also point cloud sequence models that classify point cloud
sequences in an end-to-end manner. These approaches construct 4D spatio-temporal local
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neighborhoods and then perform point spatio-temporal operations to capture the point
dynamics in point cloud sequences. However, constructing spatio-temporal local neighbor-
hoods inevitably confuses the appearance and motion information and is computationally
complex. The experimental results on two small-scale databases illustrate that our method
has the ability to achieve outstanding performance even with a small number of samples
for training.

Table 3. Action recognition accuracy (%) on the MSR Action3D dataset.

Method Input # of Frames Accuracy

Baseline [28] Depth full 74.70
HON4D [29] Depth full 88.89

STOP [12] Depth full 84.8
DSTIP [45] Depth full 89.3

PointNet++ [17] Depth 1 61.61

MeteorNet [9] Depth/Point

4 78.11
8 81.14
12 86.53
16 88.21
24 88.50

PSTNet [10] Depth/Point

4 81.14
8 83.50
12 87.88
16 89.90
24 91.20

P4Transformer [11] Depth/Point

4 80.13
8 83.17
12 87.54
16 89.56
24 90.94

PointMapNet (ours) Depth/Point

4 79.04
8 84.93
12 87.13
16 89.71
20 91.18
24 91.91

4.4. Ablation Study

In this section, detailed ablation experiments are performed to validate the contri-
butions of different components of PointMapNet. We use the NTU RGB+D 60 dataset as
an example to perform comprehensive ablation studies with the cross-view evaluation
protocol.

4.4.1. Contributions of Point Cloud Feature Maps in Our Framework

We first investigate the contribution of two different point cloud feature maps in
PointMapNet, and the results are reported in Table 4. Inspired by DMI, we propose PCAM
to describe the spatio-temporal appearance information in point cloud sequences. Inspired
by DMM, we present PCMM to characterize the motion energy information of human
actions. The PCAM-only PointMapNet is denoted as PointMapNet (w/o PCMM), i.e., only
the PCAM module network is used and the PCMM module network is not included. By
contrast, the PointMapNet using only PCMM is denoted as PointMapNet (w/o PCAM),
i.e., it uses only the PCMM module network and does not include the PCAM module
network. As shown in Table 4, PointMapNet (w/o PCMM) achieves an accuracy of 95.5%,
which indicates that the prominent spatio-temporal appearance information enhanced by
the MLP-Mixer structure and selected by the max-pooling operation in PCAM module
is useful for 3D action recognition. PointMapNet (w/o PCAM) also obtains an accuracy
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of 86.6%. The experimental results show that our proposed PCAM and PCMM can still
achieve competitive performance when used independently. Moreover, the accuracy
of PointMapNet (w/o PCMM) is 8.9% higher than that of PointMapNet (w/o PCAM),
which indicates that spatio-temporal appearance features are more important for action
recognition than motion energy features.

Table 4. Cross-view recognition accuracy (%) when using single point cloud feature map on the NTU
RGB+D 60 dataset.

Method Accuracy

PointMapNet (w/o PCMM) 95.5
PointMapNet (w/o PCAM) 86.6

PointMapNet 96.7

4.4.2. Effectiveness of the MLP-Mixer Network Structure

PointMapNet contains a PCAM module and a PCMM module, both of which use
a slightly modified MLP-Mixer structure for inter-frame and intra-frame information
communication. In the PCAM module, the MLP-Mixer structure is used to enhance the
human appearance information in virtual action frames and to form the PCAM descriptor
by selecting the most remarkable appearance features along the time dimension using a
max-pooling operation. In the PCMM module, the MLP-Mixer structure is employed to
reinforce the human motion information in motion energy frames and to form the PCMM
descriptor by aggregating the motion features in all time dimensions using a sum-pooling
operation. To verify the performance of the slightly modified MLP-Mixer structure, we
propose a baseline approach that computes the PCAM descriptor and the PCMM descriptor
directly using the max-pooling and sum-pooling operation instead of the modified MLP-
Mixer structure. The PointMapNet using only the max-pooling operation is denoted as
PointMapNet (max-pooling), and its input is the virtual action sequence. The PointMapNet
using only the sum-pooling operation is denoted as PointMapNet (sum-pooling), and its
input is the motion energy sequence. The PointMapNet using both max-sum and pooling
operations is denoted as PointMapNet (pooling), which is a two-stream structure such
as PointMapNet. The results are listed in Table 5. From the table, it can be seen that the
recognition accuracy of PointMapNet (max-pooling) is 90.4%, PointMapNet (sum-pooling)
is 82.6%, and PointMapNet (pooling) is 92.8%. The experimental results show that the
slightly modified MLP-Mixer structure can effectively enhance inter-frame and intra-frame
information communication, thereby enhancing the appearance and motion information.

Table 5. Comparison of cross-view recognition accuracy (%) without the MLP-Mixer structure on the
NTU RGB+D 60 dataset.

Method Accuracy

PointMapNet (max-pooling) 90.4

PointMapNet (sum-pooling) 82.6

PointMapNet (pooling) 92.8

4.4.3. Effectiveness of Different Point Cloud Frame Numbers

We choose the different number of point cloud frames (i.e., T = 4, 8, 12, 16, 20, 24, 28)
to verify the effect of the number of point cloud frames on the accuracy of 3D human action
recognition. As shown in Figure 5, the recognition accuracy of PointMapNet gradually
improves as the number of point cloud frames increases. After the number of point cloud
frames reaches 24, the recognition accuracy of PointMapNet tends to be stable. Considering
that the running time of PointMapNet also increases with the number of point cloud frames,
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we choose a point cloud sequence of 24 frames as the input of PointMapNet, and thus
achieve the best balance of accuracy and running time.

Number of point cloud frames

4 8 12 16 20 24 28
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97

96

95

94

93

92

A
cc
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cy
(%

)

93.7

94.5

95.7

96.1
96.3

96.7 96.7

Figure 5. Recognition accuracy (%) of our PointMapNet when using different numbers of frames on
the NTU RGB+D 60 dataset.

4.5. Visualization on Different Types of Depth Cloud Feature Maps

To show the discriminative capability of different types of point cloud feature map
features, the t-SNE method [46] is used for feature visualization in Figure 6. We compare
the PCAM descriptor feature, the PCMM descriptor feature, and their joint features. We
use the MSR Action3D dataset as an example to visualize the different types of features
from the first eight samples. As shown in Figure 6, we observe that the joint features of the
PCAM descriptor and the PCMM descriptor have smaller intra-class distances and larger
inter-class distances, which indicates that it is beneficial to integrate the two point cloud
feature maps.

(a) PCAM descriptor feature (b) PCMM descriptor feature

(c) Joint features

Figure 6. The t-SNE visualization results based on different types of point cloud feature map features
from the samples in the first eight classes on the MSR Action3D dataset.
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4.6. Running Time and Memory Usage Analysis

To verify the computational efficiency of PointMotionNet, we compare the running
time and memory usage of our method with that of 3DV-PointNet++. The model running
time includes CPU-based data generation time and GPU-based network forward inference
time. The comparison experiments are performed using an Intel(R) Xeon(R) W-3175X
CPU and an Nvidia RTX 3090 GPU on the NTU RGB+D 60. Our PointMapNet is much
faster than 3DV-PointNet++ in terms of data generation speed and network forward
inference speed in Table 6. In addition, our method has slightly more parameters than
3DV-PointNet++. This is because 3DV-PointNet++ converts the point cloud sequence
to a static point cloud. Encoding a static point cloud is simpler than encoding a point
cloud sequence. However, this advantage is predicated on the fact that 3DV-PointNet++
sacrifices the ability to model point cloud sequences in an end-to-end manner and requires
a complicated voxelization operation.

Table 6. Running time (milliseconds per point cloud sequence) and memory usage (M) of 3DV-
PointNet++ and our PointMapNet.

Method CPU Time GPU Time Total Time Parameters

3DV-
PointNet++ 4842 54 4896 1.24

PointMapNet 2426 15 2441 2.65

5. Discussion

Recent studies are usually based on depth sequences, skeleton sequences, and point
cloud sequences for 3D human action recognition. Compared with depth sequences,
point cloud sequences are simpler to encode. Compared with skeleton sequences, point
cloud sequences have richer structural details and do not require extra pose estimation
algorithms to generate the input data. This paper focuses on 3D human action recogni-
tion based on point cloud sequences and proposes a new point cloud sequence network
called PointMapNet. Extensive experimental results show that PointMapNet achieves
state-of-the-art results with excellent operational efficiency on three widely used human
action recognition datasets. Deep learning on point cloud sequences can be categorized
as voxel-based approaches and point cloud sequence network approaches. Voxel-based
approaches [8,25] transform voxelized point cloud sequences into existing data type and
model them using the corresponding techniques. Voxel-based methods avoid extracting
features directly from complex point cloud sequences. However, the voxelization operation
is computationally intensive and loses a lot of spatio-temporal detail information. In addi-
tion, voxel-based methods cannot model point cloud sequences in an end-to-end manner.
Point cloud sequence network approaches [9–11] consume point cloud sequences directly
and encode point cloud sequences in an end-to-end manner. Compared with existing
point cloud sequence network methods, our approach proposes two point cloud feature
maps to characterize the action features, avoiding the computational complexity of point
spatio-temporal operations and thus simplifying the point cloud sequence classification
task. In addition, the two-stream network architecture in PointMapNet decomposes tempo-
ral information encoding and spatial information encoding, which prevents the mutual
interference between appearance and motion features.

In general, the 3D human action recognition based on PointMapNet is very effective.
However, there are also some limitations in PointMapNet. PointMapNet cannot effectively
capture the long-term relationships in the point cloud sequences. As shown in Table 4,
the ability of the PCMM module in PointMapNet to capture motion information is in-
sufficient. In addition, PointMapNet is only applicable to the classification task of point
cloud sequences but not to the semantic segmentation task, which limits the generality of
PointMapNet.
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6. Conclusions and Recommendation

In this paper, we propose a novel point cloud sequence network called PointMapNet
for 3D human action recognition. In the point cloud sequence modeling process, it is
extremely challenging to avoid computationally complex point spatio-temporal operations
and the mutual interference between appearance and motion features. In PointMapNet,
we creatively design two kinds of point cloud feature maps to capture the appearance and
motion information in point cloud sequences, i.e., Point Cloud Appearance Map (PCAM)
and Point Cloud Motion Map (PCMM). Comprehensive experiments performed on three
widely used public datasets demonstrate the effectiveness of our approach. We obtain
the conclusion that PointMapNet based on point cloud feature maps effectively avoids
computationally expensive point spatio-temporal operations, thereby simplifying the task
of point cloud sequence classification. Moreover, PointMapNet decomposes the appearance
and motion information encoding, preventing the mutual interference between them, thus
improving the action recognition accuracy.

For future work, we intend to investigate more efficient static point cloud encoding
techniques to obtain more fine-grained virtual action sequences. In addition, how to
improve the ability to capture motion features is also planned to be studied.
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