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Abstract: Scientific support depot location and reasonable spare parts transportation are the keys
to improving the support level of complex systems. The current equipment support system has
the problems of chaotic warehouse layout and low efficiency of spare parts. The reliability and
completeness of spare parts’ historical data are hard to believe. In order to deal with the cognitive
uncertainty caused by the asymmetry of data, this paper adopts the uncertainty theory to optimize the
depot location and transportation volume. Under the constraints of shortage rate, supply availability,
average logistic delay time, and inventory limit, the uncertain chance-constrained model of equipment
supporting depot is established. The optimization model is transformed into a deterministic model
by using the inverse uncertainty distribution. The genetic algorithm is used to optimize the solution
of this model. Finally, the practicability and operability of the model method are verified through the
example analysis.

Keywords: equipment support system; location optimization; uncertainty theory; uncertain
chance-constrained programming

1. Introduction

The equipment supporting depot is an important part of the supporting system and is
responsible for supplying spare parts and other important tasks. The effect of spare parts
supply directly affects the use and maintenance condition of the equipment. Under the
current trend of emphasizing rapidity and high efficiency, it is of great significance to solve
the problems of selecting the location of the equipment supporting depot and the distribution
of spare parts transportation to improve the efficiency of the supporting system.

Early related studies focused on spare parts inventory strategies for multi-layer assurance
sites, which were forecasted in a system perspective. Liu et al. [1] established a three-level
assurance supply structure and spent another spare parts supply assurance strategy with the
expected number of shortages as a performance parameter. Guo et al. [2] gave a spare parts
demand simulation model by analyzing the multi-level multi-layer spare parts flow. Wang and
Kang [3] constructed a multi-level inventory optimization model with the objective of spare
parts security probability and predicted the multi-level inventory spare parts demand. Fan
et al. [4] established an equipment availability model with the help of simulation methods,
and optimized it through genetic algorithms. Cost is used as a constraint in its model to
maximize availability. Wang et al. [5] built a three-level inventory model for valuable spare parts
considering the effect of repair based on the analysis of the behavior of spare parts demand,
inventory, and replenishment. Sun et al. [6] extended the classical METRIC model and studied
the optimization of inventory strategy under different levels. Wang et al. [7] proposed a spare
parts supply strategy based on the spare parts pool network and established a location selection
model for the spare parts central warehouse. Dui et al. [8] gave a method of site importance
measure based on horizontal supply time. These studies emphasized that multi-level inventory
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is beneficial to cost saving, but ignored the management chaos brought by multi-level inventory.
It also brings some cost wastage due to the management delay of supply.

The location of the safeguarded site is the primary factor affecting transit time. Among
the studies related to the siting problem, the median, coverage, and center problems were first
proposed. The p-Median siting problem was proposed by Hakimi in 1964, who argued that
this type of problem is to optimize the location of p facilities to make the effect optimal [9].
In 1971 Toregas et al. [10] first proposed the ability to perform facility establishment with
minimum cost while covering all demand points. The p-center problem, also proposed by
Hakimi, is the problem of minimizing the worst-case scenario by optimizing the location of
P facilities [11]. The three types of classical site selection models described above treat the
problem as deterministic. However, the problems faced in reality are often uncertain, which
makes the classical models fail to meet the practical requirements. Therefore, some scholars
conducted some research based on considering uncertainty. Ballou [12] pointed out the
shortcomings of deterministic siting models and introduced dynamic planning methods in for
the siting problem. Subsequently, Drezner [13] investigated the dynamic p-median problem.
Weaver and Church [14] explored the stochastic p-median problem. Jamil et al. [15] studied
the stochastic p-center problem. Some scholars applied queuing theory to the siting problem
and developed some models [16]. Berman et al. [17] developed a relevant siting optimization
model considering queuing waiting pairs. Some other scholars used fuzzy mathematical
theory to solve the uncertainty in the siting problem. Canós et al. [18] studied the fuzzy
median problem and the fuzzy center problem. Peng et al. [19] proposed an emergency
resource center location-routing model based on the fuzzy demand.

In 2007, Liu created the uncertainty theory, which was soon applied to the study of various
problems, including the siting problem [20]. Wen et al. [21] studied and modeled the siting
problem in uncertain environments. He et al. [22] investigated the multi-level warehouse
layout problem with indeterminate factors. Yu et al. [23] established an optimization model
for the maximum coverage location of emergency facilities considering shared uncertainties.
Li et al. [24] established a two-stage continuous stochastic programming model for uncertain
customer demand. Recently so, many papers have been available to show the importance of
the work; Sinha and Shende [25] introduced a feature selection method for stock marketing
based on uncertainty optimization. Sinha et al. [26] proposed a novel approach to dealing with
incomplete information systems for more effective dataset analysis. In this paper, we also apply
the knowledge of uncertainty theory to solve the uncertainty in the problem to be studied.

In recent studies, researchers have started to focus on deeper factors such as reliability,
time satisfaction, etc. Snyder and Daskin [27] developed a facility reliability siting model
by considering the cost of site damage. Cui et al. [28] combined site damage probability
into the siting problem for site selection design. Murali et al. [29] conducted a siting study
after considering the possibility of mass destruction of the site. Ma et al. [30] defined a time
satisfaction function in the site selection supply. Zhou and Shen [31] developed a time-
satisfaction-based site selection model. Wen et al. [32] developed an optimization model of
depot location with the ILS factors as constraints. Li and Yi [33] proposed a multi-objective
location model based on reliability. However, the existing siting models have shortcomings,
such as insufficient adaptability in solving the siting problem of equipment supporting
depots. In equipment support and spare parts supply management, supportability indicator
requirements play a very important role. However, the previous site selection models
did not take these key supportability indicator parameters into consideration, making
the model unable to effectively adapt to the development of equipment support, and the
adaptability needs to be improved. It is easy to make the selection of the final site location and
the arrangement of the transportation volume unreasonable, which makes the management
efficiency of spare parts low and the level of guarantee not high. In the process of spare parts
assurance supply, there are many other assurance indicators besides meeting the availability
requirements. In this paper, optimization modeling is aimed at this kind of problem.

At the same time, due to the lack of historical data on spare parts demand for each
maintenance depot, there is uncertainty in demand forecasting. This results in the asym-
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metry of equipment data that needs to be transported from the equipment supporting
depot to each maintenance depot. Therefore, this paper will analyze the spare parts supply
and modeling process to establish a site selection model that considers uncertain supply
requirements and comprehensive assurance requirements.

The purpose of this paper is to establish an optimization model for location selection
and allocation in the context of an integrated support system, with the aim of reducing
transportation costs and improving equipment support levels. The structure of this paper
is organized as follows: Section 2 introduces some definitions and theorems of uncertainty
theory, which provide a mathematical foundation for the establishment of the model.
Meanwhile, we adopt uncertainty theory to deal with the asymmetry problem caused by
missing historical data. Section 3 describes the location problem to be addressed, illustrating
model assumptions and notation descriptions. In Section 4, a location optimization model
based on uncertain chance constraints is proposed considering supportability indicator
requirements. Section 5 will use the genetic algorithm to solve the model according to
the characteristics of the model and introduces the solution steps of the genetic algorithm.
Then, we will verify the utility of the model with a numerical example in Section 6. Finally,
in Section 7, the paper will discuss and draw conclusions.

2. Preliminaries

At present, the rapid development of equipment has resulted in a relatively fast
replacement of equipment, and it is often impossible to accumulate enough historical data.
Therefore, the forecast of spare parts demand for some new parts often relies on experts
to make assessments on the basis of previous spare parts data information. This leads to
assessments with cognitive uncertainty due to asymmetric information. In order to better
avoid the influence caused by asymmetric information, we use uncertainty theory to deal
with it.

This section mainly introduces some basic definitions and theorems of uncertainty
theory and provides theoretical support for the supporting depot selection optimization
model under uncertain demand.

The uncertain measure is a class of aggregate functions that satisfy the axioms of
uncertainty theory. It is used to express the degree of belief that an uncertain event may
occur [34]. Uncertain measureM on the σ-algebra L. M{Λ} is assigned to the event Λ to
indicate the belief degree with which we believe Λ will happen.

Definition 1. (Uncertain Variable) (Liu [20]) An uncertain variable is a function ξ from an
uncertainty space (Γ,L,M) to the set of real numbers such that {ξ ∈ B} it is an event for any
Borel set B of real numbers.

Definition 2. (Uncertainty distribution]) (Liu [20]) The uncertainty distribution ξ of an uncertain
variable is defined by

Φ(x) =M{ξ ≤ x}, (1)

for any real number x.

Definition 3. (Normal uncertainty distribution) (Liu [20]) An uncertain variable ξ is called normal
if it has a normal uncertainty distribution

Φ(x) =
(

1 + exp
(

π(e− x)√
3σ

))−1

, x ∈ <, (2)

denoted by N(e, σ) where e and σ are real numbers with σ > 0.

Definition 4. (Inverse uncertainty distribution) (Liu [34]) Let ξ be an uncertain variable with
regular uncertainty distribution Φ(x) . Then the inverse function Φ−1(α) is called the inverse
uncertainty distribution of ξ.
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Theorem 1. (Liu [34]) A function Φ−1 is an inverse uncertainty distribution of an uncertain
variable ξ is and only if

M
{

ξ < Φ−1(α)
}
= α, (3)

for all α ∈ [0, 1].

Theorem 2. (Sufficient and necessary condition) (Liu [35]) A function Φ−1(α) : (0, 1)→ < is
an inverse uncertainty distribution if and only if it is a continuous and strictly increasing function
with respect to α.

Theorem 3. (Liu [34]) Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular uncertainty
distributions Φ1, Φ2, · · · , Φn , respectively. If the function f (x1, x2, · · · , xn) is strictly increasing
with respect to x1, x2, · · · , xm and strictly decreasing with respect to xm+1, xm+2, · · · , xn , then the
uncertain variable

ξ = f (ξ1, ξ2, · · · , ξn), (4)

has an inverse uncertainty distribution

Ψ−1(α) = f
(

Φ−1
1 (α), · · · , Φ−1

m (α), Φ−1
m+1(1− α), · · ·Φ−1

n (1− α)
)

. (5)

3. Problem Description

The supporting depots provide the safeguard resources needed for the equipment sys-
tem in the use and maintenance activities and assist in the management to ensure that the
equipment system can be used normally. One of the most important resources is the spare
parts, which determines the use of security and maintenance security and other functions. In
the event of equipment system failure, the timeliness of spare parts supply seriously affects the
speed of equipment system restoration to normal status. This paper will address the problem
of how to select the optimal location of the supporting depots and allocate the optimal amount
of spare parts supply to ensure the timeliness of spare parts supply.

3.1. Model Assumption

In this paper, a model to solve the problem of equipment supporting depots is devel-
oped based on some assumptions given as follows:

(1) The demand of each maintenance site is an uncertain variable, and the demand
between maintenance sites is independent of each other.

(2) The transportation paths of the safeguard sites and the maintenance sites are con-
nected in a straight line, and the transportation costs are only related to the transportation
distance and the transportation volume.

(3) The importance level of each maintenance site is the same.
(4) There may be a supply relationship between any safeguard site and the maintenance site.
(5) The number of safeguard sites is given.

3.2. Notation Description

Notations that will be used are first introduced as follows:
I: the total number of equipment supporting depots;
J: the total number of maintenance depots;
i: index of equipment supporting depots, i = 1, 2, 3, . . . , I;
j: index of maintenance depots, j = 1, 2, 3, . . . , J;
C: transportation cost;
(xi, yi): the coordinates of equipment supporting depot i, i = 1, 2, 3, . . . , I;
(aj, bj): the coordinates of maintenance depot j, j = 1, 2, 3, . . . , J;
ξ j: uncertain spare parts demand of maintenance depot j, j = 1, 2, 3, . . . , J;
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zij: freight volume from equipment supporting depot i to maintenance depot j, i =
1, 2, 3, . . . , I, j = 1, 2, 3, . . . , J;

αj: confidence level of the demand met at maintenance depot j, j = 1, 2, 3, . . . , J;
Mj: number of equipment at maintenance depot j, j = 1, 2, 3, . . . , J;
N: number of units installed in single equipment;
Aj: the equipment supply availability at maintenance depot j, j = 1, 2, 3, . . . , J;
β j: confidence level of equipment supply availability requirement at maintenance

depot j, j = 1, 2, 3, . . . , J;
Vij: the velocity from supporting depot i to maintenance depot j; i = 1, 2, 3, . . . , I,

j = 1, 2, 3, . . . , J;
TSR: the average spare parts supply response time;
TLDj : the upper limit of the average logistic delay time requirement at maintenance

depot j, j = 1, 2, 3, . . . , J;
mi: the inventory cap of each supporting depot i, i = 1, 2, 3, . . . , I.

4. Uncertain Chance-Constrained Model of Equipment Supporting Depot

In the actual optimization problem process, the established chance-constrained pro-
gramming model often contains uncertain variables caused by data asymmetry. For the
situation that such constraints contain asymmetric data, we will use the uncertain chance-
constraint model to carry out conditional constraints.

4.1. Objective Function

In the actual supply process, factors affecting transportation costs generally include
transportation vehicles, fixed operating expenses, transportation distance, and transporta-
tion volume. Using different means of transportation, such as cars, ships, planes, etc., may
result in different transportation costs. Considering the general principles of modeling, this
paper does not consider the differences brought about by means of transportation. Fixed
operating expenses generally refer to the expenses brought about by operating facilities,
such as station maintenance, repairs, etc. The expenses are often relatively fixed and will
not affect the site selection decision, so they are not considered. The objective function is
the cost C generated by the transportation of spare parts between the supporting depot
and the maintenance depot, which is mainly related to the transportation distance and the
transportation volume z. The following expressions can be established.

C(x, y, z) =
I

∑
i=1

J

∑
j=1

zij

√
(xi − aj)

2 + (yi − bj)
2. (6)

4.2. Constraint Functions

Constraint 1. Shortage Rate Constraint.

Due to the complexity of the supply network, the maintenance depot j may accept
the supply of spare parts from any supporting depot. It will lead to a shortage when
the sum of the spare parts transportation volume zij of each supporting depot to the
maintenance depot j is less than the spare parts demand ξ j. The following expression
guarantees that the uncertain measure that the spare parts of the maintenance depot j can
meet the requirements is greater than or equal to αj, which is specifically expressed as:

M
{

ξ j ≤
I

∑
i=1

zij

}
≥ αj, j = 1, 2, . . . , J. (7)
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Constraint 2. Supply Availability Constraint.

Supply availability is a parameter index that directly reflects the guarantee effective-
ness in the spare parts supply chain. It refers to the expected value of the percentage of the
total number of equipment that is not shut down due to any spare parts shortage. Assume
that the number of equipment is Mj, each equipment is installed with N spare parts, and
the spare parts in the equipment system are in series with each other. According to the
definition of supply availability, using the idea of opportunity constraint, it is necessary to
ensure that the supply availability requirement Aj of maintenance site j can be met with a
confidence level greater than or equal to β j, specifically expressed as follows:

M


1−

ξ j −
I

∑
i=1

zij

Mj × N


N

≥ Aj

 ≥ β j, j = 1, 2, . . . , J. (8)

Constraint 3. Average Logistic Delay Time Constraint.

The guarantee delay time is the delay time caused by the resupply of spare parts due
to the shortage of spare parts. When the planned transportation volume is less than the
demand for spare parts at the maintenance depot due to the complexity of the equipment
task, there will be a support delay. This necessitates the supply of spare parts again from
the support site. Using the idea of opportunity constraint, the average guarantee delay
time generated during the supply of spare parts is required, which is expressed as

M


1−

ξ j −
I

∑
i=1

zij

Mj × N


N

≥ Aj

 ≥ β j, j = 1, 2, . . . , J. (9)

where TSR is the average spare parts supply response time, mainly related to the distance
and transport speed V between the safeguard site and the maintenance site. The expression
can be established as follows:

TSR =

√
(x− a)2 + (y− b)2

V
. (10)

Therefore, Equation (9) can be rewritten as:

(
1−M

{
ξ j ≤

I

∑
i=1

zij

})
I

∑
i=1

√
(xi − aj)

2 + (yi − bj)
2

I ×Vij
≤ TLD j, j = 1, 2, . . . , J. (11)

Constraint 4. Inventory Limit Constraint.

Safeguarding site i often has an inventory cap mi, which is specified as follows:

J

∑
j=1

zij ≤ mi, i = 1, 2, . . . , I. (12)
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Based on the above constraints, for the optimization of equipment supporting depot,
the model established in this paper is as follows:

Min
x,y,z

C(x, y, z) =
I

∑
i=1

J
∑

j=1
zij

√
(xi − aj)

2 + (yi − bj)
2,

s.t.

M
{

ξ j ≤
I

∑
i=1

zij

}
≥ αj, j = 1, 2, . . . , J

M


1−

ξ j−
I

∑
i=1

zij

Mj×N


N

≥ Aj

 ≥ β j, j = 1, 2, . . . , J

(
1−M

{
ξ j ≤

I
∑

i=1
zij

})
I

∑
i=1

√
(xi−aj)

2+(yi−bj)
2

I×Vij
≤ TLD j, j = 1, 2, . . . , J

J
∑

j=1
zij ≤ mi, i = 1, 2, . . . , I

zj ∈ N, j = 1, 2, . . . , J

(13)

The uncertain chance constraint conditions can be transformed into deterministic
problems to solve. Additionally, the deterministic model is as follows:

Min
x,y,z

C(x, y, z) =
I

∑
i=1

J
∑

j=1
zij

√
(xi − aj)

2 + (yi − bj)
2,

s.t.

Φ−1
j
(
αj
)
≤

I
∑

i=1
zij, j = 1, 2, . . . , J1−

Φ−1
j (β j)−

I
∑

i=1
zij

Mj×N


N

≥ Aj, j = 1, 2, . . . , J

(
1−Φj

(
I

∑
i=1

zij

))
I

∑
i=1

√
(xi−aj)

2+(yi−bj)
2

I×Vij
≤ TLD j, j = 1, 2, . . . , J

J
∑

j=1
zij ≤ mi, i = 1, 2, . . . , I

zj ∈ N.j = 1, 2, . . . , J.

(14)

5. Solution Algorithm

In this section, we will use the genetic algorithm to find the solution that satisfies the
constraints and achieves the numerical minimum in the objective function.

A genetic algorithm is a method to search for optimal solutions by simulating the
evolution of natural selection and the genetic mechanism of Darwinian biological evolution.
This heuristic algorithm is commonly used to generate solutions to optimize and search
for problems. The genetic algorithm simulates the behavior of reproductive crossover and
genetic mutation in the process of natural selection and heredity, keeps a set of candidate
solutions in each iteration and selects the better individuals from the mass of candidate
solutions according to some index, and then uses genetic operators to combine these
individuals to produce a new generation of solution population, by repeating this process
until some requirement is satisfied.

The algorithm is implemented in the following steps:
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Step 1: Randomly generate initial chromosomes to form an evolutionary population
as the initial solution;

Step 2: Perform chromosome screening to delete individuals in the population that do
not satisfy the constraints of Equation (14);

Step 3: Use the evaluation function to evaluate the fitness of each chromosome. We
define the fitness function as the objective function and update the record of the individual
with the highest fitness;

Step 4: Genetic manipulation (reproduction, crossover, mutation) to form the next
generation population;

Step 5: Determine if the maximum number of generations is reached. If not, return to
the second step;

Step 6: Finally, retain the individual with the highest fitness as the optimal solution.

6. A Numerical Example

In this section, we use a spare parts supply assurance system to verify the practicality
and operability of the above model approach.

The supply guarantee system in the example consists of 10 maintenance depots and
4 equipment supporting depots. The distribution of each maintenance depot is shown in the
table below. Due to the complexity of the supply network, the maintenance site can accept
the supply of spare parts from any support site. Now it is necessary to optimize the site
selection of the four supporting depots and optimize the transportation volume allocation
from the supporting depot to each maintenance depot so as to minimize the transportation cost.
The demand for spare parts at each maintenance depot is set to obey a normal distribution.
The upper limit of the inventory of the equipment supporting depot is set to 100, where the
guarantee index requirements such as shortage rate, average guarantee delay time, uncertainty
measure, supply availability, and related parameters are shown in Table 1.

Table 1. Relevant parameters of maintenance depots.

Parameters 1 2 3 4 5

(a,b) (5,10) (10,90) (70,20) (40,40) (50,70)
N (e, σ) (20,5) (40,6) (20,5) (30,6) (20,5)

M 5 10 5 8 5
N 2 2 2 2 2
A 0.8 0.8 0.8 0.8 0.8

TLD 10 10 10 10 10
α 0.8 0.8 0.8 0.8 0.8
β 0.7 0.7 0.7 0.7 0.7
V 60 60 60 60 60

Parameters 6 7 8 9 10

(a,b) (70,70) (90,20) (80,60) (50,5) (60,100)
N (e, σ) (40,6) (20,5) (30,6) (40,6) (30,6)

M 10 5 8 10 8
N 2 2 2 2 2
A 0.8 0.8 0.8 0.8 0.8

TLD 10 10 10 10 10
α 0.8 0.8 0.8 0.8 0.8
β 0.7 0.7 0.7 0.7 0.7
V 60 60 60 60 60

Bring the above parameters into the optimization model, and use the genetic algorithm
to solve the result. Among them, the genetic population is set to 50, the crossover probability
and the mutation probability is set to constraint dependent. Table 2 shows the results of the
models after 800 generations of evolution:
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Table 2. Optimal supply plan: spare parts supply of each depot.

Parameters 1 2 3 4

(x,y) (28,76) (67,68) (36,35) (71,29)
zi1 2 0 22 0
zi2 37 0 8 0
zi3 0 0 2 22
zi4 5 0 25 5
zi5 19 3 3 0
zi6 10 35 0 0
zi7 0 0 4 20
zi8 0 22 3 10
zi9 0 0 17 28
zi10 10 25 0 0

Table 2 shows the optimal site selection results and spare parts supply results of the
equipment supporting depots. The supply volume planning of each support depot to the
maintenance depots is shown in Figure 1. Under this freight volume and route planning,
the optimized transportation cost is 7978.4.
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Figure 1. Optimal supply plan: Supply volume planning of each support depot.

7. Discussion and Conclusions

The effect of spare parts supply directly affects the use safety and maintenance status
of equipment. In the current location selection research, the previous models did not fully
consider the supportability indicator requirements in the process of spare parts guarantee
supply. The adaptability of the previous model is poor in the location selection of supporting
depots, and the adaptability needs to be further improved. Simultaneously, we recognize
that there is a great deal of uncertainty in spare part requirements at maintenance depots.
Therefore, we use uncertainty theory to reasonably quantify the need for maintenance depots.
In this study, the uncertain spare parts demand prediction is combined with the site selection
problem of support depots. An optimization model for site selection of support depots is
established for coordinating large support supply areas. First, we make the assumption that
the demand for spare parts at each repair site is an uncertain variable. Then, we analyze the
constraints of the supply network. We choose shipping costs as the objective function for this
model. The model is solved using a genetic algorithm. Finally, the validity and operability of
the model method are verified by a numerical example.

When the support supply area is large, and there are many maintenance stations, it is
necessary for several support stations to cooperate to jointly complete the task of supplying
spare parts to the maintenance stations in the support area. In the early stages of operation,
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it often happens that historical reference data for spare parts requirements is insufficient.
In this case, the existing spare parts demand forecasting models have a high probability
of cognitive uncertainty. This paper presents a more reasonable site selection method that
takes into account the uncertainty of spare parts demand for maintenance sites. In addition,
the method takes into account the requirements of various guarantee indicators. To some
extent, it provides a method to improve the efficiency of spare parts management, shorten
the supply time of spare parts, and improve the guarantee level of equipment.

However, our work also has certain limitations, and there is still room for improvement.
In the research process, we ignored some practical constraints. In the model construction
process, only the influence of transportation distance and transportation volume of a single
type of spare parts on transportation cost is considered. In fact, different kinds of spare parts
transportation and inventory strategies exist in the operation of spare parts supply systems.
In addition, the choice of transportation route will also affect the transportation cost.

As mentioned earlier, this paper provides a method of site selection based on uncertain-
ties and supportability indicator requirements. Future research can be based on different
inventory strategies and different transportation routes to optimize the location selection of
the equipment supporting depots for the transportation of various spare parts.

Author Contributions: Conceptualization, M.W.; methodology, M.W. and H.L.; software, H.L.;
validation, S.L. and Y.Y.; investigation, L.G.; resources, W.X.; writing—original draft preparation,
H.L.; writing—review and editing, M.W. and S.L.; visualization, H.L.; supervision, L.G.; project
administration, M.W.; funding acquisition, M.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the Stable Supporting Project of Science & Technology on
Reliability & Environmental Engineering Laboratory (WDZC20220102) and the National Natural
Science Foundation of China (Nos. 71671009, 62073009).

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: This work was supported by the Stable Supporting Project of Science & Tech-
nology on Reliability & Environmental Engineering Laboratory (WDZC20220102) and the National
Natural Science Foundation of China (Nos. 71671009, 62073009).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, X.C.; Wang, L.; Xu, Y.P.; Wang, W.P. Research on ABMS based wartime spares support adaptation decision. Syst. Eng. Electron.

2010, 32, 2595–2598.
2. Guo, L.H.; Wang, K.; Wang, Y.; Kang, R. Multi-indenture multi-echelon spare part supply chain requirement modeling and

simulation. Comput. Integr. Manuf. Syst. 2010, 16, 2038–2043.
3. Wang, N.C.; Kang, R. Optimization of Multi-echelon Repairable Item Inventory Systems with Fill Rate as Objective. Acta Aeronaut.

Et Astronaut. Sin. 2009, 30, 1043–1047.
4. Fan, H.; Jia, X.S.; Jia, Y.X.; Wang, Y.B. Modeling and simulation of two levels spare parts optimization based on GA. Aerosp.

Electron. Inf. Eng. Control 2006, 28, 150–152.
5. Wang, Z.Y.; Song, J.S.; He, Z.D.; Cao, J.P. Optimal Model on Multi-Echelon Inventory System of Spare Parts. J. Syst. Simul. 2007,

19, 1003–1006.
6. Sun, J.S.; Li, S.J.; Lv, Y.M.; Zhao, F.G. Simulation and Research on the Three-Echelon Storage Model of the Valuable Spare Parts in

Weapon Equipment. Acta Armamentarii 2008, 29, 854–858.
7. Wang, R.; Qin, Y.; Sun, H. Research on Location Selection Strategy for Airlines Spare Parts Central Warehouse Based on METRIC.

Comput. Intell. Neurosci. 2021, 2021, 1–16. [CrossRef]
8. Dui, H.; Yang, X.; Liu, M. Importance measure-based maintenance analysis and spare parts storage configuration in two-echelon

maintenance and supply support system. Int. J. Prod. Res. 2022, 60, 1–18. [CrossRef]
9. Hakimi, S.L. Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 1964, 12,

450–459. [CrossRef]
10. Toregas, C.; Swain, R.; ReVelle, C.; Bergman, L. The location of emergency service facilities. Oper. Res. 1971, 19, 1363–1373.

[CrossRef]
11. Melo, M.T.; Nickel, S.; Saldanha-Da-Gama, F. Facility location and supply chain management–A review. Eur. J. Oper. Res. 2009,

196, 401–412. [CrossRef]

http://doi.org/10.1155/2021/4737700
http://doi.org/10.1080/00207543.2022.2142312
http://doi.org/10.1287/opre.12.3.450
http://doi.org/10.1287/opre.19.6.1363
http://doi.org/10.1016/j.ejor.2008.05.007


Symmetry 2023, 15, 338 11 of 11

12. Ballou, R.H. Dynamic warehouse location analysis. J. Mark. Res. 1968, 5, 271–276. [CrossRef]
13. Drezner, Z. Dynamic facility location: The progressive p-median problem. Locat. Sci. 1995, 3, 1–7. [CrossRef]
14. Weaver, J.R.; Church, R.L. Computational procedures for location problems on stochastic networks. Transp. Sci. 1983, 17, 168–180.

[CrossRef]
15. Jamil, M.; Baveja, A.; Batta, R. The stochastic queue center problem. Comput. Oper. Res. 1999, 26, 1423–1436. [CrossRef]
16. Berman, O.; Larson, R.C.; Chiu, S.S. Optimal server location on a network operating as an M/G/1 queue. Oper. Res. 1985, 33,

746–771. [CrossRef]
17. Berman, O.; Larson, R.C.; Parkan, C. The stochastic queue p-median problem. Transp. Sci. 1987, 21, 207–216. [CrossRef]
18. Canós, M.J.; Ivorra, C.; Liern, V. An exact algorithm for the fuzzy p-median problem. Eur. J. Oper. Res. 1999, 116, 80–86. [CrossRef]
19. Peng, D.J.; Ye, C.M.; Wan, M.R. Research on algorithm for emergency resource center location-routing problem based on fuzzy

demand. Appl. Res. Comput. 2022, 39, 3631–3638.
20. Liu, B.D. Uncertainty Theory; Springer: Berlin/Heidelberg, Germany, 2022; pp. 205–234.
21. Wen, M.L.; Qin, Z.; Kang, R. The α-cost minimization model for capacitated facility location-allocation problem with uncertain

demands. Fuzzy Optim. Decis. Mak. 2014, 13, 345–356. [CrossRef]
22. He, R.H.; Zhang, B.; Chen, M.; Li, H. The multi-level warehouse layout problem with uncertain information: Uncertainty theory

method. Int. J. Gen. Syst. 2020, 49, 497–520. [CrossRef]
23. Yu, D.M.; Gao, L.F.; Zhao, S.J. A Maximum Covering Location Model for Emergency Facility Considering Shared Uncertainties.

Oper. Res. Manag. Sci. 2020, 29, 43–50.
24. Li, Z.P.; Yi, M.C. Research on the Location-Distribution Problem of Distribution Centers Based on “Self-operating + Outsourcing”

Mode Under Uncertain Demands. Chin. J. Manag. Sci. 2022, 30, 143–154.
25. Sinha, A.K.; Shende, P. Uncertainty Optimization Based Feature Selection Model for Stock Marketing. Comput. Econ. 2022, 60,

1–33. [CrossRef]
26. Sinha, A.K.; Shende, P.; Namdev, N. Uncertainty optimization based feature subset selection model using rough set and

uncertainty theory. Int. J. Inf. Technol. 2022, 14, 2723–2739. [CrossRef]
27. Snyder, L.V.; Daskin, M.S. Reliability models for facility location: The expected failure cost case. Transp. Sci. 2005, 39, 400–416.

[CrossRef]
28. Cui, T.; Ouyang, Y.; Shen, Z.J.M. Reliable facility location design under the risk of disruptions. Oper. Res. 2015, 58, 998–1011.

[CrossRef]
29. Murali, P.; Ordóñez, F.; Dessouky, M.M. Facility location under demand uncertainty: Response to a large-scale bio-terror attack.

Socio-Econ. Plan. Sci. 2012, 46, 78–87. [CrossRef]
30. Ma, Y.F.; Zhang, M.; Yang, J. Definition and Application of Time Satisfaction Function in Logistics Facility Location. Logist. Technol.

2015, 9, 26–29.
31. Zhou, G.G.; Shen, Y.F. Research on logistics siting problem in logistic distribution center based on time satisfaction. J. Zhejiang

Univ. Technol. 2008, 36, 355–358.
32. Wen, M.L.; Lu, B.H.; Li, S.Y.; Kang, R. Location and allocation problem for spare parts depots on integrated logistics support. J. Syst.

Eng. Electron. 2019, 30, 1252–1259. [CrossRef]
33. Li, W.; Dong, X.Q.; Zhu, Q.; He, Z. Multi-objective Location Model of Spare Parts Support Center Based on Reliability. J. Nanjing

Univ. Aeronaut. Astronaut. 2019, 51, 835–840.
34. Liu, B.D. A Branch of Mathematics for Modeling Human Uncertainty. In Uncertainty Theory; Springer: Berlin/Heidelberg,

Germany, 2010; pp. 1–74.
35. Liu, B.D. Toward uncertain finance theory. J. Uncertain. Anal. Appl. 2013, 1, 1. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1177/002224376800500304
http://doi.org/10.1016/0966-8349(95)00003-Z
http://doi.org/10.1287/trsc.17.2.168
http://doi.org/10.1016/S0305-0548(99)00050-7
http://doi.org/10.1287/opre.33.4.746
http://doi.org/10.1287/trsc.21.3.207
http://doi.org/10.1016/S0377-2217(98)00330-0
http://doi.org/10.1007/s10700-014-9179-z
http://doi.org/10.1080/03081079.2020.1778681
http://doi.org/10.1007/s10614-022-10344-5
http://doi.org/10.1007/s41870-022-00994-x
http://doi.org/10.1287/trsc.1040.0107
http://doi.org/10.1287/opre.1090.0801
http://doi.org/10.1016/j.seps.2011.09.001
http://doi.org/10.21629/JSEE.2019.06.19
http://doi.org/10.1186/2195-5468-1-1

	Introduction 
	Preliminaries 
	Problem Description 
	Model Assumption 
	Notation Description 

	Uncertain Chance-Constrained Model of Equipment Supporting Depot 
	Objective Function 
	Constraint Functions 

	Solution Algorithm 
	A Numerical Example 
	Discussion and Conclusions 
	References

