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Abstract: In this paper, we define two classes of meromorphic multivalent functions in the punctured
disc U∗ = {w ∈ C : 0 < |w| < 1} by using the principle of subordination. We investigate a number
of useful results including subordination results, some connections with a certain integral operator,
sandwich properties, an inclusion relationship, and Fekete-Szegö inequalities for the functions
belonging these classes. Our results are connected with those in several earlier works, which are
related to this field of Geometric Function Theory (GFT) of Complex Analysis.

Keywords: analytic functions; meromorphic multivalent functions; subordination; superordination;
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1. Introduction

Let A[a, n] be the subclass of analytic functions g(w) in U = {w ∈ C : |w| < 1} of the
following form:

g(w) = a + anwn + an+1wn+1 + ... (a ∈ C; w ∈ U).

Furthermore, letMp denote the class of all analytic functions g(w) of the following form:

g(w) = w−p +
∞

∑
k=1−p

akwk (p ∈ N = {1, 2, 3, ...}), (1)

which are meromorphic p-valent in the punctured disc U∗ = U\{0}. If g1(w) and g2(w) are
analytic in U, we say that g1(w) is subordinate to g2(w) or g2(w) is superordinate to g1(w),
written as, g1(w) ≺ g2(w), if there exists an analytic function υ(w) in U with υ(0) = 0 and
|υ(w)| < 1(w ∈ U) such that

g1(w) = g2(υ(w))(w ∈ U).

In particular, if g2(w) is a univalent function in U, we have the following equivalence (see
[1–3]):

g1(w) ≺ g2(w)⇔ g1(0) = g2(0) and g1(U) ⊂ g2(U).

Many subclasses of meromorphically multivalent functions have been introduced and
investigated by several earlier authors (see, for example, [4–12]). Now, we introduce a
certain classMβ

p(L, M) of meromorphic multivalent functions by using the principle of
subordination.
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Definition 1. For fixed parameters L and M with −1 ≤ M < L ≤ 1, we say that a function
g(w) ∈ Mp is inMβ

p(L, M) if it satisfies the following condition:

[
−wp+1g′(w)

p

]β

≺ 1 + Lw
1 + Mw

. (2)

By using the above definition of subordination, (2) is equivalent to the following
inequality: ∣∣∣∣∣∣∣

[
− wp+1g′(w)

p

]β

−1

M
[
− wp+1g′(w)

p

]β

−L

∣∣∣∣∣∣∣ < 1 (w ∈ U).

For convenience, we writeMβ
p(1− 2σ,−1) =Mβ

p(σ)(0 ≤ σ < 1), where

Mβ
p(σ) =

{
g ∈ Mp : <

[
−wp+1g′(w)

p

]β

> σ, 0 ≤ σ < 1

}
. (3)

We note that

(i) Taking β = 1 in (2), the classMβ
p(L, M) reduces toMp(L, M), where

Mp(L, M) =
{

g ∈ Mp : −wp+1g′(w)
p ≺ 1+Lw

1+Mw

}
;

(ii) Taking β = 1, L = 1− 2σ(0 ≤ σ < 1) and M = −1 in the classMβ
p(L, M), we obtain

Mp(σ) =
{

g ∈ Mp : <
{
−wp+1g′(w)

p

}
> σ, 0 ≤ σ < 1

}
.

In order to establish our main results, we need the following definition and lemmas.

Definition 2. [13] Denote by Π the set of all analytic functions g that are injective on Ū\E(g),
where

E(g) =
{

ζ ∈ ∂U : limw→ζ g(w) = ∞
}

,

and such that g′(ζ) 6= 0 for ζ ∈ Ū\E(g).

Lemma 1. [14] Let h(w) be an analytic and convex (univalent) function in U with h(0) = 1.
Suppose also that ϕ(w) given by

ϕ(w) = 1 + c1w + c2w2 + ... (4)

in an analytic function in U. If

ϕ(w) +
wϕ′(w)

δ
≺ h(w) (<(δ) ≥ 0; δ 6= 0) , (5)

then

ϕ(w) ≺ ψ(w) = δw−δ
w∫
0

tδ−1h(t)dt ≺ h(w),

and ψ is the best dominant.

The Gaussian hypergeometric function 2F1(ρ1, ρ2; ρ3; w) is defined by

2F1(ρ1, ρ2; ρ3; w) = 1 +
ρ1.ρ2

ρ3
.

w
1!

+
ρ1(ρ1 + 1).ρ2(ρ2 + 1)

ρ3(ρ3 + 1)
.
w2

2!
+ ... , (6)
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(
ρ1, ρ2, ρ3 ∈ C; ρ3 /∈ Z−0 = {0,−1,−2, ...})

)
.

Lemma 2. [15] (Chapter 14): For ρ1, ρ2, ρ3 ∈ C with ρ3 /∈ Z−0 ,

1∫
0

tρ2−1 (1− t)ρ3−ρ2−1 (1− wt)−ρ1 dt =
Γ(ρ2)Γ(ρ3 − ρ2)

Γ(ρ3)
2F1(ρ1, ρ2; ρ3; w) (7)

(<(ρ3) > <(ρ2) > 0);

2F1(ρ1, ρ2; ρ3; w) = (1− w)−ρ1
2F1

(
ρ1, ρ3−ρ2; ρ3;

w
w− 1

)
; (8)

2F1(ρ1, ρ2; ρ3; w) = 2F1(ρ2, ρ1; ρ3; w). (9)

Lemma 3. [16] Let q(w) be a convex univalent function in U such that

<
{

1 + wq′′(w)
q′(w)

}
> max

{
0,−<

(
1
κ

)}
(κ ∈ C∗ = C\{0}).

If the function ϕ(w) is analytic in U and

ϕ(w) +κwϕ′(w) ≺ q(w) +κwq′(w),

then ϕ(w) ≺ q(w) and q(w) is the best dominant.

Lemma 4. [13] Let q(w) be convex univalent in U and κ ∈ C. Further assume that <(κ) > 0. If

ϕ(w) ∈ A[q(0), 1] ∩Π,

and ϕ(w) + κwϕ′(w) is univalent in U, then

q(w) + κwq′(w) ≺ ϕ(w) + κwϕ′(w),

implies q(w) ≺ ϕ(w) and q(w) is the best subordinant.

Lemma 5. [17] Let h(w) = 1 + c1w + c2w2 + c3w3 + ... ∈ P , i.e., let h be analytic fuction in U
and satisfy <{h(w)} > 0 for w in U, then∣∣∣c2 − vc2

1

∣∣∣ ≤ 2 max{1, |2v− 1|} f or all v ∈ C. (10)

The result is sharp for the functions given by g(w) = 1+w2

1−w2 or g(w) = 1+w
1−w .

In this paper, we study a number of useful properties including subordination results,
sandwich properties, inclusion relationship and Fekete-Szegö inequalities for the function
classesMβ

p(L, M) andMβ
p(σ), which are defined above. The results derived in the present

paper will pave the way for the further study in the direction of the Geometric Function
Theory (GFT). The recent developments in Geometric Function Theory (GFT) of Complex
Analysis (especially in algebraic geometry, number theory, as well as in physics, hydro-
dynamics, hermodynamics, engineering, and quantum mechanics) play a crucial role in
research in many disciplines, including in the concept of symmetry.

2. Main Geometric Properties

Unless otherwise mentioned, we assume throughout this investigation that −1 ≤
M < L ≤ 1, β, γ > 0, p ∈ N and all powers are understood as principal values.
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Theorem 1. Let g(w) ∈ Mp defined by (1) satisfying the following subordination condition:

(1 + γ)

[
−wp+1g′(w)

p

]β

+
γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β

≺ 1 + Lw
1 + Mw

. (11)

Then g(w) ∈ Mβ
p(L, M) and

[
−wp+1g′(w)

p

]β

≺ Ω(w) ≺ 1 + Lw
1 + Mw

, (12)

where the function Ω(w) given by

Ω(w) =


L
M + (M−L)

M(1+Mw) 2F1

(
1, 1; pβ+γ

γ ; Mw
1+Mw

)
(M 6= 0)

1 + pβL
γ+pβ w (M = 0)

(13)

is the best dominant. Furthermore, g(w) ∈ Mβ
p(σ), i.e,

<
{[
−wp+1g′(w)

p

]β
}

> σ (w ∈ U) , (14)

where

σ =


L
M + (M−L)

M(1−M) 2F1

(
1, 1; pβ

γ + 1; M
M−1

)
(M 6= 0)

1− pβL
γ+pβ (M = 0) .

(15)

The estimate in (14) is the best possible.

Proof. Let

ϕ(w) =

[
−wp+1g′(w)

p

]β

(w ∈ U) . (16)

Then, ϕ(w) is analytic in U and is of the form (4). Differentiating (16) with respect to w, we
obtain

(1 + γ)

[
−wp+1g′(w)

p

]β

+
γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β

= ϕ(w) +
γ

pβ
wϕ

′
(w) ≺ 1 + Lw

1 + Mw
. (17)

Now, by using Lemma 1 for δ = pβ
γ , we obtain

[
−wp+1g′(w)

p

]β

≺ Ω(w) =
pβ

γ
w−

pβ
γ

w∫
0

t
pβ
γ −1

(
1 + Lt
1 + Mt

)
dt =

pβ

γ

1∫
0

u
pβ
γ −1

(
1 + Lwu
1 + Mwu

)
du. (18)

By using Lemma 2 with ρ1 = 1,ρ2 = pβ
γ , ρ3 = pβ+γ

γ in (18), we obtain

Ω(w) =


L
M + (M−L)

M(1+Mw) 2F1

(
1, 1; pβ+γ

γ ; Mw
1+Mw

)
(M 6= 0)

1 + pβL
γ+pβ w (M = 0).

This proves the assertion (12) of Theorem 1.
Next, in order to show the assertion (14) of Theorem 1, it suffices to prove that

inf
w∈U
{<(Ω(w))} = Ω(−1) . (19)
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We here have

<
(

1+Lw
1+Mw

)
≥ 1−Lr

1−Mr (|w| ≤ r < 1).

Putting

g(ζ, w) = 1+Lζw
1+Mζw and dν(ζ) = pβ

γ ζ
pβ
γ −1 dζ (0 ≤ ζ ≤ 1) ,

which is a positive measure on the interval [0, 1], we obtain

Ω(w) =
1∫

0
g(ζ, w)dν(ζ),

so that

<{Ω(w)} ≥
1∫

0

(
1− Lζr
1−Mζr

)
dν(ζ) = Ω(−r) (|w| ≤ r < 1) . (20)

Letting r → 1− in (20), we get the assertion (14) of Theorem 1. Finally, the estimate in (14)
is the best possible as Ω(w) is the best dominant of (12).

Taking β = 1 in Theorem 1, we obtain

Corollary 1. Let g(w) ∈ Mp defined by (1), satisfying the following subordination condition:

−wp+1g′(w)
p

{
1 + γ + γ

p

[
wg′′(w)

g′(w)
+ 1
]}
≺ 1+Lw

1+Mw .

Then g(w) ∈ Mp(L, M) and

−wp+1g′(w)
p ≺ Ω1(w) ≺ 1+Lw

1+Mw ,

where Ω1(w) given by

Ω1(w) =


L
M + (M−L)

M(1+Mw) 2F1

(
1, 1; p

γ + 1; Mw
1+Mw

)
(M 6= 0)

1 + pL
γ+p w (M = 0)

is the best dominant. Furthermore, g(w) ∈ Mp(σ1), i.e,

<
{
−wp+1g′(w)

p

}
> σ1 (w ∈ U) ,

where

σ1 =


L
M + (M−L)

M(1−M) 2F1

(
1, 1; p

γ + 1; M
M−1

)
(M 6= 0)

1− pL
γ+p (M = 0) .

The above estimate is the best possible.

For the function g(w) ∈ Mp, Kumar and Shukla [18] defined the integral operator
Gµ,p(g)(w) :Mp →Mp as follows:

Gµ,p(g)(w) =
µ

wµ+p

w∫
0

tµ+p−1g(t)dt (µ > 0; w ∈ U). (21)

From (21), we obtain

wG ′′µ,p(g)(w) = µg′(w)− (µ + p + 1)G ′µ,p(g)(w). (22)
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Theorem 2. If g(w) ∈ Mp satisfies the following subordination condition:

(1− γ)

[
−

wp+1G ′µ,p(g)(w)

p

]β

+ γ
g′(w)

G ′µ,p(g)(w)

[
−

wp+1G ′µ,p(g)(w)

p

]β

≺ 1 + Lw
1 + Mw

, (23)

where Gµ,p(g)(w) is defined by (21), then Gµ,p(g)(w) ∈ Mβ
p(L, M) and[

−wp+1G ′µ,p(g)(w)

p

]β

≺ Φ(w) ≺ 1+Lw
1+Mw ,

where the function

Φ(w) =


L
M + (M−L)

M(1+Mw) 2F1

(
1, 1; βµ+γ

γ ; Mw
Mw+1

)
(M 6= 0)

1 + βµ
βµ+γ Lw (M = 0) ,

is the best dominant. Furthermore, Gµ,p(g)(w) ∈ Mβ
p(ξ
∗) and

<


[
−

wp+1G ′µ,p(g)(w)

p

]β
 > ξ∗ (w ∈ U) , (24)

where

ξ∗ =


L
M +

(
1− L

M

)
(1−M)−1

2F1

(
1, 1; βµ+γ

γ ; M
M−1

)
(M 6= 0)

1− βµ
βµ+γ L (M = 0) .

The above result is the best possible.

Proof. Defining ϕ(w) by

ϕ(w) =

[
−

wp+1G ′µ,p(g)(w)

p

]β

(w ∈ U), (25)

we note that ϕ is analytic in U and is of the form (4). Differentiating (25) with respect to w
and using the identity (22), we find that

(1− γ)

[
−wp+1G ′µ,p(g)(w)

p

]β

+ γ
g′(w)

G ′µ,p(g)(w)

[
−wp+1G ′µ,p(g)(w)

p

]β

= ϕ(w) + γ
βµ wϕ′(w) ≺ 1+Lw

1+Mw .

Employing the techniques that we used in proving Theorem 1 above, we can prove the
remaining proof of Theorem 2.

Setting β = 1 in Theorem 2, we obtain

Corollary 2. If g(w) ∈ Mp satisfies the following subordination condition:

−
[
(1− γ)

wp+1G ′µ,p(g)(w)

p + γ
wp+1g′(w)

p

]
≺ 1+Lw

1+Mw ,

where Gµ,p(g)(w) is given by (21), then

−wp+1G ′µ,p(g)(w)

p ≺ Φ1(w) ≺ 1+Lw
1+Mw ,

where Φ1(w) given by
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Φ1(w) =


L
M + (M−L)

M(1+Mw) 2F1

(
1, 1; µ+γ

γ ; Mw
Mw+1

)
(M 6= 0)

1 + µ
µ+γ Lw (M = 0) ,

is the best dominant. Furthermore,

<
{
−wp+1G ′µ,p(g)(w)

p

}
> ξ∗ (w ∈ U),

where

ξ∗ =


L
M + (M−L)

M(1−M) 2F1

(
1, 1; µ+γ

γ ; M
M−1

)
(M 6= 0)

1− µ
µ+γ L (M = 0) .

The result is the best possible.

Theorem 3. If g(w) ∈ Mβ
p(σ) (0 ≤ σ < 1), then

<
{
(1 + γ)

[
−wp+1g′(w)

p

]β

+
γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β
}

> σ (|w| < R) , (26)

where

R =

√
1 +

(
γ

pβ

)2
− γ

pβ
. (27)

Proof. Since g(w) ∈ Mβ
p(σ), we write

[
−wp+1g′(w)

p

]β

= σ + (1− σ)u(w) (w ∈ U) . (28)

Then, u(w) is analytic in U, is of the form (4), and <{u(w)} > 0. Differentiating (28) with
respect to w, we obtain

(1 + γ)
[
−wp+1g′(w)

p

]β
+ γ

p

(
wg′′(w)

g′(w)
+ 1
)[
−wp+1g′(w)

p

]β
− σ

1− σ
= u(w) +

γ

pβ
wu

′
(w) . (29)

Now, by applying the following estimate (see [19,20])

|wu′(w)|
<{u(w)} ≤

2r
1−r2 (|w| = r < 1)

in (29), we obtain

<


(1 + γ)

[
−wp+1g′(w)

p

]β
+ γ

p

(
wg′′(w)

g′(w)
+ 1
)[
−wp+1g′(w)

p

]β
− δ

1− δ

 ≥ <{u(w)} .
(

1− 2γr
pβ(1− r2)

)
. (30)

Note that the right-hand side of (30) is positive provided that r < R, where R is given by
(27). This shows the assertion (26) of Theorem 3.

In order to prove that the bound R is the best possible, we consider g(w) ∈ Mp
defined by [

−wp+1g′(w)
p

]β
− σ = (1− σ) 1+w

1−w (0 ≤ σ < 1).

Noting that
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(1+γ)

[
− wp+1g′(w)

p

]β

+ γ
p

(
wg′′(w)

g′(w)
+1
)[
− wp+1g′(w)

p

]β

−δ

1−δ =
pβ(1−w2)+2γw

pβ(1−w)2 = 0

for w = R exp(iπ), we complete the proof of Theorem 3.

Theorem 4. Let q(w) be univalent function in U such that

<
(

1 +
wq′′(w)

q′(w)

)
> max

{
0,−<

(
pβ

γ

)}
. (31)

If g(w) ∈ Mp satisfies the subordination condition

(1 + γ)

[
−wp+1g′(w)

p

]β

+
γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β

≺ q(w) +
γ

pβ
wq′(w), (32)

then
[
−wp+1g′(w)

p

]β
≺ q(w) and q(w) is the best dominant.

Proof. Let ϕ(w) be given by (16). Combining (17) and (32), we obtain

ϕ(w) +
γ

pβ
wϕ′(w) ≺ q(w) +

γ

pβ
wq′(w). (33)

Applying Lemma 3 on (33) with κ = γ
pβ , we easily obtain the assertion of Theorem 4.

Putting q(w) = 1+Lw
1+Mw in Theorem 4, we obtain

Corollary 3. Suppose that

<
(

1−Mw
1+Mw

)
> max

{
0,−<

(
pβ
γ

)}
.

If g(w) ∈ Mp satisfies the following subordination condition:

(1 + γ)
[
−wp+1g′(w)

p

]β
+ γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β
≺ 1+Lw

1+Mw + γ
pβ

(L−M)w
(1+Mw)2 ,

then
[
−wp+1g′(w)

p

]β
≺ 1+Lw

1+Mw , and 1+Lw
1+Mw is the best dominant.

Theorem 5. Let
[
−wp+1g′(w)

p

]β
∈ A[q(0), 1] ∩Π such that

(1 + γ)
[
−wp+1g′(w)

p

]β
+ γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β

be univalent function in U. If g(w) ∈ Mp satisfies the superordination condition

q(w) + γ
pβ wq′(w) ≺ (1 + γ)

[
−wp+1g′(w)

p

]β
+ γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β
,

where q(w) be convex univalent function in U, then q(w) ≺
[
−wp+1g′(w)

p

]β
and q(w) is the best

subordinant.

Proof. Let ϕ(w) be defined by (16). Then

q(w) +
γ

pβ
wq′(w) ≺ (1 + γ)

[
−wp+1g′(w)

p

]β

+
γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β

= ϕ(w) +
γ

pβ
wϕ′(w)

An application of Lemma 4 yields the assertion of Theorem 5.
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Putting q(w) = 1+Lw
1+Mw in Theorem 5, we obtain

Corollary 4. Let
[
−wp+1g′(w)

p

]β
∈ A[1, 1] ∩Π such that

(1 + γ)
[
−wp+1g′(w)

p

]β
+ γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β

be univalent in U. If g(w) ∈ Mp satisfies the superordination condition

1+Lw
1+Mw + γ

pβ
(L−M)w
(1+Mw)2 ≺ (1 + γ)

[
−wp+1g′(w)

p

]β
+ γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β
,

then 1+Lw
1+Mw ≺

[
−wp+1g′(w)

p

]β
and 1+Lw

1+Mw is the best subordinant.

By combining the above results of subordination and superordination, we easily obtain
the following "Sandwich-type result".

Theorem 6. Let q1 be convex univalent in U and q2 be univalent in U such that q2 satisfies (31). If[
−wp+1g′(w)

p

]β
∈ A[q1(0), 1] ∩Π,

and

(1 + γ)
[
−wp+1g′(w)

p

]β
+ γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β

be univalent in U, also

q1(w) + γ
pβ wq′1(w) ≺ (1 + γ)

[
−wp+1g′(w)

p

]β
+ γ

p

[
wg′′(w)

g′(w)
+ 1
][
−wp+1g′(w)

p

]β
≺

q2(w) + γ
pβ wq′2(w),

then

q1(w) ≺
[
−wp+1g′(w)

p

]β
≺ q2(w),

and q1(w) and q2(w) are, respectively, the best subordinant and the best dominant.

Theorem 7. Suppose that g(w), h(w) ∈ Mp satisfy the following inequalities:

<
{[
−wp+1g′(w)

p

]β
}

> 0 (w ∈ U) .

If ∣∣∣ g′(w)
h′(w)

− 1
∣∣∣ < 1 (w ∈ U) ,

then

−<
{

1 + wg′′(w)
g′(w)

}
> 0 (|w| < R0) ,

where

R0 =

√
(β+2)2+4pβ2(p+1)−(β+2)

2β(p+1) .

Proof. Letting

φ(w) =
g′(w)

h′(w)
− 1 = t1w + t2w2 + ..... , (34)

since φ(w) is analytic function in U with φ(0) = 0 and |φ(w)| ≤ |w| (w ∈ U). Then, by
using the Schwarz’s lemma (see [21]), we obtain
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φ(w) =
g′(w)
h′(w)

− 1 = wΨ(w),

where Ψ(w) is analytic function in U and |Ψ(w)| ≤ 1 (w ∈ U). Hence, (34) leads us to

wg′(w) = wh′(w)(1 + w Ψ(w)) (w ∈ U) . (35)

Differentiating (35) logarithmically with respect to w, we obtain

1 +
wg′′(w)

g′(w)
= 1 +

wh′′(w)

h′(w)
+

w{Ψ(w) + wΨ′(w)}
1 + wΨ(w)

. (36)

With

ϕ(w) =
[
−wp+1g′(w)

p

]β
,

we see that ϕ(w) is analytic function in U, is of the form (4), <{ϕ(w)} > 0 (w ∈ U) and

−
{

1 + wg′′(w)
g′(w)

}
= p− 1

β
wϕ′(w)

ϕ(w)
,

so that we find from (36) that

−<
{

1 +
wg′′(w)

g′(w)

}
≥ p− 1

β

∣∣∣∣wϕ′(w)

ϕ(w)

∣∣∣∣− ∣∣∣∣w{Ψ(w) + wΨ′(w)}
1 + wΨ(w)

∣∣∣∣. (37)

Now, using the following known estimates (see [22]):∣∣∣wϕ′(w)
ϕ(w)

∣∣∣ ≤ 2r
1−r2 (|w| = r < 1)

and ∣∣∣Ψ(w)+wΨ′(w)
1+wΨ(w)

∣∣∣ ≤ 1
1−r (|w| = r < 1)

in (37), we obtain

−<
{

1 + wg′′(w)
g′(w)

}
≥ pβ−(β+2)r−β(p+1)r2

β[1−r2]
(|w| = r < 1) ,

which is certainly positive, provided that r < R0, R0 being defined as in Theorem 7.

Now, employing the same techniques used in [23,24], we study the Fekete–Szegö
problems for the classesMβ

p(L, M) andMβ
p(σ).

Theorem 8. If g(w) ∈ Mβ
p(L, M) given by (1), then

∣∣∣a2−p − µa2
1−p

∣∣∣ ≤ p(L−M)

(p− 2)β
max

{
1;

∣∣∣∣∣M +

(
β− 1

2
+

p(p− 2)

(p− 1)2

)
(L−M)µ

β

∣∣∣∣∣
}

(p 6= 1, 2). (38)

Proof. If g(w) ∈ Mβ
p(L, M), then there is an analytic in U with ν(0) = 0 and |ν(w)| < 1 in

U such that [
−wp+1g′(w)

p

]β

=
1 + Lν(w)

1 + Mν(w)
. (39)

If we define the function h(w) by

h(w) =
1 + ν(w)

1− ν(w)
= 1 + c1w + c2w2 + ..., (40)

we see that <{h(w)} > 0 and h(0) = 1. Therefore,

1 + Lν(w)

1 + Mν(w)
= 1 +

(L−M)

2
c1w +

(L−M)

2

[
c2 −

(1 + M)

2
c2

1

]
w2 + ... . (41)
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Now by substituting (41) in (39), we have[
−wp+1g′(w)

p

]β

= 1 +
(L−M)

2
c1w +

(L−M)

2

[
c2 −

(1 + M)

2
c2

1

]
w2 + ... .

From the above equation, we obtain

(p− 1)β

p
a1−p =

(L−M)

2
c1 (42)

and
(p− 2)β

p
a2−p +

(p− 1)2β(β− 1)
2p2 a2

1−p =
(L−M)

2

[
c2 −

(1 + M)

2
c2

1

]
. (43)

Thus,

a1−p = p(L−M)
2(p−1)β

c1

and

a2−p = p(L−M)
2(p−2)β

[
c2 − 1

2

(
1 + M + (β−1)(L−M)

2β

)
c2

1

]
,

Therefore, we have

a2−p − µa2
1−p =

p(L−M)

2(p− 2)β

{
c2 − vc2

1

}
, (44)

where

ν =
1
2

[
1 + M +

(
β− 1

2
+

p(p− 2)

(p− 1)2

)
(L−M)µ

β

]
. (45)

Our result now follows from Lemma 5. This completes the proof of Theorem 7.

Remark 1. (i) Taking p = 1 in (42) and (43), we have c1 = 0 and a1 = − L−M
2β c2. Thus

|a1| ≤ L−M
β .

(ii) Taking p = 2 in (42) and (43), we have

|a−1| ≤ 2
√

2(L−M)√
|β[(2+L+M)β−L+M]|

.

Putting β = 1 in Theorem 8 and Remark 1, we obtain

Corollary 5. If g(w) ∈ Mp(L, M) given by (1), then

|a1| ≤ L−M (p = 1);

|a−1| ≤
2(L−M)√

1 + M
(p = 2; M 6= −1);

∣∣∣a2−p − µa2
1−p

∣∣∣ ≤ p(L−M)

(p− 2)
max

{
1;

∣∣∣∣∣M +
p(p− 2)(L−M)

(p− 1)2 µ

∣∣∣∣∣
}

(p 6= 1, 2).

Putting L = 1− 2σ(0 ≤ σ < 1) and M = −1 in Theorem 8 and Remark 1, we obtain
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Corollary 6. If g(w) ∈ Mβ
p(σ) given by (1), then

|a1| ≤
2(1− σ)

β
(p = 1);

|a−1| ≤
4(1− σ)√

|β(β− 1)(1− σ)|
(p = 2; β 6= 1);

∣∣∣a2−p − µa2
1−p

∣∣∣ ≤ 2p(1− σ)

(p− 2)β
max

{
1;

∣∣∣∣∣1−
(

β− 1 +
2p(p− 2)

(p− 1)2

)
(1− σ)µ

β

∣∣∣∣∣
}

(p 6= 1, 2).

3. Conclusions

In our present investigation, we have defined some classesMβ
p(L, M) andMβ

p(σ) of
meromorphic multivalent functions by using the principle of subordination. Furthermore,
we have derived the subordination results, sandwich properties, inclusion relationship,
and Fekete–Szegö inequalities for the functions belonging to these classes.
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