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Abstract: The density of states of a quantum system can be calculated from its definition, but, in
some cases, this approach is quite cumbersome. Alternatively, the density of states can be deduced
from the microcanonical entropy or from the canonical partition function. After discussing the
relationship among these procedures, we suggest a simple numerical method, which is equivalent in
the thermodynamic limit to perform a Legendre transformation, to obtain the density of states from
the Helmholtz free energy. We apply this method to determine the many-body density of states of the
unitary Fermi gas, a very dilute system of identical fermions interacting with a divergent scattering
length. The unitary Fermi gas is highly symmetric due to the absence of any internal scale except
for the average distance between two particles and, for this reason, its equation of state is called
universal. In the last part of the paper, by using the same thermodynamical techniques, we review
some properties of the density of states of a Schwarzschild black hole, which shares the problem of
finding the density of states directly from its definition with the unitary Fermi gas.

Keywords: density of states; unitary Fermi gas; entropy; black holes; free energy

1. Introduction

The density of states appears in many contexts of statistical mechanics [1] and quantum
physics [2]. The density of states, which tells you how many quantum states exist in a given
range of energy (or momentum), is extremely useful for the experimental and theoretical
determination of several physical quantities [1,2]. In some cases, one deals with the single-
particle density of states, namely the density of states of a single quantum particle in the
presence of an external potential. The determination of this single-particle density of states
is often quite simple. Instead, the calculation of the many-body density of states, i.e., the
density of states of the system composed by many interacting quantum particles, is usually
a difficult task. Indeed, although the density of states of a quantum system can be, in
principle, derived from its definition, and this approach is not always straightforward, in
particular for many-body problems. As an alternative, the density of states can be deduced
from the microcanonical entropy or the canonical partition function. As is well known, in
the appropriate thermodynamic limit, microcanonical observables can be related to the
corresponding canonical ones by means of a Legendre transformation [1].

In this paper, we suggest a straightforward technique for deriving the density of
states from the Helmholtz free energy. This procedure is nothing else than a Legendre
transformation of the entropy from the canonical ensemble to the microcanonical ensemble.
We apply this method to calculate the many-body density of states of the unitary Fermi
gas, characterized by an interaction potential with a divergent s-wave scattering length [3].
When the s-wave scattering length becomes very large, the attractive Fermi gas of fermionic
pairs with opposite spins is made of weakly bound dimers. Strictly speaking, the unitary
Fermi gas is made of dimers with zero binding energy [3]. This system is very peculiar due
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to the absence of any intrinsic parameter, except for the number density. As a consequence,
its equation of state is called universal [3]. In addition, for the unitary Fermi gas, the
conformal invariance plays an important role, as discussed by Son and Wingate [4]. We
show that a direct microcanonical evaluation of the many-body density of states of the
unitary Fermi gas gives rise to a formula that seems intractable. Then, we exhibit an
elegant derivation of the many-body density of states of the unitary Fermi gas starting
from the canonical ensemble and applying a Legendre transformation. We believe that
this canonical approach could be applied to other many-body systems; for instance, atomic
nuclei, Bose–Einstein condensates, and superconductors.

Taking into account that the density of states is also currently a very hot topic in the
physics of black holes for the condensed matter theoreticians [5], for the sake of entertain-
ment, in the last part of the paper we review the density of states and other thermody-
namical quantities of the Schwarzschild black hole. Additionally, for this astrophysical
system, we derive the density of states starting from the canonical ensemble and applying
a Legendre transformation. In this case, however, the procedure is quite simple.

2. General Properties of the Density of States

Let us consider a quantum system with microscopic Hamiltonian Ĥ and macroscopic
internal energy between E and E + ∆, with ∆� E [1]. Following the Boltzmann’s idea [6],
in the microcanonical ensemble, the entropy S(E) of the system can be written as

S(E) = kB ln(W(E)) (1)

where kB is the Boltzmann constant and W(E) is the number of accessible microstates
between E and E + ∆, that we call the adimensional density of states, given by [1]

W(E) = N(E + ∆)− N(E) (2)

where
N(E) = Tr[Θ(E− Ĥ)] (3)

is the number of states up to the energy E, with Θ(x) the Heaviside step function [1]. If ∆
is sufficiently small, one has

W(E) ' D(E) ∆ (4)

where
D(E) = Tr[δ(E− Ĥ)] (5)

is the density of states, with Tr being the trace on the Hilbert space of quantum states and
δ(x) the Dirac delta function [1]. In the thermodynamic limit, one often writes

S(E) ' kB ln(D(E)Es) (6)

with Es being a characteristic energy scale of the system (for instance, Es = h̄2n2/3/m for
N identical particles of mass m in a volume V and number density n = N/V), because
the intensive quantity ln(∆/Es) becomes negligible with respect to the extensive quantity
ln(D(E)Es) [1].

Knowing the Hamiltonian Ĥ, one can calculate D(E) by using Equation (5). Alterna-
tively, knowing the microcanical entropy S(E), one easily derives the adimensional density
of states W(E) from the entropy S(E) as

W(E) = eS(E)/kB (7)

The third principle of thermodynamics [1] states that S(Egs) = 0 with Egs being the ground-
state energy of the system. Consequently, from Equation (7), we obtain W(Egs) = 1.



Symmetry 2023, 15, 350 3 of 12

In the canonical ensemble, the Helmholtz free energy F(T) of the system at tempera-
ture T is given by [1]

F(T) = −kBT ln (Z(T)) (8)

where Z(T) is the partition function, defined as

Z(T) = Tr[e−Ĥ/(kBT)] (9)

It is not difficult to show that the partition function Z(T) is directly related to the density
of states D(E). In fact,

Tr[e−Ĥ/(kBT)] = Tr[
∫

dE δ(E− Ĥ) e−E/(kBT)] =
∫

dE Tr[δ(E− Ĥ)] e−E/(kBT) (10)

and consequently

Z(T) =
∫

dE D(E) e−E/(kBT) . (11)

Inverting this formula, one obtains the density of states D(E) as a function of the parti-
tion function Z(T), and then also D(E) as a function of the Helmholtz free energy F(T).
However, this procedure is quite cumbersome because it involves the calculation of an
anti-Laplace transformation.

In this paper, we suggest a much simpler procedure to obtain the adimensional density
of states W(E) from the Helmholtz free energy F(T). In the canonical ensemble, the entropy
S as a function of the temperature T, namely S(T), is given by

S(T) = −
(

∂F(T)
∂T

)
N,V

(12)

that is the partial derivative of the Helmholtz free energy F(T) with respect to the tem-
perature T at fixed number N of particles and volume V. Moreover, the internal energy
E(T) reads

E(T) = F(T) + T S(T) (13)

Both S(T) and E(T) depend on the temperature T. This means that T can be considered as a
dummy variable to obtain, or analytically or numerically, the parametric curve S vs. E, i.e.,
S = S(E), which could be a multivalued function. In this way, we are actually performing,
in the thermodynamic limit, a Legendre transformation of the entropy from the canonical
ensemble to the microcanonical ensemble. Having this result, one can then use Equation (7)
to find the adimensional density of states W(E).

3. Unitary Fermi Gas

In 2004, the crossover from the Bardeen–Cooper–Schrieffer (BCS) state of weakly-
correlated pairs of fermions to the Bose–Einstein condensation (BEC) of diatomic molecules
was observed with ultracold gases of two-component fermionic 40K or 6Li atoms [7–9].
This BCS–BEC crossover is obtained by using a Fano–Feshbach resonance to change the
strength of the effective inter-atomic attraction and, consequently, the 3D s-wave scattering
length a [3,10].

Given a gas of N atomic fermions in a volume V with two equally-populated spin
components, i.e., N↑ = N↓ = N/2, the system is dilute if the characteristic range re of the
inter-atomic potential is much smaller than the average interparticle separation d = n−1/3

with n = N/V the total number density, namely

re � d (14)
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The system is strongly interacting if the scattering length a of the inter-atomic potential
greatly exceeds the average interparticle separation d = n−1/3, i.e.,

d� |a| (15)

The unitarity regime [10] is characterized by both these conditions:

re � d� |a| (16)

Under these conditions, the dilute but strongly interacting Fermi gas is called unitary
Fermi gas.

Ideally, the unitarity limit corresponds to

re = 0 and a = ±∞ (17)

In a uniform configuration and at zero temperature, the only length characterizing the
Fermi gas in the unitarity limit is the average interparticle distance d = n−1/3.

In this case, simply for dimensional reasons, the ground-state energy must be [3]

Egs = ξ
3
5

h̄2

2m
(3π2)2/3n2/3N = ξ

3
5

εF N (18)

with εF = h̄2(3π2)2/3n2/3/(2m) Fermi energy of the ideal gas and ξ a universal unknown
parameter: the Bertsch parameter. Monte Carlo calculations and experimental data with
dilute and ultracold atoms suggest that, at zero temperature, the unitary Fermi gas is a
superfuid with ξ ' 0.4 [3].

We model [11–13] the many-body quantum Hamiltonian Ĥ of the uniform unitary
Fermi gas with the simple effective Hamiltonian

Ĥ = Egs + ∑
σ=↑,↓

∑
k

εsp(k) ĉ†
kσ ĉkσ + ∑

q
εcol(q) b̂†

q b̂q (19)

where ĉ†
kσ is the creation operator and ĉkσ the annihilation operator of fermionic single-

particle excitations characterized by energy εsp(k), spin σ, and wavevector k. Similarly, b̂†
q

is the creation operator and b̂q the annihilation operator of bosonic collective excitations
with energy εcol(q) and wavevector q.

The energy of the BCS-like excitations can be written as

εsp(k) =

√√√√( h̄2k2

2m
− ζεF

)2

+ ∆2
0 (20)

where ζ = 0.9 takes into account many-body effects on the Fermi surface [14]. Instead,
∆0 = γεF is the energy gap with γ = 0.45 [15].

The energy of collective elementary excitations is instead assumed to be given by

εcol(q) =

√
h̄2q2

2m

(
2mc2

B + λ
h̄2q2

2m

)
, (21)

where cB =
√

ξ/3 vF with vF =
√

2εF/m. In Ref. [12], we used the value λ = 0.25, which
is consistent with a macroscopic time-dependent nonlinear Schrödinger equation approach
without the inclusion of spurious terms [16]. In a recent paper [13], we used instead
λ = 0.08, which is the value obtained [17] from the beyond-mean-field GPF theory [18]
at unitarity.
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3.1. Attempt of Direct Evaluation of the Many-Body Density of States

We try to write the density of states D(E) of the unitary Fermi gas by using Equation (5)
with Equation (19). We immediately find

D(E) = ∑
{nkσ}

∑
{nq}

δ
(

E− Egs − ∑
σ=↑,↓

∑
k

εsp(k) nkσ −∑
q

εcol(q) nq

)
, (22)

where nkσ and nq are the occupation numbers of single-particle and collective excitations,
respectively. It is important to remark that Equation (22) is the many-body density of states
of the system and not the much more familiar single-particle density of states.

Taking into account the Fourier representation of the Dirac delta function δ(x), we have

D(E) = ∑
{nkσ}

∑
{nq}

1
2π

∫
dξ eiξ

(
E−Egs−∑σ=↑,↓ ∑k εsp(k) nkσ−∑q εcol(q) nq

)
=

1
2π

∫
dξ eiξ(E−Egs) ∑

{nkσ}
e−iξ ∑σ=↑,↓ ∑k εsp(k) nkσ ∑

{nq}
e−iξ ∑q εcol(q) nq

=
1

2π

∫
dξ eiξ(E−Egs) ∏

σ=↑,↓
∏

k
∑

nkσ=0,1
e−iξεsp(k) nkσ ∏

q

+∞

∑
nq=0

e−iξεcol(q) nq

=
1

2π

∫
dξ eiξ(E−Egs) ∏

σ=↑,↓
∏

k
(1 + e−iξεsp(k)) ∏

q

1
1− e−iξεcol(q)

. (23)

Unfortunately, Equation (23) does not help very much to obtain a tractable expression of
the density of states. For this reason, in the next section, we analyze the same system in
the canonical ensemble, where we will find a similar, but more manageable, formula for
the partition function. The reason is that, working in the canonical ensemble, the statistical
independence of non-interacting macroscopic subsystems is ensured by the canonical
density operator e−Ĥ/(kBT), which is an exponential operator [1].

3.2. Canonical Ensemble

As previously discussed, in the canonical ensemble, the Helmholtz free energy F(T) of
the system is obtained from the partition function Z(T) adopting Equations (8) and (9) [1].
In particular, by using Equations (9) and (19), we find

Z(T) = ∑
{nkσ}

∑
{nq}

e−
(

Egs+∑σ=↑,↓ ∑k εsp(k) nkσ+∑q εcol(q) nq
)

/(kBT)

= e−Egs/(kBT) ∑
{nkσ}

e−
(

∑σ=↑,↓ ∑k εsp(k) nkσ

)
/(kBT) ∑

{nq}
e−
(

∑q εcol(q) nq
)

/(kBT)

= e−Egs/(kBT) ∏
σ=↑,↓

∏
k

∑
nkσ=0,1

e−(εsp(k)/(kBT)) nkσ ∏
q

+∞

∑
nq=0

e−(εcol(q)/(kBT)) nq (24)

Thus, we can write
Z(T) = Zgs(T) Zsp(T) Zcol(T) (25)

where

Zgs(T) = e−Egs/(kBT) (26)

Zsp(T) = ∏
σ=↑,↓

∏
k
(1 + e−εsp(k)/(kBT)) (27)

Zcol(T) = ∏
q

1
1− e−εcol(q)/(kBT)

(28)
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With the help of Equation (8), the corresponding Helmholtz free energy reads

F(T) = Fgs + Fsp(T) + Fcol(T) (29)

where Fgs = Egs ,
Fsp(T) = −2kBT ∑

k
ln[1 + e−εsp(k)/(kBT)] (30)

and
Fcol(T) = −kBT ∑

q
ln[1− e−εcol(q)/(kBT)] (31)

Quite remarkably, the total free energy F(T) can be written [12] in a compact form as

F(T) = NεFΦ(
T
TF

) (32)

where, Φ(x) depends on the scaled temperature x ≡ T/TF only, with TF = εF/kB the Fermi
temperature. In particular, we have

Φ(x) =
3
5

ξ − 3x
∫ +∞

0
ln
[
1 + e−ε̃sp(u)/x

]
u2du

+
3
2

x
∫ +∞

0
ln
[
1− e−ε̃col(u)/x

]
u2du (33)

Here the integrals replace the summations. For example, ∑k → V
∫

d3k/(2π)3. Moreover,
we set ε̃col(u) =

√
u2(4ξ/3 + λu2) and ε̃sp(u) =

√
(u2 − ζ)2 + γ2.

We can now calculate the entropy S(T) and the internal energy E(T) by using
Equations (12) and (13). In particular, taking into account Equation (33), we find for the entropy

S(T) = −NkBΦ′(
T
TF

) (34)

where Φ′(x) = dΦ(x)/dx. Furthermore, for the internal energy E we obtain the expression

E(T) = NεF

[
Φ(

T
TF

)− T
TF

Φ′(
T
TF

)

]
(35)

In Figure 1, we plot the free energy F(T), the entropy S(T), and the internal energy
E(T) of the unitary Fermi gas by using Equations (32), (34), and (35). We choose the
following values for the parameters of our model: ξ = 0.42, λ = 0.25, ζ = 0.9, and γ = 0.45.
The figure shows that, by increasing the temperature T, the Helmholtz free energy F(T)
monotonically decreases, while both the internal energy E(T) and the entropy S(T) are
monotonic growing functions.

It is important to stress that our model for the low-temperature thermodyamics of
the unitary Fermi gas seems to be in quite good agreement with both Monte Carlo simula-
tions [19] and experimental data [20]. In particular, in Figure 2, we compare our internal
energy E(T) (solid line) with Monte Carlo calculations (filled circles) and experimental
results (filled squares). Indeed, the agreement among these different datasets is impressive.
We stress that Equation (19) is a low-temperature Hamiltonian because we are not taking
into account the fact that, in general, the elementary excitations εsp(k) and εcol(q) depend
on the temperature T.
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T/T
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-0.5
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F(T)/(Nε
F
)

S(T)/(Nk
B
)

E(T)/(Nε
F
)

Figure 1. Unitary Fermi gas: Scaled free energy F(T)/(NεF), scaled entropy S(T)/(NkB), and scaled
internal energy E(T)/(NεF) deduced from our model, as a function of the scaled temperature T/TF

with TF = εF/kB the Fermi temperature.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T/T
F

0

0.2

0.4

0.6

0.8

1

E
(T
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(N

ε
F
)

Our theory

Monte Carlo simulations

Experimental data

Figure 2. Unitary Fermi gas: Scaled internal energy E(T)/(NεF), as a function of the scaled tem-
perature T/TF. Solid line is obtained with our model. Filled circles: Monte Carlo simulations [19].
Squares with error bars: experimental data [20].

3.3. Numerical Calculation of the Many-Body Density of States

As previously discussed, having S(T) and E(T), we can immediately obtain the curve
S = S(E) by using T as a dummy variable. This is a Legendre transformation from S(T)
to S(E). In Figure 3, we plot this curve (dashed line) and also the curve (solid line) of the
adimensional many-body density of states W(E), which is obtained from Equation (7).

Figure 3 shows that, by increasing the internal energy E, there is a monotonic growth
of both entropy S(E) and adimensional density of states W(E). This is a consequence of the
monotonic behavior as a function of T of both S and E. Clearly, S(Egs) = 0, W(Egs) = 1,
and W(E) is an exponential function of the internal energy E.

We remark that the entropy (34) and the internal energy (35) are additive, i.e.,

S(T) = Sgs + Ssp(T) + Scol(T) (36)

E(T) = Egs + Esp(T) + Ecol(T) (37)

with Ssg = 0 and Egs = (3/5)NεFξ. Moreover, the adimensional density of the states W(E)
satisfies, in the thermodynamic limit, the equation

W(E) = Wgs(Egs) Wsp(Esp) Wcol(Ecol) , (38)
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where Wgs(Egs) = eSgs(Egs)/kB = 1, Wsp(Esp) = eSsp(Esp)/kB , and Wcol(Ecol) = eScol(Ecol)/kB .

0 0.5 1 1.5 2 2.5 3 3.5 4

E/(Nε
F
)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

S(E)/(N k
B
)

W(E)

Figure 3. Unitary Fermi gas: The dashed line is the scaled entropy S(E)/(NkB), as a function of
the scaled internal energy E/(NεF). The solid line is the adimensional many-body density of states
W(E), as a function of the scaled internal energy E/(NεF).

In Figure 4, we plot the entropy and the adimensional density of states of both collec-
tive and single-particle elementary excitations.

0 0.2 0.4 0.6 0.8 1
E

col
/(Nε

F
)

10
-1

10
0

10
1

S
col

(E
col

)/(N ε
F
)

W
col

(E
col

)

0 0.2 0.4 0.6 0.8 1
E

sp
/(Nε

F
)

10
-1

10
0

10
1

S
sp

(E
ps

)/(N k
B
) 

W
sp

(E
sp

)

Figure 4. Unitary Fermi gas. Upper panel: The dashed line is the scaled entropy Scol(Ecol)/(NkB) of
bosonic collective elementary excitations, as a function of the scaled internal energy Ecol/(NεF) of the
collective elementary excitations. The solid line is the adimensional density of states Wcol(Ecol) of col-
lective elementary excitations, as a function of the scaled internal energy Ecol/(NεF) of collective ele-
mentary excitations. Lower panel: The dashed line is the scaled entropy Ssp(Esp)/(NkB) of fermionic
single-particle excitations, as a function of the scaled internal energy Esp/(NεF) of single-particle
elementary excitations. The solid line is the adimensional density of states Wsp(Esp) of single-particle
excitations, as a function of the scaled internal energy Esp/(NεF) of single-particle excitations.

4. Schwarzschild Black Hole

In this section, we derive the adimensional density of states of a Schwarzschild black
hole [5,21] from the microcanonical entropy and also from the canonical Helmholtz free
energy. These are known results, but they are, however, highly non-trivial. We remark that
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the derivation of the density of states of a black hole directly from its definition is quite
controversial because a fully consistent quantum Hamiltonian Ĥ of the black hole is not
yet available [21].

For a Schwarzschild black hole of mass M, which does not rotate and has no electric
charge, the Bekenstein–Hawking entropy [22,23] is given by

S(M) =
4πkB

h̄
GM2

c
(39)

where G is the gravitational constant, h̄ is the reduced Planck constant and c is the speed of
light in a vacuum. Assuming that the internal energy E of the system is [24]

E = Mc2 (40)

we immediately obtain the microcanonical entropy

S(E) =
4πkBG

h̄c5 E2 (41)

and also, by using Equation (7), the adimensional density of states

W(E) = e
4πG
h̄c5 E2

(42)

From Equation (40), we have Egs = 0 and, as expected, from Equation (42) it follows
W(Egs) = W(0) = 1.

In Figure 5, we plot the curves of the scaled entropy S(E)/kB (dashed line) and of the
adimensional density of states W(E), obtained with Equations (41) and (42). The vertical
axis is in a log scale to contain the huge increase of W(E) with E.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

E/E
P

10
-6

10
-3

10
0

10
3

10
6

10
9

10
12

S(E)/k
B

W(E)

Figure 5. Schwarzschild black hole: The dashed line is the scaled entropy S(E)/kB, as a function
of the scaled internal energy E/EP, with EP =

√
h̄c5/G the Planck energy. The solid line is the

adimensional density of states W(E), as a function of the scaled internal energy E/EP.

Notice that, in the microcanonical ensemble, the temperature T of the system is
defined as

1
T

=
∂S(E)

∂E
(43)

For the Schwarzschild black hole, using Equation (41), we find

1
T

=
8πkBG

h̄c5 E (44)
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or, equivalently, using also Equation (40), we obtain

T =
h̄c3

8MπkBG
(45)

that is the so-called Hawking temperature [25].
Let us now consider the Schwarzschild black hole within the framework of the canoni-

cal ensemble. Because the quantum Hamiltonian Ĥ of a black hole is somehow unknown,
Gibbons and Hawking in their approach [26] did not use Equation (9). Instead, they de-
rived the canonical partition function Z(T) of the Schwarzschild black hole from the path
integral formula

Z(T) =
∫
D[gµν(x)] e−

1
h̄
∫

d3x
∫ h̄/(kBT)

0 dτ
√

gL(gµν(x)) (46)

where gµ(x) is the metric tensor, x = (cτ, x) is the space-time coordinate with τ being
the imaginary time, g is the determinant of the metric tensor, and L(gµν(x)) is the Eu-
clidean Lagrangian density of the Einstein–Hilbert action [27,28]. Taking into account the
Schwarzschild solution of the metric tensor [29] generated by a spherical object of mass M
and using a semiclassical approximation of Equation (46) with the inclusion of appropriate
boundary terms, Gibbons and Hawking [26] basically found

Z(T) = e−c5 h̄/(16πGk2
BT2) (47)

It is important to observe that Equation (47) was obtained by Gibbons and Hawking by
also using Equation (45), which is a crucial constraint derived by imposing the regularity
of the Euclidean Schwarzschild metric at the Schwarzschild radius rs = 2GM/c2.

From Equations (8) and (47), we then obtain the Helmholtz free energy

F(T) =
c5h̄

16πGkBT
(48)

We now calculate the entropy S(T) and the internal energy E(T) by using Equations (12) and (13).
We find

S(T) =
c5h̄

16πGkBT2 (49)

and

E(T) =
c5h̄

8πGkBT
(50)

For the sake of completeness, in Figure 6, we report the free energy F(T), the entropy
S(T), and the internal energy E(T), obtained with Equations (48)–(50). The figure shows
the very unusual behavior of these quantities by increasing the temperature T: they are all
monotonically decreasing.

As previously discussed, both the canonical entropy S(T) and the canonical internal
energy E(T) are functions of the absolute temperature T, which can be considered as a
dummy variable to obtain the parametric curve S vs. E. In this case, we can directly
find the inverse of Equation (50), which is exactly Equation (44). Inserting this formula
into Equation (49), i.e., performing analytically a Legendre transformation, we obtain the
microcanonical entropy S(E) of Equation (41) and finally the adimensional density of states
W(E) given, again, by Equation (42).
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Figure 6. Schwarzschild black hole: Scaled free energy F(T)/EP, scaled entropy S(T)kB, and scaled
internal energy E/EP as a function of the scaled temperature T/TP with TP = EP/kB being the
Planck temperature and EP =

√
h̄c5/G being the Planck energy.

5. Conclusions

In conclusion, we stress again that the knowledge of the number of quantum states
in a given range of energy is a crucial quantity in many context of physics. Although
the density of states can be determined from its microcanonical definition, this method
is not always simple. As an alternative, the density of states can be inferred from the
microcanonical entropy or the canonical partition. After discussing how these processes
relate to one another, we have offered a straightforward technique, based on the Legendre
transformation, for deriving the density of states from the Helmholtz free energy. As
an enlightening example, the unitary Fermi gas, an extremely dilute system of identical
fermions interacting with divergent scattering length, has been studied to determine the
many-body density of states. In Section 3.1, we have found that the computation of
the density of states from its definition is an hard task, while in Section 3.3, we have
obtained it quite easily working in the canonical ensemble. Finally, we have used the
same thermodynamical framework to review the adimensional density of states of a
Schwarzschild black hole with the Gibbson-Hawking formalism. Also in this case, a
calculation of the density of states from its definition is highly demanding. However,
for the Schwarzschild black hole, one quite easily obtains the density of state from the
microcanonical entropy (as discussed in several textbooks) or from the canonical free energy.
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