
Citation: Yang, Q.; Gao, Y.; Song, Y. A

Tent Lévy Flying Sparrow Search

Algorithm for Wrapper-Based

Feature Selection: A COVID-19 Case

Study. Symmetry 2023, 15, 316.

https://doi.org/10.3390/

sym15020316

Academic Editors: Wenyin Gong and

Libao Deng

Received: 28 December 2022

Revised: 17 January 2023

Accepted: 18 January 2023

Published: 22 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Tent Lévy Flying Sparrow Search Algorithm for
Wrapper-Based Feature Selection: A COVID-19 Case Study
Qinwen Yang 1 , Yuelin Gao 2,* and Yanjie Song 3

1 School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
2 Ningxia Key Laboratory of Intelligent Information and Big Data Processing, Yinchuan 750021, China
3 College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
* Correspondence: gaoyuelin@263.net

Abstract: The “Curse of Dimensionality” induced by the rapid development of information science
might have a negative impact when dealing with big datasets, and it also makes the problems of
symmetry and asymmetry increasingly prominent. Feature selection (FS) can eliminate irrelevant
information in big data and improve accuracy. As a recently proposed algorithm, the Sparrow Search
Algorithm (SSA) shows its advantages in the FS tasks because of its superior performance. However,
SSA is more subject to the population’s poor diversity and falls into a local optimum. Regarding this
issue, we propose a variant of the SSA called the Tent Lévy Flying Sparrow Search Algorithm (TFSSA)
to select the best subset of features in the wrapper-based method for classification purposes. After the
performance results are evaluated on the CEC2020 test suite, TFSSA is used to select the best feature
combination to maximize classification accuracy and simultaneously minimize the number of selected
features. To evaluate the proposed TFSSA, we have conducted experiments on twenty-one datasets
from the UCI repository to compare with nine algorithms in the literature. Nine metrics are used
to evaluate and compare these algorithms’ performance properly. Furthermore, the method is also
used on the coronavirus disease (COVID-19) dataset, and its classification accuracy and the average
number of feature selections are 93.47% and 2.1, respectively, reaching the best. The experimental
results and comparison in all datasets demonstrate the effectiveness of our new algorithm, TFSSA,
compared with other wrapper-based algorithms.

Keywords: sparrow search algorithm; feature selection; COVID-19

1. Introduction

An iterative series of task sequences, data selection and pretreatment, mining algo-
rithm selection, data mining, pattern evaluation, and knowledge presentation make up
knowledge discovery in databases (KDD) [1–3]. The main objective of data preprocessing,
as the initial stage in KDD, is to prepare datasets for use by data mining algorithms [4].
However, as information science progresses, the dimensionality of datasets increases
dramatically, affecting the performance of clustering and classification approaches [5–7].
High-dimensional datasets also have data redundancy, performance deterioration, and a
more extended period to build models [8–10]. These limitations have given rise to more
difficulties in data analysis. Feature selection (FS) is frequently used as a preprocessing ap-
proach in the data mining process to determine the best subset of features from all available
feature sets [11–13]. It eliminates irrelevant and redundant features, simplifies clustering
and classification, enhances accuracy, and the problem of symmetry and asymmetry is also
solved to a certain extent [14–16].

While some feature selection methods can solve the problem exactly for linear models
only with promising results, exact methods can only handle hundreds or thousands of
features at best. Another shortcoming of most feature selection methods is that they
arbitrarily seek to identify only one solution to the problem. However, in practice, there

Symmetry 2023, 15, 316. https://doi.org/10.3390/sym15020316 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15020316
https://doi.org/10.3390/sym15020316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-6762-1528
https://orcid.org/0000-0003-2021-2097
https://orcid.org/0000-0002-4313-8312
https://doi.org/10.3390/sym15020316
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15020316?type=check_update&version=2

Symmetry 2023, 15, 316 2 of 39

are often multiple predictive or even information-equivalent solutions. Especially in fields
where there is inherent redundancy in the underlying problem, as in molecular biology,
there are often multiple solutions [17,18].

There are many ways to solve the FS problem, which can generally be divided into
the following three categories: filters, wrappers, and embedded methods [19,20]. For the
filtering method, the features in a given feature set are first sorted according to a series
of criteria. Then the features with a higher ranking are formed into feature subsets [21].
Although the obtained feature subset is not necessarily the optimal subset, its calculation
efficiency is very high, so this method is often used for high-dimensional FS problems.
Representative filtering methods include minimum redundant F-score criteria [22], maxi-
mum correlation (mRMR) [23], Gini index [24], and correlation coefficient [25]. Wrapper
approaches often use a predetermined learning process that is evaluated using a subset of
features [26]. In most circumstances, wrapper methods outperform filter approaches that
are not dependent on any learning mechanism. The embedded methods are embedded
in the learning algorithm, and a subset of features can be obtained when the training
process of the classification algorithm is completed [27]. The embedded method can solve
the problem of excessive redundancy in the results of the filter methods based on feature
sorting. It can also solve the problem of excessive time complexity of the wrapper methods,
which is a compromise between the filter and wrapper [28–30].

Various methods for discovering optimal feature subsets have arisen in the wake of
the wrapper-based method, including heuristic search, complete search, greedy search,
and random search, to mention a few [31–34]. However, most of these methods suffer
from local optima and expensive computational costs due to the use of greedy search
methods [35,36]. Over the past three decades, Evolutionary Algorithms (EA) have been very
reliable in solving various optimization problems, such as image processing [37], intrusion
detection [38], path planning [39], particle filtering [40], production scheduling [22], support
vector machines [41], home healthcare [42], wireless sensors [43], and neural network
models [44].

Due to its capabilities in seeking competitive solutions employing tactics that perform well
in exploration, EA has recently gained much attention in tackling FS challenges [45–47]. These
approaches include Genetic Algorithm (GA) [48], Particle Swarm Optimization (PSO) [49],
and White Shark Optimizer (WSO) [50]. A comprehensive review of nature-inspired FS
techniques can be found in [22], and a detailed analysis of EA to FS can be found in [51].
Here are some examples.

Based on GA, the K-Nearest-Neighbors (K-NN) approach for diagnosing patient
diseases was proposed in [52]. It used a hybrid genetic algorithm to perform efficient
feature selection. The K-NN algorithm is utilized to diagnose lung cancer after an ex-
perimental technique was employed to determine the ideal value of K. In [53], by min-
imizing the numerous objectives of the FS, a non-dominated sorting genetic algorithm
(NSGA) is employed to solve the multi-objective optimization problem (MOP). Recently,
Xue et al. [54] proposed a multi-objective binary genetic algorithm called MOBGA-AOS
with five crossover operators.

Based on PSO, Song et al. [55] proposes a K-NN and mutual information-based
bare-bones PSO (BBPSO) feature selection algorithm. The adaptive flip mutation operator
intends to assist particles in breaking out from the optimal local solution. In [56], a high-
dimensional FS problem is solved using a multi-stage hybrid FS algorithm (HFS-C-P)
based on PSO. Recently, Li et al. [57] proposed an improved Sticky Binary PSO (ISBPSO)
algorithm for FS.

Grey Wolf Optimizer (GWO) and Sparrow Search Algorithm (SSA) are other EAs that
also investigate solving the FS problem. Jangir et al. [58] proposed that non-dominated
sorting GWO (NSGWO) is used to perform FS to improve the categorization of cervical
lesions by reducing the number of textural features while increasing the classification
accuracy. Recently, Sathiyabhama et al. [59] proposed an FS framework based on GWO and
a rough set method called GWORS for finding salient features from extracted mammograms.

Symmetry 2023, 15, 316 3 of 39

Based on SSA, Chen et al. [60] proposed a spark-based improved SSA (SPISSA) used to
search feature subsets on intrusion detection datasets.

In addition, applying FS technology based on EA in detecting COVID-19 patients is
also becoming more extensive. da Silva et al. [61] combined single models such as Stereo
Regression, Quantile Random Forest, K-NN, Bayesian Regression Neural Network, and
Support Vector Regression with Variational Mode Decomposition (VMD) to create a hybrid
model to forecast COVID-19 cases in Brazil. The VMD-based model proved to be one of the
most effective strategies for forecasting COVID-19 cases five days in advance. Dey et al. [62]
presented a hybrid model. To begin, they extracted several characteristics from the COVID-
19-affected lungs. The Manta-Ray Foraging-based Golden Ratio Optimizer (MRFGRO), a
hybrid meta-heuristic FS technique, is then presented to pick the most critical subset of
characteristics. Although the findings show that the proposed strategy is quite effective, the
model was only tested on the CT scan dataset. Shaban et al. [63] proposes Distance-Biased
Naive Bayes (DBNB), a new approach for detecting COVID-19-infected patients. DBNB
picks the most informative characteristics for identifying COVID-19 patients through a
novel FS technique called Advanced PSO (APSO). APSO is a hybrid strategy that uses filter
and wrapper approaches to offer accurate but crucial classification features.

In conclusion, many FS approaches employ EA to avoid increasing computing com-
plexity in the high-dimensional dataset. These algorithms use primitive mechanisms and
operations to solve an optimization problem and iteratively search for the optimal solution.
Nonetheless, the No Free Lunch (NFL) [64] theorem states that existing procedures can
constantly be improved. Moreover, there is currently insufficient research in the literature
to solve the FS problem using the SSA, motivating us to suggest a variant of SSA for FS in
Section 3.

The SSA is a new and well-organized EA that can be used in different areas for solving
optimization problems, such as brain tumor detection [65], parameter identification [66],
configuration network [67], and fault diagnosis of wind turbines [68]. However, SSA still
has the problem of being easy to fall into the local optimum, and so far, the application of
the SSA for FS is very scarce [69]. Motivated by the above analysis, we propose a Tent Lévy
Flying Sparrow Search Algorithm (TFSSA) in this paper to increase the capability of SSA in
confronting FS challenges, where the main contributions are summarized below.

• A TFSSA is proposed for feature selection problems, and it is utilized to solve a
COVID-19 case study.

• An improved Tent chaos strategy, Lévy flights (LFs) mechanism, and Self-adaptive
hyper-parameters are integrated into TFSSA to improve SSA’s exploratory behavior
and perform well in the CEC2020 benchmark function.

• A comprehensive comparison of TFSSA and nine different algorithms for feature
selection problems is undertaken in nine aspects.

• The proposed TFSSA’s improved searching capabilities are tested on 21 well-known
feature selection datasets with excellent results.

The remainder of this paper is organized as follows: Section 2 presents the background
of the SSA. The proposed TFSSA is described in Section 3. Section 4 presents the proposed
TFSSA algorithms for FS, while the experimental results with discussions are reported in
Section 5. Section 6 demonstrates the adoption of the proposed TFSSA in a COVID-19
application. Finally, we conclude this paper in Section 7.

2. SSA
2.1. Background of SSA

The literary representation of various animal, insect, and bacterial populations in
nature provides a fascinating field of study for diverse scientific researchers. By simulating
the foraging and reproduction behaviors of animal, insect, or bacterial communities, re-
searchers draw inspiration from it to various abstract swarm intelligence and evolutionary
behaviors into quantifiable vital indicators, which, in turn, form mathematical models that
can be used to address various realities questions. The introduction of many meta-heuristic

Symmetry 2023, 15, 316 4 of 39

algorithms has greatly enriched optimization techniques and provided new tools for explor-
ing the concepts and mechanisms of the biological world from another perspective. Based
on the above, In 2020, Xue Jiankai proposed the SSA to enhance optimization technology
and decode the complexity involved in the process [70].

2.2. Advantages of SSA from Other EA

SSA differs from other EA with several advantages. First, SSA does not update
rules according to simulated social creatures’ step size but sets up rules according to its
algorithm mechanism. It can handle various optimization issues with only four proprietary
parameters to change. Second, SSA’s mathematical model makes it suited for resolving a
range of engineering optimization issues, particularly those that involve high dimensions.
Third, SSA’s resilience and simplicity allow it to identify global solutions to complicated
optimization problems with high convergence rates. Fourth, SSA has gradually become
a strong competitor with a broad interest in developing low-cost and robust solutions to
actual optimization issues.

2.3. Rule Design

The classical SSA is primarily motivated by a sparrow population’s foraging behavior.
It is a search algorithm with high optimization and efficiency capabilities [70–73]. For
simplicity, the biology of sparrow populations during foraging is idealized and normalized
as the following behaviors.

(1) Producers (leaders) have access to plentiful food sources and are responsible for
ensuring that all scroungers (followers) have access to foraging sites.

(2) Some sparrows will be chosen as patrollers (guards). When patrollers come across
a predator, they will sound an alarm. When the safety threshold is exceeded, the
producer must direct the scroungers (followers) to other safe regions.

(3) Sparrows that can discover a better food source earn more energy and are promoted
to producers (leaders). At the same time, hungry scroungers (followers) are more
likely to fly elsewhere to forage to gain more energy, and the producer-to-forager ratio
remains steady.

(4) Scroungers (followers) hunt for food after the finest producers (leaders). Simultane-
ously, certain predators may observe producers (leaders) and steal food.

(5) When threatened, sparrows near the flock’s edge moved swiftly to a safe region, while
sparrows in the center of the flock moved randomly to approach other sparrows in
the safe area.

2.4. Algorithm Design

The algorithm design of SSA is summarized in the following main steps.
Step 1: Parameter initialization, which includes the number of sparrows (N), the

number of producers (PN), the number of patrollers (N − PN), the number of guards
(GN), GN is a subset of N, the safety threshold (ST), the warning value (R2), and the
maximum iterations (T_max). The following matrix can be used to depict the initial
position of sparrows:

X =



x11 x12 x13 . . . x1j . . . x1D
x21 x22 x23 . . . x2j . . . x2D
x31 x32 x33 . . . x3j . . . x3D

...
...

...
. . .

...
. . .

...
xi1 xi2 xi3 . . . xij . . . xiD
...

...
...

. . .
...

. . .
...

xN1 xN2 xN3 . . . xNj . . . xND


, (1)

Symmetry 2023, 15, 316 5 of 39

where X is the initial location of the sparrow population, N is the number of sparrow
populations, D is the variable dimension of the problem to be optimized, i = 1, 2, . . . , N,
and j = 1, 2, . . . , D. The fitness value (FX) of the sparrow population is represented by
vectors as follows:

FX =



f ([x11 x12 x13 . . . x1j . . . x1D])
f ([x21 x22 x23 . . . x2j . . . x2D])
f ([x31 x32 x33 . . . x3j . . . x3D])

...
...

...
. . .

...
. . .

...
f ([xi1 xi2 xi3 . . . xij . . . xiD])

...
...

...
. . .

...
. . .

...
f ([xN1 xN2 xN3 . . . xNj . . . xND])


, (2)

where the value of f represents the fitness value of the sparrow individual, i = 1, 2, . . . , N
and j = 1, 2, . . . , D.

Step 2: According to the design of (1) and (2) in Section 2.3, the producer usually has
a better fitness value, and it has a higher priority to capture food than other individuals in
the search process. Producers are responsible for finding food for the entire population and
providing foraging directions for others. As a result, producers have access to a broader
search space than scavengers. The producer position of the sparrow population is updated
in each iteration as follows:

Xt+1
i =

{
Xt

i · exp(− i
λ·T_max), if R2 < ST

Xt
i + L ·Q, if R2 ≥ ST

, (3)

where i = 1, 2, . . . , PN; T_max is the maximum number of iterations; t indicates the current
iteration; Xt

i represents the value of the ith sparrow at iteration t; ST ∈ [0.5, 1] represents
the safety threshold, and R2 ∈ [0, 1] represents the warning value; λ ∈ (0, 1] is a random
number; L shows a vector of 1 · D; Q is a random number; Q ∼ N(0, 1). When R2 < ST,
it means that there are no predators around, and it is safe. The producer turns on the
wide-area search mode, and the entire population is in a safe foraging state. R2 ≥ ST,
which means the patrollers find the danger and raise the alarm to warn the companions that
there are predators around, and all the sparrows fly to other safe areas to avoid the danger.

Step 3: According to rules (3) and (4) in Section 2.3, some followers keep a closer eye
on leaders (producers). When the followers spot the producers who have located the food,
they will promptly leave their current place to collect the food. The scrounger’s position
update formula is as follows:

Xt+1
i =

Q · exp
(

Xworst −Xt
i

i2

)
, if i > N/2

Xt+1
P +

∣∣∣Xi − Xt+1
P

∣∣∣ · L · (AT)2 · A, otherwise
, (4)

where i = PN + 1, PN + 2, . . . , N, A represents a vector of 1 · D, where each element is
randomly assigned ±1. Xworst represents the current global worst position. XP is the
current optimal position of the producer. When i > N/2, the ith scavenger with a lower
fitness value did not get food and was in a state of starvation and had to fly to other places
to find food at this time.

Step 4: We hypothesized that the patrollers made up 10–20% of the population in
our simulations, where GN is the number of guards (patrollers). These sparrows’ initial
placements are generated at random. The mathematical model is expressed as follows
according to rule (5) in Section 2.3:

Symmetry 2023, 15, 316 6 of 39

Xt+1
i =

Xt
best + β ·

∣∣Xt
i − Xt

best

∣∣, if fi > fg

Xt
i + K ·

(
|Xt

i−Xt
worst

(fi− fw)+ε

)
, if fi = fg

, (5)

where Xbest represents the current global optimal position; β is a random number that
obeys the standard Gaussian distribution; ε is the smallest constant to avoid division by
zero errors; K ∈ [−1, 1] is a random number; the current fitness value of the sparrow is
fi; and fg and fw represent the current global best fitness value and worst fitness value,
respectively.

For simplicity, fi > fg represents the sparrow at the edge of the group. Xbest represents
the center of the population location around which it is safe. fi = fg indicates that sparrows
in the middle of the population need to approach other sparrows because they know the
danger. K is the step size control coefficient, which indicates the direction in which the
sparrow moves.

Step 5: Calculate, compare, and update the current position of the sparrow population,
and sort and update the fitness values.

Step 6: Repeat Steps 2 through 5 until the maximum number of iterations (T_max) has
been reached, at which point the best position (Xbest) and best solution (fbest) will be output.

Algorithm 1 demonstrates the algorithmic structure of the classic SSA.

Algorithm 1 SSA
Input:

The number of sparrows(N)
The number of producers(PN)
The number of guards(GN)
The warning value(R2)
The maximum iterations(T_max)

Output:
The best position(Xbest)
The best solution(fg)

1: t← 0;
2: while (t < T_max) do
3: Calculate and update the FX , fg, fw and R2;
4: for each leaders i ∈ [1, PN] do
5: The location of leaders(producers) is updated using Equation (3);
6: end for
7: for each followers i ∈ [PN + 1, N] do
8: The location of followers(scroungers) is updated using Equation (4);
9: end for

10: for each patrollers i ∈ [1, GN] do
11: The location of patrollers is updated using Equation (5);
12: end for
13: Find the current new location Xt+1

i ; // If the new location is better than before, update it.
14: Rank the FX ;
15: t← t + 1;
16: end while
17: return Xbest, fg.

3. The Proposed Algorithm

This section delineates the TFSSA. As mentioned in Section 2, although the SSA has
the advantages of faster convergence and more vital optimization-seeking abilities, the
original SSA, like other traditional EAs, is more subject to the population’s poor diversity
and falls into a local optimum. The placements of the sparrows in the solution space are
randomly distributed, and a random walk method [66] is used when no nearby sparrows
surround the current individual. This mode delays the convergence trend and reduces the

Symmetry 2023, 15, 316 7 of 39

convergence accuracy for a limited number of iterations. Our proposed algorithm aspires
to improve SSA’s complete optimization performance and address these shortcomings.

3.1. Initialized Population

Initialization is a severe step in the meta-heuristic algorithm and affects convergence
speed and solution accuracy. The primary motivation of the most advanced initialization
methods is to cover the search space as evenly as possible based on generating a small
initial population. However, these methods are affected by the dimension disaster, high
computational cost, and sensitivity to parameters, which ultimately reduce the convergence
speed of the algorithm [73,74].

The efficiency of EA is greatly affected by chaotic mapping, which has the advantages
of uniform ergodicity, sensitivity to initial values, and fast search speed. Using the ran-
domicity, ergodicity, and regularity of chaotic variables to solve optimization problems
can make the algorithm jump out of local optimization, maintain population diversity,
and improve the global search ability to a certain extent. However, different chaotic maps
significantly impact the chaotic optimization process. Various scholars have introduced
chaos mapping and chaos search into EA, trying to improve the problem of falling into
local optimums in the latter period and improve the convergence speed and accuracy of
the algorithm. The chaotic map used more in the literature is the Logistic map. Still, its
value probability is high in the two ranges [0, 0.1] and [0.9, 1], and the optimization speed is
affected by the uneven Logistic traversal, so the algorithm’s efficiency will be significantly
reduced. Many papers have pointed out that the Tent map has better ergodic uniformity
and faster convergence speed than the logistic map and have further proved that the Tent
map can be used as a chaotic sequence to generate optimization algorithms through strict
mathematical reasoning. The Tent mapping expression is shown in Equation (6).

xi+1 =

{
xi
a , 0 ≤ x ≤ 1/2
1−xi
1−a , 1/2 < x ≤ 1

. (6)

Equation (6) after Bernoulli shift transformation is as follows:

xi+1 = (2xi) mod 1, (7)

where mod is the modulo function. Tent mapping has the advantages of randomness,
consistency, and orderliness, and it is a standard method for scholars to find the optimal
solution [72,75]. On the other hand, a chaotic Tent map has flaws, such as a short period
and unstable period points [76]. Therefore, the Tent chaos map is enhanced by the ψ, as
given in Equation (8), to avoid slipping into a tiny period or an unstable periodic point [74].

xi+1 =

{
xi
a + ψ 0 ≤ x ≤ a
1−xi
1−a + ψ a < x ≤ 1

, (8)

where a = 0.7 in the current experiments, ψ = rand(0, 1) × 1/N, and N represents the
population of sparrows. Equation (8) after Bernoulli shift transformation is as follows:

xi+1 = (2xi) mod 1 + ψ, (9)

where mod is the modulo function, ψ = rand(0, 1) × 1/N, and N represents the population
of sparrows.

Therefore, in TFSSA, Equations (1) and (9) in the traditional SSA are replaced by
Equation (8) to increase the sparrow population diversity. At this time, the improved Tent
chaotic sequence is introduced based on the original SSA to initialize the sparrow popu-
lation. Although the algorithm not only retains the randomness of the initial individuals
but also improves the population diversity at the initial stage, it still cannot guarantee that
the population diversity will still have the same degree later. However, in subsequent
experiments, it was found that the population’s diversity is not well guaranteed, and the

Symmetry 2023, 15, 316 8 of 39

scavengers constantly hop around the producers, making the algorithm fall into local
optimization to a large extent in the algorithm’s later stages. In this case, we consider
introducing the LF mechanism to improve the algorithm’s performance further.

3.2. LF Mechanism

“LFs” are named after the French mathematician Paul·Lévy (1886–1971), who first pro-
posed the concept in 1937. LFs try to strengthen the optimization process with diversity and
universality, which helps the algorithm find the search location effectively and avoid local
minima. Therefore, LFs embed in the SSA mechanism to improve the overall optimization
efficiency. The foraging activities of most animals are also characteristic of LFs, for example,
the routes of plankton, termites, bumblebees, birds, and primates. LFs seem to be a common
law for creatures to survive in a resource-scarce environment when foraging has similar
patterns. The trajectory of human beings when traveling and shopping also belongs to LFs.

It can be seen from the SSA rule design (3) that when the producer’s food does not
have enough temptation, hungry scavengers may fly to other places to look for food.
However, according to the SSA rule design (4), scavengers mainly search for food from the
producer and go elsewhere to look for food. Generally, they only search for food within a
relatively close range of the producer. Therefore, most sparrows may only move around
areas with poor solution quality. On the other hand, for each iteration, the individual
sparrow will move indiscriminately to the sparrow (producer) whose food is better than
his own. This situation increases the algorithm’s complexity and leads to low convergence
accuracy and a higher possibility of falling into the optimal local solution. Random numbers
obeying the Lévy distribution have the characteristics of short-distance walking and long-
distance jumping, which will significantly improve the disadvantage of hungry sparrows
(scavengers) that only search for food within a relatively close range of producers.

In summary, this part combines the LF strategy and the inertia weight factor into the
classic SSA to improve its ability to expand the search scope and avoid local optimization. In
this way, TFSSA can locate the optimal global solution more effectively. Equations (10)–(13)
describe this mechanism. Equation (10) can be used to express the Lévy distribution [77].

Lévy(α) ∼ µ = e−1−α, 0 < α ≤ 2, (10)

where α is a stability index, and α = 1.5, the µ is a Gaussian distribution. The inertia-
weighting factor σ is expressed by Equation (11).

σ = 1− t/T_max, (11)

then, the sparrow’s position, xt
iD, is mutated by the random roulette strategy in Equation (12).

If rand > σ,
xt′

iD = xt
iD + L(α) ·

(
xt

iD − xt
best
)
, (12)

else the xbest′
iD is also changed by Equation (13).

xbest′
iD = xbest

iD · (1 + L(α)), (13)

where L(α) is a number chosen randomly from the Lévy distribution. This part mainly
combines the LF strategy with classic SSA and uses LF characteristics to improve its ability to
expand the search scope and avoid local optimization. LFs can optimize the diversity of search
agents, enabling the algorithm to explore search locations and avoid local minima effectively.
The combination of LFs and the SSA algorithm improves the population diversity to a certain
extent and enhances the robustness and global optimization capability of the SSA algorithm.
However, in many experiments, it is found that the occasional long-distance jump of LFs has
no significant impact on the final performance of the algorithm, as expected. Because of its
poor performance in the CEC2020 benchmark function, we are considering further improving
the algorithm from the manufacturer’s location formula. We use super adaptive parameters
in the next section to update the producer location and improve the global search capability.

Symmetry 2023, 15, 316 9 of 39

3.3. Self-Adaptive Hyper-Parameters

In the rule design of SSA in Section 2.3, SSA mainly divides the sparrow population into
producers (leaders) and scavengers (followers). Producers need more search space to find
food sources, while scavengers mainly follow producers to find food. Therefore, the global
search capability of the original SSA is highly dependent on the search scope of the producer.

In Equation (3), R2 < ST means that there are no predators at present, and the producer
(leader) opens the wide-area search mode. In this mode, the location update of producers
(leaders) is mainly affected by exp(− i

α·T_max). When α in Equation (3) gets a large random
value, the value of exp(− i

α·T_max) will gradually decrease from (0, 1) to (0, 0.4) as i becomes
larger. To sum up, we expand the search range of producers by adaptive control factors.
The adaptive control factors are shown below in Equation (14).

w = w0 × ct, (14)

where t is the current iteration number; w0 = 1 is the initial weight; c is the adaptive factor
of w, which can be modified depending on the actual problem; and w is the initial weight.
According to the subsequent sensitivity analysis, the performance of the TFSSA is relatively
stable and achieves its best classification accuracy in most cases of datasets when c is 0.9.
Therefore, in our current research, c is set to 0.9 to maintain w at a low value, enhancing the
global search capability and broadening the producers’ search scope. The original producer
position is updated from Equation (3) to Equation (15).

Xt+1
i =

{
Xt

i · exp(− i
w·α·T_max), if R2 < ST

Xt
i + Q · L, if R2 ≥ ST

. (15)

In addition, to detect and warn companions to avoid predators in time during the
foraging process, one-tenth to one-fifth of sparrows are selected as guards, also called
patrollers. When the patroller realizes the danger and issues an alarm, the entire population
will immediately conduct anti-predation behaviors, thereby improving the entire popula-
tion’s predation ability and risk-prevention capabilities. In other words, the presence of
patrollers can help sparrow populations achieve better SSA solutions. When the number of
patrollers is large, it is beneficial to improve the global optimization ability of sparrows.
However, as the number of patrollers is reduced, it aids in accelerating SSA convergence.
Therefore, this paper proposes an adaptive update formula for the number of patrollers,
aiming to improve the algorithm’s performance by adjusting the number of patrollers, as
shown by Equation (16), the formula can non-linearly reduce during the iteration.

GN = GNmax − Round
[
(GNmax − GNmin)×

t
T_max

]
, (16)

where GN represents the number of patrollers; GNmax represents the maximum number of
patrollers; GNmin represents the minimum number of patrollers; the Round function is used to
round values; t is the current iteration; and max_iteration is the maximum number of iterations.
The GN in the original SSA is set to be chosen at random from 10–20% of the sparrow population.
Equation (16) in this paper replaces the random selection behavior of the number of patrollers in
the original SSA and better balances the algorithm convergence speed and global optimization
ability. When all the sparrows find the optimal solution, this paper mutates the optimal sparrow
individuals again to improve the global convergence accuracy further.

3.4. Optimal Individual Mutation by ψ-Tent Chaos

The original SSA is prone to fall into local extrema in the later iterations. To solve
this problem, the optimal individual position is perturbed in each iteration, and only one
individual is randomly mutated in each iteration. That is, when the sparrow finds the
optimal solution, the enhanced Tent chaos is used to mutate the optimal sparrow individual,
which further improves the global convergence accuracy and optimizes the shortcomings

Symmetry 2023, 15, 316 10 of 39

of the original algorithm in global search and local search [78]. Therefore, in TFSSA, the
optimal sparrow individuals are changed by Equations (17) and (18).

r =
e2·(1−k/ T_max) − e−2·(1−k/ T_max)

e2·(1−k/ T_max) + e−2·(1−k/ T_max)
, (17)

if rand < r, then the optimal sparrow position xbest′
iD is updated by Equation (18).

xbest′
iD = xbest

iD ·
(

1 + ψ-Tent
(

xbest
iD

))
, (18)

where ψ-Tent
(

xbest
iD

)
can be calculated by Equation (8). The overall flow of TFSSA is in

Algorithm 2.

Algorithm 2 TFSSA
Input:

The number of sparrows(N)
The number of producers(PN)
The number of guards(GN)
The safety threshold(ST)
The warning value(R2)
The maximum iterations(T_max)

Output:
The best position so far(Xbest)
The best solution so far(fg)

1: Initialize a flock of sparrows’ location X // Pretreatment by Equations (8) and (9).
2: t← 0;
3: while (t < T_max) do
4: Rank the fitness vaule FX using Equation (2);

Find the fg and fw;
Update the R2 ← a random value in [0, 1], and calculate the σ using Equation (17).

5: for each leaders i ∈ [1, PN] do
6: The location of leaders(producers) is updated using Equation (15); // The original producer

position is updated from Equation (3) to Equation (15).
7: end for
8: for each followers i ∈ [PN + 1, N] do
9: The location of followers(scroungers) is updated using Equation (4);

10: end for
11: for each patrollers i ∈ [1, GN] do
12: The location of patrollers is updated using Equation (5); // The GN is updated using

Equation (16).
13: end for
14: Update Xbest and fg.
15: for m ∈ [1, N] do
16: if (rand > σ) then
17: The Xbest is updated using Equation (12). // σ indicates the inertia weighting factor.
18: else
19: The Xbest is mutated using Equation (13).
20: end if
21: end for
22: Update Xbest and fg.
23: Calculate the r using Equation (17).
24: if (rand < r) then
25: Xbest ← xbest′

iD ; // The Xbest is mutated using Equation (18).
26: end if
27: Rearrange all of the population’s FX in ascending order.
28: Xbest ← xt+1

best ; // Update Xbest.

Symmetry 2023, 15, 316 11 of 39

29: fg ← f (Xbest); // Update fg.
30: t← t + 1;
31: end while
32: return Xbest, fg.

3.5. Computational Complexity Analysis

This subsection uses the well-known Big-O notation to present the proposed TFSSA’s
time and computational space complexity. Although the proposed TFSSA and SSA have
the same time complexity of O(N) and space complexity of O(D× N), TFSSA performs
better than SSA in the sequence experiments.

3.5.1. Time Complexity Analysis

The time complexity depends on the size of the sparrow population (N), the dimension
of the problem (D), the maximum number of iterations (T_max), the number of producers
(PN) and scroungers (N-PN) along with the number of patrollers (GN). The time complexity
of stage (1) in SSA is O(D × N), the time complexity of stages (2) and (3) is O(D × N),
and the time complexity of stage (4) is O((PN+ N-PN +GN) × T_max × D), which is
O(N × T_max × D); hence the total time complexity of SSA is O(N). The proposed
TFSSA mainly includes the stages shown in Figure 1. The computational cost of TFSSA is
primarily different from that of stage (4) in comparison to SSA. TFSSA has a computational
complexity of O(T_max×D× 3N) when it comes to the sparrow’s location updating phase.
To summarize, the proposed TFSSA and classical SSA have a time complexity of O(N).

Initialization of sparrows Fitness evaluation Fitness evaluation Fitness evaluation

(1) (2) (3) (4)

Figure 1. Main steps of TFSSA.

3.5.2. Space Complexity Analysis

The space complexity of TFSSA relative to the amount of memory space depends on
the number of sparrows and the dimensions of the problem. This determines the total
amount of memory space required for the input values that the proposed TFSSA uses for
execution. Therefore, without considering the auxiliary space, the space complexity of
TFSSA and SSA is O(D× N).

4. TFSSA Applied for FS

In this section, we introduce the application of TFSSA in classification tasks. In the
novel algorithm, We start by discretizing the initial position of each sparrow in the group
generated by the chaotic initialization of ψ-Tent to each dimension. Then, we set the fitness
function utilized in TFSSA to evaluate individual sparrow placements. Finally, the process
iterates until the stop criterion is met and the optimal feature subset’s feature space is
obtained. In the following, we detail the application in FS of the proposed methods.

4.1. Initialization

The initialization stage is the first step of the EA, in which, according to Equations (8)
and (9), a sparrow individual of N is generated through the chaotic initialization of ψ-
Tent. In this study, we try to identify the significant 1 value and reject the other feature 0
value. Before starting the fitness evaluation process, according to Equations (8) and (9) and
Figure 2, we first discretize the initial position of each sparrow in the group to the position
on each dimension; that is, 0 (not selected) or 1 (selected), and convert it to a random binary
value (between 0 and 1).

Symmetry 2023, 15, 316 12 of 39

1 1 0 0 … 1 0 1

𝐹1 𝐹2 𝐹3 𝐹4 … 𝐹𝐷−2 𝐹𝐷−1 𝐹𝐷

Figure 2. Solution representation.

4.2. Fitness Evaluation

In this part, the TFSSA is exploited in FS for classification problems. The different
feature combinations for a feature vector of size η would be 2η , which is a massive space
of features to be searched thoroughly. As a result, TFSSA is utilized to choose the optimal
feature subset’s feature space. Equation (19) shows the fitness function utilized in TFSSA to
evaluate individual sparrow placements.

Fitness = λER(D) + µ
|S|
|T| , (19)

where ER(D) is the error rate for the classifier of condition attribute set, |S|/|T| denotes
the ratio of chosen features to total features, λ ∈ [0, 1] and µ = 1− λ.

K-Nearest Neighbors (K-NN) [79] is a popular classification method that may be
used to evaluate fitness functions as a simple candidate classifier. The smallest distance
between the query instance and the training examples determines the K-NN classifier. A
crucial characteristic of wrapper techniques in FS is the use of the classifier as a guide to
the FS activity. The following three primary items can be used to classify wrapper-based
feature selection: (1) Method of classification. (2) Criteria for evaluating features. (3) Search
method. As demonstrated in Equation (19), TFSSA is employed as a search strategy that
may adaptively explore the feature space to maximize the feature evaluation criterion. A
sparrow’s location in the search space reflects one feature combination or solution since
each dimension represents a different feature combination or solution.

4.3. Termination

In each iteration, the position of sparrows (producers, scavengers, patrollers) is up-
dated (refer to Algorithm 2), and the continuous value of the position vector is recorded
after each iteration for future use in the continuous position update of the entire constant
iteration. Next, the process iterates until the stop criterion is met, that is, the maximum
number of function evaluations in this study.

5. Experimental

In this section, we introduce the evaluation of TFSSA in benchmark functions and
multi-perspective analysis. Then, we discuss the performance of the proposed algorithm
in FS.

5.1. Evaluation of TFSSA

The CEC2020 benchmark suite is selected to evaluate the effectiveness and superiority
of the proposed algorithm, TFSSA, and compare it with seven other algorithms, including
the Artificial Bee Colony Algorithm (ABC), PSO, Competitive Swarm Optimizer (CSO), DE,
SSA, Optimal Foraging Algorithm (OFA), and Success History-based Adaptive Differential
Evolution (SHADE). The reasons for choosing the CEC2020 benchmark suite are discussed
in Section 5.1.1.

5.1.1. Benchmark Functions

CEC benchmarks are the most widely used benchmark problems and have been used
by many research scientists to test their algorithms. The most popular single-objective opti-
mization test function set includes CEC2005 [80], CEC2008 [81], CEC2010 [82], CEC2013 [83],
CEC2014 [84], CEC2017 [85], CEC2020 [86], and the Single-Objective optimization prob-
lem (SOP) [87]. The single-objective optimization algorithm is the basis for building
more complex methods, such as multi-objective, super multi-objective, multi-modal multi-

Symmetry 2023, 15, 316 13 of 39

objective, niche, and constrained optimization algorithms. Therefore, it is crucial to improve
single-objective optimization algorithms because they will also impact other areas. These
algorithm improvements, to some extent, depending on the feedback of experiments con-
ducted using single objective benchmark functions, which are basic components of more
complex tasks. With the improvement in algorithms, researchers must develop more
challenging functions to adapt to new problems. The interaction between methods and
problems promoted progress, and CEC2020, developed by researchers further, promoted
this symbiotic relationship.

The improved methods and problems sometimes need to update the traditional test
standards, and the traditional test standards (such as SOP) can not guarantee enough
persuasiveness when facing new, improved algorithms. Therefore, this paper uses the
classical test function set CEC2020 to test the comprehensive performance of the proposed
algorithm TFSSA. CEC2020 includes one unimodal function (CEC2020_F1), three basic
functions (CEC2020_F2–CEC2020_F4), three mixed functions (CEC2020_F5–CEC2020_ F7),
and three synthesis functions (CEC2020_F8–CEC2020_F10), as shown in Table 1. The
MATLAB and C code for the CEC2020 test suite is available online (https://github.com/
yyy24601/2020-Bound-Constrained-Opt-Benchmark, accessed on 20 January 2023).

Table 1. CEC2020 test suite.

No. Functions Fi
∗ = Fi(x∗)

Unimodal Function 1 CEC 2017 [85] F1 100

Basic
Functions

2 CEC 2014 [84] F11 1100

3 CEC 2017 [85] F7 700

4 CEC 2017 [85] F19 1900

Hybrid
Functions

5 CEC 2014 [84] F17 1700

6 CEC 2017 [85] F16 1600

7 CEC 2014 [84] F21 2100

Composition
Functions

8 CEC 2017 [85] F22 2200

9 CEC 2017 [85] F24 2400

10 CEC 2017 [85] F25 2500

Search Range = [− 100, 100]D

5.1.2. Parameter Setting

The experiments are implemented with MATLAB (version 9.11.01769968 (R2021b))
running on a 64-bit Windows with Intel (R) Xeon (R) E-2224 CPU 3.40GHz CPU, NVIDIA
Quadro P1000, and 16.0 GB RAM.

ABC [88], PSO [89], CSO [90], DE [91], SSA [70], OFA [92], and SHADE [93] are used
as benchmark algorithms for comparison. The number of trials for releasing a food resource
of ABC is 20, the inertia weight of PSO is 0.4, the social factor of CSO is 0.1, the conjugate
constant of DE is 0.9, the mutation factor of DE is 0.5, the historical memory size of SHADE
is 100, the chaos disturbance factor parameter is 0.7, and the LF parameter is 1.5. The
population in all algorithms is 100, and the number of runs is 30. Each algorithm repeats
the experiment 30 times independently to obtain statistical results. The maximum number
of function evaluations is 10,000. The solution schemes are tested on the CEC2020 function
at 10D, 15D, and 20D.

5.1.3. Statistical Test

The significance level is used to compare whether the two algorithms significantly
differ in performance. We use the Wilcoxon rank sum test with α = 0.05 [94]. The original
assumption is that the performance of TFSSA and the comparison algorithm is independent.

https://github.com/yyy24601/2020-Bound-Constrained-Opt-Benchmark
https://github.com/yyy24601/2020-Bound-Constrained-Opt-Benchmark

Symmetry 2023, 15, 316 14 of 39

When rejecting the original hypothesis, this paper uses three symbols to indicate whether
there is a significant difference in the performance between TFSSA and the comparison
algorithm.

(1) +: TFSSA performs significantly better than the comparison algorithm.
(2) =: The performance of TFSSA is not significantly related to the performance of the

comparison algorithm.
(3) −: TFSSA’s performance is not significantly better than the comparison algorithm.

5.1.4. Solution Accuracy Analysis

This section displays the average value (Mean), standard deviation (Std), and Wilcoxon
rank sum test results produced by various algorithms on CEC2020 for each test function.
The best results from all experiments are highlighted in bold. The following is a complete
description and analysis of the experimental results:

F1 in Tables 2–4 shows the optimization results of the unimodal function obtained by
different algorithms. Under the circumstances of 10D, 15D, and 20D, the submitted TFSSA
for a single-peak function has an average weight and standard difference capital compared
to other methods.

F2–F4 in Tables 2–4 display the basic function improvement results obtained by the
differential arithmetic method. Under the circumstances of 10D and 20D, TFSSA has the
highest average CSO award among 10D, F4 has the highest average, and F2 and F3 have
the highest functional average. For the standard difference direction, F2 and F3 shows the
best results in 10D, and F3 shows the best results in 15D. Due to this and other arithmetic
ratios, the proposed TFSSA has improved performance on basic functions. The number of
events increased as a result of the above findings, and the supplied TFSSA displayed the
ideal performance.

F5–F7 in Tables 2–4 show the results obtained by different algorithms for the optimiza-
tion of mixed functions. It can be seen that in the case of 10D, TFSSA obtained the two best
averages of F6 and F7; in the case of 15D, TFSSA obtained the best average of F6; in the
case of 20D, TFSSA also obtained the best average of F6. SHADE obtains the best mean of
F5 in 10D; CSO obtains the best mean of F5 and F7 in both 15D and 20D. This indicates that
the stability of TFSSA slightly increases with the increase in the dimension of the solution
decline. In particular, TFSSA has obvious advantages on the F6 function and achieves the
best results in all dimensions compared to the comparison algorithm.

F8–F10 in Tables 2–4 show the results of the synthesis function optimization obtained
by different algorithms. It can be seen that in the case of 10D, TFSSA obtained the best
mean of F8; in the case of 15D, TFSSA obtained the best mean of F8 and F10; in the case
of 20D, TFSSA also obtained the best mean of F9. In the case of 10D, the best means of
F9 and F10 are obtained by SSA and DE; in the case of 15D, the best means of F8 and F9
are obtained by DE; in the case of 20D, the best means of F9 and F10 are obtained by PSO
and SHADE.

Symmetry 2023, 15, 316 15 of 39

Table 2. Mean, standard deviations, and Wilcoxon rank sum test results of different algorithms on CEC2020 at 10D.

ABC
Mean
(Std)

PSO
Mean
(Std)

CSO
Mean
(Std)

DE
Mean
(Std)

SSA
Mean
(Std)

OFA
Mean
(Std)

SHADE
Mean
(Std)

TFSSA
Mean
(Std)

CEC2020_F1
2.7683× 104

(7.29× 104) +
3.6043× 103

(3.38× 103) +
1.9567× 103

(9.27× 102) =
3.9673× 104

(2.09× 104) -
4.2342× 103

(4.82× 103) =
2.7980× 105

(1.54× 105) +
4.7054× 103

(4.24× 103)+
5.7683× 102

(2.31× 102)

CEC2020_F2
1.4226× 103

(1.63× 102) +
1.4462× 103

(1.54× 102) -
1.1631× 103

(6.93× 101) +
1.3938× 103

(8.74× 101) +
1.3095× 103

(1.19× 102) +
1.4722× 103

(1.58× 102) +
1.2221× 103

(5.64× 101) +
1.1508× 103

(6.11× 100)

CEC2020_F3
7.1526× 102

(3.11× 100) =
7.1286× 102

(5.03× 100) +
7.0711× 102

(1.44× 100) +
7.1502× 102

(2.83× 100) +
7.1267× 102

(5.42× 100) +
7.2197× 102

(5.19× 100) =
7.1070× 102

(1.63× 100) +
7.0620× 102

(8.06× 10−1)

CEC2020_F4
1.9009× 103

(2.90× 10−1) +
1.9008× 103

(7.54× 10−1) +
1.9003× 103

(9.82× 10−2) +
1.9008× 103

(2.76× 10−1) +
1.9005× 103

(2.74× 10−1) +
1.9028× 103

(1.01× 100) -
1.9006× 103

(1.17× 10−1) -
1.9003× 103

(1.60× 10−1)

CEC2020_F5
1.7150× 103

(1.76× 101) =
8.9157× 103

(6.58× 103) -
1.7254× 103

(2.73× 101) +
1.7314× 103

(1.28× 101) =
1.7552× 103

(7.78× 101) =
1.7356× 103

(1.49× 101) =
1.7065× 103

(2.65× 100) +
1.7595× 103

(6.06× 101)

CEC2020_F6
1.6044× 103

(4.07× 100) +
1.6336× 103

(4.65× 101) -
1.6037× 103

(6.16× 100) -
1.6033× 103

(1.43× 100) -
1.6077× 103

(1.40× 101) +
1.6110× 103

(1.10× 101) -
1.6011× 103

(2.08× 10−1) -
1.6001× 103

(1.46× 10−1)

CEC2020_F7
2.1003× 103

(3.11× 10−1) +
2.1070× 103

(1.23× 101) -
2.1007× 103

(3.31× 10−1) -
2.1008× 103

(1.46× 10−1) +
2.1036× 103

(1.02× 101) +
2.1024× 103

(1.39× 100) =
2.1001× 103

(2.87× 10−2) +
2.1000× 103

(1.22× 10−2)

CEC2020_F8
2.2175× 103

(3.40× 101) =
2.2490× 103

(4.61× 101) =
2.2326× 103

(4.56× 101) +
2.2200× 103

(3.11× 100) =
2.2456× 103

(4.84× 101) =
2.2586× 103

(3.28× 101) +
2.2396× 103

(5.28× 101) =
2.2016× 103

(1.22× 100)

CEC2020_F9
2.5879× 103

(7.23× 101) +
2.5694× 103

(1.13× 102) +
2.5163× 103

(5.33× 101) +
2.5227× 103

(6.61× 100) +
2.5095× 103

(2.47× 101) =
2.5232× 103

(6.69× 100) +
2.5112× 103

(4.74× 101) =
2.5485× 103

(8.11× 101)

CEC2020_F10
2.8474× 103

(2.18× 10−2) =
2.8515× 103

(1.08× 101) +
2.8474× 103

(5.47× 10−3) +
2.7394× 103

(6.38× 101) +
2.8433× 103

(1.48× 101) =
2.8518× 103

(2.56× 100) -
2.8474× 103

(7.79× 10−2) +
2.8475× 103

(9.47× 10−2)
+/-/= 6/0/4 5/4/1 7/2/1 6/2/2 5/0/5 4/3/3 6/2/2

Symmetry 2023, 15, 316 16 of 39

Table 3. Mean, standard deviations, and Wilcoxon rank sum test results of different algorithms on CEC2020 at 15D.

ABC
Mean
(Std)

PSO
Mean
(Std)

CSO
Mean
(Std)

DE
Mean
(Std)

SSA
Mean
(Std)

OFA
Mean
(Std)

SHADE
Mean
(Std)

TFSSA
Mean
(Std)

CEC2020_F1
4.4019× 106

(2.51× 106) +
2.9111× 108

(2.59× 108) +
4.0135× 105

(8.96× 105) +
7.9228× 107

(3.10× 107) +
4.8618× 107

(5.11× 107) +
2.1070× 108

(9.23× 107) -
5.8744× 105

(2.12× 105) -
1.1879× 105

(9.47× 104)

CEC2020_F2
2.9428× 103

(2.08× 102) +
2.1909× 103

(4.08× 102) -
1.5976× 103

(2.67× 102) =
2.6368× 103

(1.67× 102) +
1.6696× 103

(2.04× 102) -
2.7231× 103

(1.67× 102) +
2.2149× 103

(1.80× 102) +
1.4524× 103

(2.29× 102)

CEC2020_F3
7.6011× 102

(7.84× 100) -
7.4882× 102

(1.57× 101) +
7.2060× 102

(4.90× 100) +
7.7524× 102

(9.53× 100) -
7.5645× 102

(1.44× 101) +
7.8067× 102

(9.54× 100) +
7.4497× 102

(5.67× 100) +
7.1830× 102

(3.48× 100)

CEC2020_F4
1.9048× 103

(6.95× 10−1) -
2.3811× 103

(1.25× 103) +
1.9013× 103

(5.85× 10−1) =
1.9063× 103

(9.44× 10−1) -
1.9290× 103

(1.10× 102) -
1.9394× 103

(2.93× 101) +
1.9032× 103

(4.50× 10−1) +
1.9016× 103

(5.06× 10−1)

CEC2020_F5
2.7081× 105

(2.35× 105) =
1.9609× 105

(2.33× 105) =
2.1201× 103

(1.57× 102) +
3.1328× 103

(3.25× 102) +
3.2132× 105

(4.63× 105) +
5.6867× 104

(3.80× 104) =
2.5813× 103

(2.04× 102) +
3.0341× 105

(5.41× 105)

CEC2020_F6
1.7540× 103

(8.24× 101) +
1.9243× 103

(1.23× 102) -
1.6886× 103

(7.38× 101) -
1.8042× 103

(5.76× 101) +
1.7443× 103

(1.02× 102) -
1.8783× 103

(6.44× 101) -
1.6480× 103

(3.32× 101) -
1.6370× 103

(5.21× 101)

CEC2020_F7
2.7754× 104

(4.28× 104) =
1.1125× 104

(8.70× 103) =
2.3156× 103

(1.34× 102) +
2.5866× 103

(1.85× 102) +
1.8706× 104

(2.32× 104) +
1.3730× 104

(8.65× 103) =
2.3187× 103

(8.84× 101) +
4.8971× 104

(1.05× 105)

CEC2020_F8
2.3084× 103

(1.33× 101) +
2.3514× 103

(3.41× 101) +
2.3118× 103

(2.18× 100) +
2.3251× 103

(1.75× 101) -
2.3326× 103

(4.36× 101) +
2.3514× 103

(1.35× 101) +
2.3101× 103

(4.05× 10−2) -
2.3101× 103

(3.76× 10−2)

CEC2020_F9
2.7803× 103

(9.44× 100) +
2.7573× 103

(8.56× 101) -
2.7211× 103

(6.03× 101) =
2.6728× 103

(4.05× 101) +
2.7205× 103

(9.73× 101) +
2.7540× 103

(6.15× 101) =
2.7454× 103

(5.71× 101) -
2.7188× 103

(8.71× 101)

CEC2020_F10
2.9523× 103

(2.17× 101) +
2.9583× 103

(3.36× 101) +
2.9215× 103

(2.21× 101) +
2.9531× 103

(7.78× 100) -
2.9476× 103

(3.08× 101) +
2.9844× 103

(1.96× 101) +
2.9298× 103

(2.21× 101) +
2.9160× 103

(1.31× 100)
+/-/= 6/2/2 5/3/2 6/1/3 6/4/0 7/3/0 5/2/3 6/4/0

Symmetry 2023, 15, 316 17 of 39

Table 4. Mean, standard deviations, and Wilcoxon rank sum test results of different algorithms on CEC2020 at 20D.

ABC
Mean
(Std)

PSO
Mean
(Std)

CSO
Mean
(Std)

DE
Mean
(Std)

SSA
Mean
(Std)

OFA
Mean
(Std)

SHADE
Mean
(Std)

TFSSA
Mean
(Std)

CEC2020_F1
8.2541× 108

(2.51× 108) +
6.1650× 109

(2.74× 109) +
2.5690× 109

(1.70× 109) +
2.4253× 109

(6.48× 108) +
1.8891× 109

(1.08× 109) -
3.2793× 109

(9.17× 108) +
8.1623× 106

(2.73× 106) +
3.2993× 106

(1.14× 106)

CEC2020_F2
5.7675× 103

(3.20× 102) +
3.9708× 103

(4.21× 102) -
3.7089× 103

(4.74× 102) -
5.5763× 103

(1.98× 102) =
2.7448× 103

(3.21× 102) +
5.6418× 103

(2.89× 102) +
4.4956× 103

(2.84× 102) -
1.5610× 103

(2.27× 102)

CEC2020_F3
9.5314× 102

(2.25× 101) -
9.2851× 102

(3.56× 101) +
8.1250× 102

(1.74× 101) -
9.6884× 102

(1.69× 101) +
9.5392× 102

(7.45× 101) +
9.7358× 102

(2.29× 101) -
8.2764× 102

(7.51× 100) +
7.4445× 102

(8.55× 100)

CEC2020_F4
2.0108× 103

(5.50× 101) -
1.8210× 104

(3.72× 104) -
4.9532× 103

(7.09× 103) -
2.4562× 103

(4.35× 102) -
3.8546× 103

(3.45× 103) -
3.3717× 103

(9.53× 102) +
1.9107× 103

(1.03× 100) -
1.9041× 103

(1.07× 100)

CEC2020_F5
5.8713× 106

(3.06× 106) +
1.9239× 106

(1.82× 106) =
2.6514× 104

(2.36× 104) +
2.8432× 105

(8.82× 104) +
1.6705× 106

(1.85× 106) =
1.5941× 106

(8.94× 105) =
4.6806× 104

(2.20× 104) +
1.1683× 106

(1.04× 106)

CEC2020_F6
2.1056× 103

(1.34× 102) -
2.4993× 103

(2.56× 102) +
2.0628× 103

(1.78× 102) -
2.4975× 103

(1.14× 102) -
1.9359× 103

(1.10× 102) -
2.6072× 103

(2.13× 102) -
1.8690× 103

(6.26× 101) -
1.6400× 103

(5.22× 101)

CEC2020_F7
9.5712× 105

(7.41× 105) =
6.8662× 105

(1.23× 106) =
8.0781× 103

(7.77× 103) +
3.1638× 104

(1.46× 104) +
7.7198× 105

(7.98× 105) =
4.9021× 105

(2.77× 105) =
8.3634× 103

(2.10× 103) +
8.0619× 105

(9.61× 105)

CEC2020_F8
2.5147× 103

(4.22× 101) -
3.7116× 103

(9.12× 102) -
2.6301× 103

(1.80× 102) -
3.5211× 103

(3.88× 102) +
3.1946× 103

(9.62× 102) -
3.1260× 103

(2.32× 102) -
2.3229× 103

(1.01× 101) -
2.3127× 103

(5.46× 10−1)

CEC2020_F9
2.9444× 103

(1.10× 101) +
2.8361× 103

(9.71× 100) +
2.9084× 103

(2.37× 101) +
2.9937× 103

(2.12× 101) =
2.9290× 103

(3.21× 101) +
3.0541× 103

(3.02× 101) +
2.9137× 103

(9.92× 100) +
3.1352× 103

(1.02× 102)

CEC2020_F10
3.0418× 103

(4.50× 101) +
3.3440× 103

(1.50× 102) +
3.0693× 103

(5.39× 101) -
3.1881× 103

(7.56× 101) -
3.0981× 103

(7.90× 101) +
3.2489× 103

(8.23× 101) +
2.9166× 103

(1.40× 100) +
2.9607× 103

(3.37× 101)
+/-/= 5/4/1 5/3/2 4/6/0 5/3/2 4/4/2 5/3/2 6/4/0

Symmetry 2023, 15, 316 18 of 39

In conclusion, TFSSA obtained seven, five, and six optimal averages and zero, two, and
one suboptimal average among the ten functions in all dimensions, respectively, indicating
that dimensional changes with less impact constrain the algorithm’s accuracy in finding
solutions. In the case of 10D, SHADE obtains an optimal mean and three optimal standard
deviations, SSA and DE each get an optimal mean, and CSO and DE each obtain an optimal
standard deviation. Under the condition of 15D, the performance of the proposed TFSSA is
challenged by CSO. CSO obtains three optimal means and one optimal standard deviation.
At the same time, ABC and DE also achieved an optimal mean and standard deviation, and
SHADE achieved three optimal means and the best standard deviation. In the 20D case,
PSO and CSO obtain one and two best mean values, and PSO, DE, and SHADE get one,
one, and four best standard deviations, respectively. According to NFL theory, it is almost
impossible for one algorithm to solve all optimization problems efficiently. Therefore, the
proposed TFSSA algorithm cannot obtain the best results on all classical test functions.
However, compared with other algorithms, the best results it gets are still ideal, which
verifies the superiority of the TFSSA algorithm to a certain extent. It can be seen from the
results that the proposed TFSSA has good performance on CEC2020 at 10D, 15D, and 20D.

5.1.5. Algorithm Stability Analysis

From the results of the Wilcoxon test in Tables 2–4, it is observed that TFSSA signifi-
cantly outperforms ABC, PSO, CSO, DE, and OFA on more than half of the functions of
SHADE performance. Compared with the performance of DE and SHADE, at 15D, the
performance of TFSSA is significantly improved on six functions, but the performance on
four functions is reduced substantially. In other words, TFSSA performs much better than
DE and SHADE at 15D. Compared with the performance of CSO, in the case of 10D, the
performance of TFSSA is significantly improved on seven functions. Still, the performance
of the two functions is reduced dramatically, and at 15D, the performance of TFSSA is
considerably lower than that of CSO. Significantly improved performance on six functions
but significantly reduced performance on two functions, with 20D TFSSA greatly enhanced
performance on four parts but decreased performance considerably on six. It also shows
that the stability of TFSSA at 10D is higher than that of 15D and higher than that of 20D to
a certain extent.

5.1.6. Convergence Rate Analysis

This subsection presents the convergence rates obtained by different algorithms when
solving the CEC2020 test function. The convergence speed of obtaining the optimal global
solution is an important indicator for checking the performance of EA. Figures 3–5 show
TFSSA and comparison algorithms at 10D, 15D, and 20D on CEC2020, respectively, and the
convergence plot obtained during the process of solving the test function. Among them, the
abscissa represents the number of function evaluations, and the ordinate is the minimum
value obtained each time the algorithm runs independently.

It can be seen that in the 10D case, on F1, F4, F6, F7, and F8, the convergence speed
of TFSSA is significantly faster than most of the other comparison algorithms, among
which F6 and F7 are more significant; in the 15D case, TFSSA converges considerably
quicker than most of the different comparison algorithms on F1, F4, F5, F7, and F8; in
the 20D case, TFSSA converges significantly faster than most of the other comparison
algorithms on F1, F4, F5, F6, and F7, especially in the early stages of evolution of these
classical test functions, showing faster convergence rates. In addition, the advantages of
TFSSA on other parts are not obvious. Except for F2 and F3 at 10D, 15D, and 20D, F9 at
10D, 15D, and 20D, and F8 at 20D, the convergence speed of TFSSA is slightly worse than
other algorithms, but the accuracy is still the best. The experiment shows that the TFSSA
algorithm’s exploration ability in the later stage is relatively strong, which means that the
proposed TFSSA algorithm can maintain relatively high population diversity and avoid
premature convergence.

Symmetry 2023, 15, 316 19 of 39

Overall, TFSSA showed the best convergence speed for most tested functions through-
out the optimization process. Therefore, it can be concluded that the proposed TFSSA has a
relatively good exploration ability on most of the test functions.

2000
 4000
 6000
 8000 10,000

Number of function evaluations

2

4

6

8

10

M
in

im
um

 v
al

ue

10
8
 CEC2020_F1

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000 10,000

Number of function evaluations

1200

1400

1600

1800

2000

M
in

im
um

 v
al

ue

CEC2020_F2

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000
10,000

Number of function evaluations

720

740

760

780

800

M
in

im
um

 v
al

ue

CEC2020_F3

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

1000
 2000

0

10

20

10
7

1000
 2000

715

720

725

730

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

2000

3000

4000

5000

M
in

im
um

 v
al

ue

CEC2020_F4

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000 10,000

Number of function evaluations

2

4

6

8

10

12

M
in

im
um

 v
al

ue

10
5
 CEC2020_F5

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000

Number of function evaluations

1600

1650

1700

1750

1800

M
in

im
um

 v
al

ue

CEC2020_F6

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

500
 1000

1900

1950

2000

2050

800 1000 1200

0

2

4

6

8

10
4

500
 1500
 2500

1600

1650

2000
 4000
 6000
 8000 10,000

Number of function evaluations

2120

2140

2160

2180

2200

2220

2240

M
in

im
um

 v
al

ue

CEC2020_F7

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000 10,000

Number of function evaluations

2250

2300

2350

2400

2450

2500

M
in

im
um

 v
al

ue

CEC2020_F8

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

2550

2600

2650

2700

M
in

im
um

 v
al

ue

CEC2020_F9

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

600 1000 1400 1800

2100

2105

2110

2115

1000 1500 2000

2240

2260

2280

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000

2520

2540

2560

2580

2600

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

Figure 3. Convergence curves of different algorithms on CEC2020 at 10D, F1–F9.

Symmetry 2023, 15, 316 20 of 39

2000
 4000
 6000
 8000 10,000

Number of function evaluations

2

4

6

8

10

12

14

M
in

im
um

 v
al

ue

10
9
 CEC2020_F1

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000 10,000

Number of function evaluations

1500

2000

2500

3000

M
in

im
um

 v
al

ue

CEC2020_F2

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

750

800

850

900

950

1000

1050

M
in

im
um

 v
al

ue

CEC2020_F3

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

1000
 2000

0

1

2

3

10
9

2000 30004000

740

760

780

800

820

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000

Number of function evaluations

0

2

4

6

8

M
in

im
um

 v
al

ue

10
5
 CEC2020_F4

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

2

4

6

8

10

M
in

im
um

 v
al

ue

10
6
 CEC2020_F5

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

1800

2000

2200

2400

2600

M
in

im
um

 v
al

ue

CEC2020_F6

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

800
 1000

0

2

4

10
4
 ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

1000
 2000

5

10

15

10
5
 ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

1

2

3

4

M
in

im
um

 v
al

ue

10
6
 CEC2020_F7

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

2000
 4000
 6000
 8000 10,000

Number of function evaluations

2400

2600

2800

3000

3200

3400

3600

M
in

im
um

 v
al

ue

CEC2020_F8

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

2700

2750

2800

2850

2900

2950

M
in

im
um

 v
al

ue

CEC2020_F9

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

1000 1500 2000

0

2

4

10
5
 ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

1000 2000 3000

2300

2400

2500

2600

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000 3000

2720

2740

2760

2780

2800
 ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

Figure 4. Convergence curves of different algorithms on CEC2020 at 15D, F1–F9.

Symmetry 2023, 15, 316 21 of 39

2000
 4000
 6000
 8000 10,000

Number of function evaluations

1

2

3

4

5

M
in

im
um

 v
al

ue

10
10
 CEC2020_F1

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

2000
 4000
 6000
 8000 10,000

Number of function evaluations

2000

3000

4000

5000

6000

M
in

im
um

 v
al

ue

CEC2020_F2

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

800

1000

1200

1400

1600

1800

2000

M
in

im
um

 v
al

ue

CEC2020_F3

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

1000
 2000
 3000

0

5

10

10
9
 ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

1

2

3

4

5

M
in

im
um

 v
al

ue

10
6
 CEC2020_F4

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

1

2

3

4

5

6

M
in

im
um

 v
al

ue

10
7
 CEC2020_F5

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

2000
 4000
 6000
 8000
10,000

Number of function evaluations

2000

2500

3000

3500

4000

M
in

im
um

 v
al

ue

CEC2020_F6

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

500 1000 1500

0

2

4

6

10
5
 ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

1000 1500 2000

0.5

1

1.5

10
7

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

0.5

1

1.5

2

2.5

3

M
in

im
um

 v
al

ue

10
7
 CEC2020_F7

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

2000
 4000
 6000
 8000
 10,000

Number of function evaluations

3000

4000

5000

6000

7000

8000

M
in

im
um

 v
al

ue

CEC2020_F8

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000
 6000
 8000
10,000

Number of function evaluations

3000

3200

3400

3600

M
in

im
um

 v
al

ue

CEC2020_F9

ABC

PSO

CSO

DE

FEP

OFA

SHADE

GA

1000 1500 2000

0

2

4

10
6
 ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

2000
 4000

2900

3000

3100

3200

ABC

PSO

CSO

DE

SSA

OFA

SHADE

TFSSA

Figure 5. Convergence curves of different algorithms on CEC2020 at 20D, F1–F9.

5.1.7. Sensitivity Analysis

This section investigates the sensitivity of TFSSA to (1) parameter a, (2) parameter α,
and (3) parameter c. This analysis helps determine which parameters are more robust and
sensitive to various input values and which parameters have a greater impact on the accu-
racy of TFSSA. This study conducts a complete TFSSA design with some functions selected
from the CEC2020 test suite. These functions include: CEC2020_F1 (20D), CEC2020_F2
(20D), CEC2020_F3 (20D), CEC2020_F1 (10D), CEC2020_F2 (10D), and CEC2020_F3 (10D).
This experiment uses the same fitness function settings as before to ensure fairness. TF-
SSA’s sensitivity analysis results for the test function for all dimensions considered were
investigated based on the average fitness value of 30 independent runs.

(1) Control parameter a: In the initialization of TFSSA, the control parameter a is
involved. To check the sensitivity of TFSSA to a, different values of this parameter were
simulated based on keeping other parameters unchanged, which are 0.75, 0.7, 0.65, and
0.6. The influence of different parameter values on the mean value of TFSSA is shown in
Table 5.

Symmetry 2023, 15, 316 22 of 39

(2) Control parameter α: In the LF mechanism, control parameter α is involved. To
check the sensitivity of TFSSA to α, different values of this parameter were simulated based
on keeping other parameters unchanged, which are 1.4, 1.5, 1.6, and 1.7. The influence of
different parameter values on the mean value of TFSSA is shown in Table 6.

(3) Control parameter c: In the adaptive hyperparameter, c is the adaptation factor of
w, ensuring that w stays as a small value. To check the sensitivity of TFSSA to c, different
values of this parameter were simulated based on keeping other parameters unchanged,
which are 0.8, 0.85, 0.9, and 0.95. The influence of different parameter values on the mean
value of TFSSA is shown in Table 7.

Overall, as can be seen from the results in Tables 5–7, TFSSA has a relatively good sen-
sitivity to parameters a, α, and c, providing relatively reasonable results. TFSSA produced
the best results when a, α, and c were 0.7, 1.5 and 0.9, respectively. It is of great help to study
the sensitivity of the above control parameters to the performance of TFSSA. Furthermore,
these parameters must be fine-tuned to help TFSSA obtain the best global solution.

Table 5. The mean value of TFSSA under different values for parameter a.

a
CEC2020 Functions

F1(20D) F2(20D) F3(20D) F1(10D) F2(10D) F3(10D)

0.75 6.1904× 105 1.5283× 103 7.3278× 102 1.1600× 105 1.3817× 103 7.2266× 102

0.7 2.1390× 102 1.1939× 103 7.0635× 102 1.4375× 103 1.3653× 103 7.2227× 102

0.65 4.2859× 104 1.4243× 103 7.1528× 102 1.2341× 105 1.3561× 103 7.2343× 102

0.6 1.6447× 105 1.3368× 103 7.2416× 102 1.1986× 105 1.3808× 103 7.2283× 102

Table 6. The mean value of TFSSA under different values for parameter α.

α
CEC2020 Functions

F1(20D) F2(20D) F3(20D) F1(10D) F2(10D) F3(10D)

1.4 3.1000× 102 1.5988× 103 7.3278× 102 1.6447× 105 1.3496× 103 7.2484× 102

1.5 2.7088× 106 1.5737× 103 7.3094× 102 8.2635× 104 1.3368× 103 7.2301× 102

1.6 3.1951× 106 1.5540× 103 7.3159× 102 1.4045× 105 1.3567× 103 7.2416× 102

1.7 3.2479× 106 1.5684× 103 7.3130× 102 1.2841× 105 1.3618× 103 7.2345× 102

Table 7. The mean value of TFSSA under different values for parameter c.

c
CEC2020 Functions

F1(20D) F2(20D) F3(20D) F1(10D) F2(10D) F3(10D)

0.8 3.0500× 102 1.5829× 103 7.4364× 102 1.1963× 105 1.3653× 103 7.2374× 102

0.85 3.1280× 103 1.5726× 103 7.3054× 102 1.6447× 105 1.3688× 103 7.2416× 102

0.9 2.1200× 102 1.2726× 103 7.2054× 102 1.1696× 105 1.3368× 103 7.2203× 102

0.95 4.9988× 103 1.1999× 103 7.0672× 102 1.2519× 105 1.3780× 103 7.2311× 102

5.1.8. Runtime Analysis

Tables 8–10 show the running time of TFSSA and the comparison algorithm at 10D,
15D, and 20D. It can be seen that the running time of TFSSA on all test functions is slightly
longer than most comparison algorithms. The main reasons for the above phenomenon are
as follows:

1. When mutating the optimal individual, TFSSA compares the calculated r with the
random value rand and mutates the optimal individual. This stage is more expensive than
the original SSA.

2. The optimal individual must reorder the fitness function values after passing
through the ψ-Tent chaotic mutation. Sorting is time-consuming, so this stage is also one of
the main reasons for the increase in running time.

Symmetry 2023, 15, 316 23 of 39

The running time of TFSSA in the study is slightly higher than most of these com-
parison algorithms. Still, in the end, considering the performance improvement, these
additional running times are negligible to a certain extent.

Table 8. Running times of different algorithms on CEC2020 at 10D.

ABC PSO CSO DE SSA OFA SHADE TFSSA

0.117 0.123 0.190 0.132 0.194 0.103 0.178 0.141
0.136 0.144 0.210 0.148 0.217 0.105 0.213 0.164
0.130 0.136 0.199 0.141 0.196 0.103 0.202 0.146
0.121 0.130 0.195 0.131 0.202 0.100 0.198 0.136
0.172 0.126 0.209 0.144 0.215 0.120 0.213 0.153
0.148 0.130 0.231 0.152 0.200 0.119 0.196 0.160
0.142 0.154 0.231 0.195 0.228 0.109 0.209 0.196
0.202 0.168 0.256 0.167 0.295 0.151 0.238 0.167
0.260 0.176 0.391 0.221 0.312 0.166 0.281 0.215
0.260 0.188 0.265 0.192 0.257 0.146 0.238 0.215

Table 9. Running times of different algorithms on CEC2020 at 15D.

ABC PSO CSO DE SSA OFA SHADE TFSSA

0.27314 0.17447 0.21609 0.18038 0.25067 0.13861 0.19847 0.19285
0.17174 0.14590 0.21438 0.23227 0.24845 0.12954 0.20751 0.19680
0.14075 0.14449 0.18067 0.17106 0.24346 0.12337 0.18830 0.19825
0.13625 0.13080 0.19684 0.15475 0.22128 0.12704 0.18636 0.17833
0.18806 0.15771 0.22111 0.19518 0.25376 0.12731 0.21287 0.20431
0.16081 0.16362 0.22160 0.18305 0.25280 0.11954 0.21252 0.19229
0.18113 0.16160 0.22597 0.18884 0.25475 0.13430 0.21125 0.20429
0.18804 0.17925 0.28799 0.19967 0.27466 0.15683 0.22740 0.23170
0.20090 0.22087 0.27973 0.26221 0.29791 0.17547 0.26660 0.25203
0.21197 0.21208 0.33228 0.21209 0.30600 0.18752 0.27462 0.23527

Table 10. Running times of different algorithms on CEC2020 at 20D.

ABC PSO CSO DE SSA OFA SHADE TFSSA

0.28840 0.19697 0.19697 0.17951 0.27007 0.12649 0.20115 0.22174
0.18208 0.22409 0.22409 0.28066 0.29550 0.15021 0.22463 0.22936
0.14329 0.19587 0.19587 0.19650 0.30428 0.12872 0.21098 0.22780
0.15119 0.20386 0.20386 0.19689 0.25890 0.12878 0.21079 0.20586
0.17717 0.22385 0.22385 0.20411 0.27980 0.14777 0.22679 0.23241
0.17056 0.20903 0.20903 0.19523 0.27751 0.14084 0.21278 0.22460
0.19126 0.22421 0.22421 0.20025 0.29574 0.16213 0.22949 0.21372
0.22325 0.27305 0.27305 0.24980 0.30859 0.19916 0.25927 0.25078
0.22689 0.32813 0.32813 0.29938 0.32780 0.22705 0.30924 0.28994
0.24966 0.31390 0.31390 0.25017 0.34546 0.18456 0.29214 0.26953

5.2. Performance of Proposed Model
5.2.1. Description of Data

The utility and strength of our suggested strategy will be thoroughly investigated by
selecting features from well-known datasets. Twenty-one datasets are from the UCI machine
learning repository [95] and can be accessed online (https://www.openml.org/search,
accessed on 20 January 2023). Table 11 gives a summary of the datasets used. The number
of features (#Feat), samples (#SMP), classes (#CL), and the area to which each dataset
belongs are all provided for each dataset.

https://www.openml.org/search

Symmetry 2023, 15, 316 24 of 39

Table 11. Dataset descriptions.

No. Dataset #Feat #SMP #CL Area

1 BreastCO 9 699 2 Medical
2 BreastCWD 30 569 2 Medical
3 Clean-1 166 476 2 Physical
4 Clean-2 166 6598 2 Physical
5 CongressVR 16 435 2 Social
6 Exactly-1 13 1000 2 Biology
7 Exactly-2 13 1000 2 Biology
8 StatlogH 13 270 5 Life
9 IonosphereVS 34 351 2 Physical
10 KrvskpEW 36 3196 2 Game
11 Lymphography 18 148 4 Medical
12 M-of-n 13 1000 2 Biology
13 Penglung 325 73 2 Biology
14 Semeion 265 1593 2 Computer
15 SonarMR 60 208 2 Physical
16 Spectheart 22 267 2 Life
17 3T Endgame 9 958 2 Game
18 Vote 16 300 2 Life
19 WaveformV2 40 5000 3 Physical
20 Wine 13 178 3 Physical
21 Zoology 16 101 7 Life

5.2.2. Parameter Configuration

Several top-of-the-line and most recent FS techniques are contrasted with the suggested
approach, which is summarized as follows:

• Genetic Algorithm (GA) [96].
• Dragonfly Algorithm (DA) [97].
• Ant Lion Optimizer (ALO) [98].
• Sparrow Search Algorithm (SSA) [70].
• Sine Cosine Algorithm (SCA) [99].
• Particle Swarm Optimizer (PSO) [89].
• binary Butterfly Optimization Algorithm (bBOA) [100].
• Brain Storm Optimizer (BSO) [101].
• Improved Sparrow Search Algorithm (ISSA) [102].
• Grey Wolf Optimizer (GWO) [103].

Each algorithm runs 20 times independently with a random seed. For all subsequent
tests, the maximum number of repetitions is set at 100. In the population, there are seven
search agents. For our evaluations, we test our approach with a 10-fold cross-validation.
Table 12 shows the global and algorithm-specific parameter settings. To ensure a fair
comparison of the algorithms, the parameters of the algorithms are gathered from the
literature. The main purpose of this research is to evaluate the performance of numerous
FS methods compared to the proposed methodology. The K-NN classifier is a popular
wrapper approach for FS. When K = 5, the method produces superior results.

Table 12. Experiment parameter configuration.

Parameter Description Value (s)

a parameter in Tent chaos 0.7
α parameter in Lévy flights 1.5
λ parameter in Fitness 0.99
µ parameter in Fitness 0.01
Count of runs (M) 20

Symmetry 2023, 15, 316 25 of 39

Table 12. Cont.

Parameter Description Value (s)

The amount of search agents 7
The amount of T_max 100
Problem Dimensions No. of features in each datasets
K for cross-validation 10
Search field {0, 1}
GA crossover ratio 0.9
GA mutation ratio 0.1
Selection strategy in GA Roulette wheel
A factors in WOA [0, 2]
Acceleration factors in PSO [0, 2]
Inertia index(w) in PSO [0.9, 0.6]
A factors in GWO {0, 2}
Mutation rate r in ALO [0, 0.9]
Parameter(a) in bBOA 0.1
Parameter(c) in bBOA [0.01, 0.25]
The amount of clusters in BSO 5

5.2.3. Evaluation Criteria

For each experiment, we randomly split each dataset into three unequal parts at
random: training, testing, and validation datasets, with a ratio of 6:2:2. The dataset
partition process was repeated ten times in each 10-fold cross-validation, and the average
performance of accuracy for these ten results is compared for all methods. The following
assurances are captured from the validation data for each run:

• Classification average accuracy (AvgPerf) is a metric that indicates how accurate the
classifier is given the provided feature set. Equation (20) can be used to receive the
classification average accuracy.

AvgPer f =
1
N

N

∑
i=1

1
M

M

∑
j=1

Match(Ci, Li), (20)

where M denotes the amount of times the optimizer is run to pick the feature subset, N
denotes the number of points in the test set, Ci denotes the output label of the classifier
for data point i, and Li denotes the data point i’s reference class label. If the two input
labels are identical, the Match function returns 1 if they are. Otherwise, it returns 0.

• Statistical Best is the optimistic fitness value (the minimum value) obtained after each
feature selection method runs M times, as shown in Equation (21).

Best =
M

min
i=1

gi
* , (21)

where gi
∗ indicates the best result determined after i times of operation.

• Statistical Worst is the pessimistic result, which can be expressed as shown in Equation (22).

Worst =
M

max
i=1

gi
∗. (22)

• Statistical Mean is the average value of the solution obtained by running under the
condition of M times, as shown in Equation (23).

Mean =
1
M

M

∑
i=1

gi
∗. (23)

Symmetry 2023, 15, 316 26 of 39

• Statistical Std is a representation of the variation in the obtained minimum (best)
solutions for M different runs of a stochastic optimizer. Std is a stability and robustness
metric for optimizers; if Std is small, the optimizer always converges to the same
solution; on the contrary, the optimizer produces numerous random outcomes, as
shown in Equation (24).

Std =

√
1

M− 1 ∑
(

gi∗ −Mean
)2. (24)

• Selection average size (AVGSelectionSZ) represents the average amount of features
selected, as shown in Equation (25).

AVGSelectionSZ =
1
M

M

∑
i=1

size
(

gi
∗
)

Di
, (25)

where Di is the dimension of each dataset, and size(x) is the amount of on values for
the vector x.

• Wilcoxon rank sum test is a nonparametric statistical test designed to see if the results of
a proposed new technique are statistically different from those of other comparative
techniques. The rank sum test produces a p-value parameter that compares the
significance level of the two methods. The p-value is less than 0.05, which indicates
that the two methods are significantly different [104,105].

5.2.4. Comparison of TFSSA and Other FS Methods

In this section, the performance of the best strategy, TFSSA, is compared to that of
nine approaches (including the BSO, ALO, PSO, GWO, GA, bBOA, DA, SSA, and ISSA)
that have been widely used to address the FS problem in the literature. Some performance
indicators used to evaluate the algorithm’s performance include classification average
accuracy, selected average feature number, selected average feature rate, statistical best
fitness, statistical worst fitness, statistical mean fitness, statistical Std, calculation time, and
Wilcoxon rank-sum test.

In Table 13, the classification average accuracy achieved by each algorithm is com-
pared. TFSSA is preferred over other algorithms in most datasets except Exactly-1 and
SonarMR. Furthermore, Figure 6 shows the overall average classification accuracy selected
by different algorithms on all datasets. We can see that the proposed algorithm ranks first
with a classification accuracy of 0.9011. This result confirms that the proposed TFSSA can
effectively explore the solution search space and find the optimal feature subset with the
highest classification accuracy.

0.8499
0.7827

0.8517 0.853 0.8602 0.8657 0.8563 0.8506 0.8533 0.9011

0.00

0.25

0.50

0.75

ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA
Algorithms

To
ta

l a
ve

ra
ge

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Figure 6. The average classification accuracy selected by the algorithms.

Symmetry 2023, 15, 316 27 of 39

Table 13. Comparison of the classification accuracy of each algorithm.

No. Datasets ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA

1 BreastCO 0.9591 0.9200 0.9597 0.9603 0.9609 0.9286 0.9626 0.9600 0.9611 0.9668
2 BreastCWD 0.9392 0.9020 0.9488 0.9375 0.9385 0.9396 0.9385 0.9347 0.9396 0.9718
3 Clean-1 0.8465 0.8261 0.8697 0.8580 0.8549 0.8562 0.8541 0.8431 0.8585 0.8923
4 Clean-2 0.9496 0.9391 0.9423 0.9463 0.9465 0.9480 0.9487 0.9462 0.9510 0.9667
5 CongressVR 0.9370 0.8547 0.9413 0.9327 0.9235 0.9280 0.9318 0.9321 0.9349 0.9521
6 Exactly-1 0.7061 0.6021 0.7306 0.7249 0.7471 0.8531 0.7481 0.7091 0.7197 0.8524
7 Exactly-2 0.6980 0.6345 0.6940 0.6929 0.6959 0.6527 0.7007 0.6985 0.6977 0.7472
8 StatlogH 0.7773 0.6948 0.7867 0.7768 0.7788 0.7583 0.7773 0.7595 0.7842 0.8127
9 IonosphereVS 0.8595 0.8538 0.8938 0.8682 0.8485 0.8639 0.8708 0.8890 0.8826 0.9042
10 KrvskpEW 0.9006 0.7603 0.9215 0.9143 0.9200 0.8580 0.9269 0.8929 0.8980 0.9360
11 Lymphography 0.7863 0.6931 0.8164 0.7629 0.7906 0.8613 0.7793 0.7736 0.7880 0.8667
12 M-of-n 0.8184 0.7033 0.7988 0.8272 0.8425 0.8689 0.8293 0.8361 0.8549 0.9020
13 Penglung 0.8072 0.7676 0.6721 0.8341 0.8140 0.8482 0.8268 0.8331 0.7951 0.8745
14 Semeion 0.9584 0.9461 0.9557 0.9471 0.9476 0.9480 0.9521 0.9449 0.9504 0.9729
15 SonarMR 0.8487 0.7936 0.8750 0.8622 0.8667 0.8614 0.8506 0.8449 0.8506 0.8634
16 Spectheart 0.7881 0.7507 0.8097 0.7846 0.7841 0.7643 0.8000 0.7826 0.7871 0.8443
17 3T Endgame 0.7587 0.6601 0.7609 0.7537 0.8622 0.8667 0.7564 0.7557 0.7546 0.8983
18 Vote 0.9258 0.8413 0.9333 0.9196 0.9258 0.9618 0.9227 0.9196 0.9200 0.9695
19 WaveformV2 0.7066 0.6150 0.6921 0.7096 0.7192 0.7827 0.7154 0.7091 0.7044 0.7929
20 Wine 0.9543 0.8652 0.9536 0.9476 0.9521 0.9474 0.9551 0.9506 0.9566 0.9843
21 Zoology 0.9216 0.8131 0.9294 0.9525 0.9451 0.8827 0.9359 0.9476 0.9307 0.9525

AVG. 0.8499 0.7827 0.8517 0.8530 0.8602 0.8657 0.8563 0.8506 0.8533 0.9011

The bolded values represent the best outcomes.

Table 14 compares the average number and ratio of features selected by different
algorithms. Both tables show that TFSSA outperforms the other algorithms in the 13
datasets. Although the number of features chosen by TFSSA is not optimal in the other eight
datasets, it is not significantly different from other outperformed methods. Figure 7 shows
the population’s average number of features and proportions chosen by the algorithm. The
experiment shows that the average number of features and ratios selected by TFSSA in
all datasets ranks first, with 30.97 and 0.468, respectively. Although the advantage is not
apparent, it can prove that TFSSA outperforms other algorithms in most datasets to ensure
high classification accuracy. In analyzing algorithm performance, we want to pay more
attention to the classification average accuracy and the average number of features.

41.98

34.25 32.48

40.41 39.16

32.68

39.65
36.37 38.07

30.97

0

10

20

30

40

ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA
Algorithms

A
vg

. N
o.

 o
f t

he
 s

el
ec

te
d

fe
at

ur
es

0.759

0.544 0.516

0.707 0.677

0.501

0.695 0.672 0.645

0.468

0.0

0.2

0.4

0.6

ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA
Algorithms

A
vg

. r
at

io
 o

f t
he

 s
el

ec
te

d
fe

at
ur

es

Figure 7. Comparison among algorithms’ total average number of features and the selected fea-
ture ratio.

Symmetry 2023, 15, 316 28 of 39

Table 14. Comparison of the selected average No. of features (AVG.NOF.) and the selected feature
ratio (AVG_Ri) of each algorithm.

No. Dataset
ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA

AVG.NOF. AVG.NOF. AVG.NOF. AVG.NOF. AVG.NOF. AVG.NOF. AVG.NOF. AVG.NOF. AVG.NOF. AVG.NOF.
(AVG_Ri.) (AVG_Ri.) (AVG_Ri.) (AVG_Ri.) (AVG_Ri.) (AVG_Ri.) (AVG_Ri.) (AVG_Ri.) (AVG_Ri.) (AVG_Ri.)

1 BreastCO 7.00
(0.778)

6.40
(0.711)

6.10
(0.678)

6.90
(0.767)

5.70
(0.633)

5.60
(0.622)

6.27
(0.697)

7.20
(0.800)

5.70
(0.633)

4.40
(0.489)

2 BreastCWD 24.27
(0.809)

13.73
(0.458)

12.20
(0.407)

19.00
(0.633)

18.33
(0.611)

16.80
(0.560)

20.00
(0.667)

18.27
(0.609)

20.47
(0.682)

8.40
(0.280)

3 Clean-1 132.00
(0.795)

98.73
(0.595)

98.90
(0.596)

109.60
(0.660)

104.93
(0.632)

91.80
(0.553)

109.67
(0.661)

94.87
(0.572)

90.20
(0.543)

90.27
(0.544)

4 Clean-2 95.00
(0.572)

101.00
(0.608)

94.10
(0.567)

106.00
(0.639)

109.40
(0.659)

92.40
(0.557)

100.40
(0.605)

90.40
(0.545)

92.40
(0.557)

90.28
(0.544)

5 CongressVR 9.87
(0.617)

7.53
(0.471)

7.10
(0.444)

9.80
(0.613)

10.80
(0.675)

6.40
(0.400)

10.87
(0.679)

8.40
(0.525)

9.00
(0.563)

6.15
(0.384)

6 Exactly-1 12.87
(0.990)

7.73
(0.595)

8.10
(0.623)

12.07
(0.928)

9.00
(0.692)

7.60
(0.585)

10.53
(0.810)

12.80
(0.985)

10.47
(0.805)

6.48
(0.498)

7 Exactly-2 8.40
(0.646)

6.27
(0.482)

7.10
(0.546)

7.53
(0.579)

9.40
(0.723)

4.80
(0.369)

8.67
(0.667)

6.27
(0.482)

9.00
(0.692)

4.62
(0.355)

8 StatlogH 10.40
(0.800)

6.60
(0.508)

6.60
(0.508)

8.80
(0.677)

9.07
(0.698)

5.80
(0.446)

9.60
(0.738)

7.47
(0.575)

8.47
(0.652)

4.86
(0.374)

9 IonosphereVS 20.13
(0.592)

15.93
(0.469)

13.50
(0.397)

17.33
(0.510)

19.20
(0.565)

16.20
(0.476)

18.00
(0.529)

19.67
(0.579)

19.07
(0.561)

17.14
(0.504)

10 KrvskpEW 35.80
(0.994)

17.80
(0.494)

18.00
(0.500)

31.60
(0.878)

25.60
(0.711)

17.60
(0.489)

28.60
(0.794)

29.40
(0.817)

20.80
(0.578)

16.91
(0.470)

11 Lymphography 13.33
(0.741)

9.47
(0.526)

8.90
(0.494)

11.80
(0.656)

11.73
(0.652)

8.40
(0.467)

12.53
(0.696)

12.20
(0.678)

8.87
(0.493)

9.17
(0.509)

12 M-of-n 11.27
(0.867)

6.90
(0.531)

7.68
(0.591)

11.27
(0.867)

10.87
(0.836)

6.80
(0.523)

12.13
(0.933)

12.33
(0.948)

10.67
(0.821)

6.30
(0.485)

13 Penglung 172.07
(0.529)

160.60
(0.494)

153.00
(0.471)

162.80
(0.501)

183.33
(0.564)

172.00
(0.529)

175.20
(0.539)

162.33
(0.499)

182.67
(0.562)

161.42
(0.497)

14 Semeion 187.80
(0.709)

162.00
(0.611)

149.40
(0.564)

203.60
(0.768)

171.60
(0.648)

143.20
(0.540)

193.00
(0.728)

161.80
(0.611)

194.40
(0.734)

142.38
(0.537)

15 SonarMR 48.00
(0.800)

30.60
(0.510)

30.30
(0.505)

41.60
(0.693)

37.60
(0.627)

32.80
(0.547)

29.40
(0.490)

34.13
(0.569)

37.13
(0.619)

22.36
(0.373)

16 Spectheart 13.87
(0.630)

10.87
(0.494)

7.00
(0.318)

13.20
(0.600)

12.07
(0.549)

10.80
(0.491)

14.67
(0.667)

11.33
(0.515)

9.60
(0.436)

8.60
(0.391)

17 3T Endgame 8.80
(0.978)

5.88
(0.653)

5.80
(0.644)

7.53
(0.837)

6.73
(0.748)

5.60
(0.622)

7.20
(0.800)

8.07
(0.897)

7.47
(0.830)

5.29
(0.588)

18 Vote 8.40
(0.525)

7.87
(0.492)

5.80
(0.363)

8.47
(0.529)

9.33
(0.583)

5.20
(0.325)

8.87
(0.554)

8.53
(0.533)

9.60
(0.600)

8.67
(0.542)

19 WaveformV2 39.60
(0.990)

29.00
(0.725)

30.40
(0.760)

36.60
(0.915)

35.80
(0.895)

25.00
(0.625)

36.00
(0.900)

37.20
(0.930)

34.40
(0.860)

24.56
(0.614)

20 Wine 11.07
(0.852)

6.67
(0.513)

6.73
(0.518)

10.73
(0.825)

10.07
(0.775)

6.20
(0.477)

9.53
(0.733)

9.07
(0.698)

9.40
(0.723)

6.34
(0.488)

21 Zoology 11.67
(0.729)

7.67
(0.479)

5.35
(0.334)

12.40
(0.775)

11.80
(0.738)

5.20
(0.325)

11.47
(0.717)

11.93
(0.746)

9.60
(0.600)

5.78
(0.361)

AVG. 41.98
(0.759)

34.25
(0.544)

32.48
(0.516)

40.41
(0.707)

39.16
(0.677)

32.68
(0.501)

39.65
(0.695)

36.37
(0.672)

38.07
(0.645)

30.97
(0.468)

The bolded values represent the best outcomes.

As a result, the number of selected attributes affected by the classification accuracy
value is often slightly less than the fitness value. Tables 15–18 present the statistical
measures (best, worst, mean, and Std) obtained by different runs of the algorithm on
each dataset. TFSSA has a lower fitness value than other algorithms, checking the results.
Among them, the average fitness value of TFSSA maintains a leading edge in 17 datasets,
and bBOA outperforms different algorithms in 5 datasets. The overall average fitness of
TFSSA ranked first, with a value of 0.098. The best fitness value of TFSSA maintains the
lead in all datasets except Exactly-1, and its overall best fitness value is 0.076, ranking
first. The worst fitness value of TFSSA outperforms other algorithms in 17 datasets, bBOA
outperforms different algorithms in 4 datasets, and GA outperforms other algorithms in
dataset Clean-1. Table 18 shows that the standard deviation of TFSSA outperforms different
algorithms in 21 datasets and Figure 8 compares the total average standard deviation for
mean fitness values among algorithms, while the standard deviation of GA outperforms
different algorithms in 8 datasets. The standard deviation of bBOA outperforms other
algorithms in 2 datasets. Outperforming different algorithms, the standard deviation of
GWO outperforms other algorithms in the dataset StatlogH.

Symmetry 2023, 15, 316 29 of 39

Table 15. Comparison of the average fitness measure of each algorithm.

No. Dataset ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA

1 BreastCO 0.048 0.084 0.046 0.047 0.045 0.040 0.041 0.046 0.048 0.032
2 BreastCWD 0.068 0.102 0.055 0.068 0.068 0.042 0.068 0.067 0.071 0.045
3 Clean-1 0.160 0.177 0.134 0.147 0.150 0.113 0.151 0.147 0.160 0.108
4 Clean-2 0.055 0.065 0.062 0.060 0.060 0.051 0.057 0.054 0.058 0.041
5 CongressVR 0.069 0.149 0.063 0.073 0.082 0.045 0.074 0.042 0.072 0.035
6 Exactly-1 0.301 0.400 0.270 0.282 0.257 0.040 0.257 0.286 0.298 0.229
7 Exactly-2 0.305 0.367 0.308 0.310 0.308 0.260 0.303 0.306 0.303 0.240
8 StatlogH 0.228 0.307 0.216 0.228 0.226 0.180 0.228 0.220 0.244 0.185
9 IonosphereVS 0.145 0.149 0.109 0.136 0.124 0.096 0.133 0.122 0.116 0.081
10 KrvskpEW 0.108 0.242 0.083 0.094 0.086 0.054 0.080 0.140 0.116 0.044
11 Lymphography 0.219 0.309 0.187 0.241 0.214 0.189 0.225 0.216 0.231 0.109
12 M-of-n 0.188 0.299 0.205 0.180 0.164 0.027 0.178 0.152 0.172 0.024
13 Penglung 0.196 0.235 0.129 0.169 0.190 0.118 0.177 0.209 0.170 0.106
14 Semeion 0.045 0.049 0.039 0.050 0.059 0.036 0.055 0.057 0.052 0.021
15 SonarMR 0.158 0.209 0.128 0.143 0.138 0.086 0.155 0.154 0.159 0.079
16 Spectheart 0.216 0.252 0.192 0.219 0.219 0.160 0.205 0.217 0.220 0.120
17 3T Endgame 0.249 0.342 0.243 0.252 0.253 0.205 0.249 0.251 0.251 0.219
18 Vote 0.079 0.162 0.070 0.085 0.079 0.044 0.082 0.085 0.085 0.037
19 WaveformV2 0.300 0.386 0.319 0.297 0.287 0.265 0.291 0.301 0.298 0.254
20 Wine 0.054 0.139 0.051 0.060 0.055 0.023 0.052 0.050 0.056 0.023
21 Zoology 0.085 0.190 0.073 0.055 0.062 0.034 0.071 0.075 0.059 0.021

AVG. 0.156 0.220 0.142 0.152 0.149 0.100 0.149 0.152 0.154 0.098

The bolded values represent the best outcomes.

Table 16. Comparison of the best fitness measure of each algorithm.

No. Dataset ALO BS0 GA GWO PSO bBOA DA SSA ISSA TFSSA

1 BreastCO 0.038 0.046 0.040 0.038 0.039 0.024 0.031 0.038 0.038 0.022
2 BreastCWD 0.066 0.065 0.048 0.048 0.049 0.032 0.051 0.052 0.059 0.029
3 Clean-1 0.118 0.130 0.122 0.117 0.100 0.088 0.118 0.100 0.122 0.074
4 Clean-2 0.049 0.058 0.062 0.056 0.058 0.037 0.050 0.052 0.054 0.033
5 CongressVR 0.044 0.076 0.054 0.042 0.048 0.030 0.035 0.045 0.041 0.026
6 Exactly-1 0.267 0.328 0.015 0.173 0.138 0.005 0.155 0.089 0.229 0.224
7 Exactly-2 0.252 0.296 0.295 0.279 0.275 0.225 0.238 0.237 0.270 0.221
8 StatlogH 0.172 0.206 0.202 0.189 0.178 0.138 0.159 0.163 0.194 0.134
9 IonosphereVS 0.111 0.101 0.099 0.088 0.081 0.060 0.104 0.092 0.078 0.056
10 KruskpLW 0.093 0.133 0.063 0.090 0.052 0.036 0.062 0.084 0.111 0.032
11 Lymphography 0.165 0.220 0.168 0.193 0.179 0.183 0.166 0.168 0.169 0.064
12 M-of-n 0.160 0.170 0.140 0.128 0.064 0.005 0.157 0.101 0.035 0.003
13 Penglung 0.085 0.085 0.137 0.085 0.086 0.033 0.035 0.062 0.112 0.029
14 Semeion 0.041 0.046 0.033 0.044 0.042 0.029 0.040 0.047 0.045 0.020
15 SonarMR 0.128 0.139 0.109 0.090 0.091 0.072 0.113 0.081 0.129 0.069
16 Spectheart 0.144 0.198 0.170 0.149 0.166 0.122 0.142 0.159 0.173 0.118
17 3T Endgame 0.213 0.252 0.232 0.223 0.204 0.195 0.217 0.219 0.213 0.183
18 Vote 0.043 0.065 0.061 0.051 0.039 0.016 0.051 0.060 0.050 0.012
19 WaveformLW 0.294 0.338 0.312 0.283 0.271 0.254 0.278 0.291 0.291 0.250
20 Wine 0.029 0.061 0.038 0.019 0.028 0.005 0.031 0.028 0.016 0.003
21 Zoology 0.026 0.025 0.061 0.007 0.008 0.002 0.007 0.009 0.026 0.002

AVG. 0.121 0.145 0.117 0.114 0.105 0.076 0.107 0.104 0.117 0.076

The bolded values represent the best outcomes.

Symmetry 2023, 15, 316 30 of 39

Table 17. Comparison of the worst fitness measure of each algorithm.

No. Dataset ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA

1 BreastCO 0.059 0.196 0.051 0.054 0.06 0.041 0.059 0.056 0.058 0.036
2 BreastCWD 0.083 0.144 0.063 0.085 0.078 0.049 0.09 0.095 0.088 0.049
3 Clean-1 0.193 0.208 0.143 0.187 0.186 0.138 0.178 0.214 0.200 0.153
4 Clean-2 0.060 0.073 0.071 0.063 0.061 0.068 0.059 0.057 0.064 0.043
5 CongressVR 0.110 0.267 0.083 0.110 0.149 0.058 0.107 0.096 0.120 0.053
6 Exactly-1 0.343 0.448 0.378 0.344 0.384 0.115 0.319 0.375 0.335 0.285
7 Exactly-2 0.355 0.517 0.331 0.333 0.335 0.291 0.330 0.337 0.363 0.287
8 StatlogH 0.289 0.378 0.261 0.256 0.288 0.195 0.284 0.277 0.299 0.191
9 IonosphereVS 0.168 0.195 0.134 0.179 0.163 0.118 0.157 0.155 0.157 0.114
10 KruskpLW 0.118 0.344 0.150 0.096 0.164 0.064 0.097 0.176 0.121 0.060
11 Lymphography 0.251 0.378 0.220 0.299 0.276 0.194 0.303 0.261 0.299 0.146
12 M-of-n 0.224 0.391 0.288 0.235 0.287 0.110 0.210 0.236 0.212 0.206
13 Penglung 0.300 0.460 0.190 0.246 0.328 0.169 0.326 0.379 0.273 0.153
14 Semeion 0.049 0.056 0.043 0.064 0.072 0.049 0.070 0.077 0.065 0.025
15 SonarMR 0.216 0.253 0.156 0.218 0.187 0.109 0.217 0.198 0.214 0.103
16 Spectheart 0.271 0.322 0.218 0.265 0.265 0.209 0.252 0.271 0.262 0.201
17 3T Endgame 0.275 0.436 0.255 0.309 0.331 0.216 0.293 0.307 0.293 0.225
18 Vote 0.113 0.256 0.088 0.169 0.119 0.057 0.124 0.138 0.118 0.056
19 WaveformV2 0.304 0.434 0.319 0.316 0.303 0.265 0.299 0.313 0.305 0.259
20 Wine 0.075 0.303 0.082 0.142 0.075 0.028 0.086 0.077 0.076 0.026
21 Zoology 0.158 0.430 0.101 0.203 0.182 0.048 0.125 0.181 0.107 0.039

AVG. 0.191 0.309 0.173 0.199 0.204 0.123 0.190 0.204 0.192 0.129

The bolded values represent the best outcomes.

Table 18. Comparison of the standard deviation fitness measure of each algorithm.

No. Dataset ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA

1 BreastCO 0.008 0.023 0.005 0.011 0.008 0.006 0.011 0.013 0.009 0.005
2 BreastCWD 0.007 0.044 0.003 0.006 0.006 0.003 0.010 0.005 0.005 0.003
3 Clean-1 0.017 0.048 0.008 0.019 0.026 0.010 0.021 0.016 0.020 0.018
4 Clean-2 0.023 0.036 0.136 0.051 0.067 0.012 0.038 0.066 0.025 0.010
5 CongressVR 0.030 0.066 0.014 0.013 0.019 0.020 0.022 0.023 0.025 0.011
6 Exactly-1 0.031 0.051 0.020 0.023 0.029 0.011 0.028 0.035 0.028 0.020
7 Exactly-2 0.019 0.023 0.012 0.022 0.023 0.059 0.015 0.019 0.021 0.054
8 StatlogH 0.009 0.094 0.033 0.002 0.045 0.008 0.014 0.037 0.005 0.011
9 IonosphereVS 0.026 0.049 0.016 0.030 0.028 0.014 0.041 0.032 0.042 0.010
10 KrvskpEW 0.020 0.074 0.054 0.030 0.058 0.033 0.018 0.035 0.049 0.031
11 Lymphography 0.025 0.037 0.013 0.040 0.029 0.018 0.023 0.030 0.021 0.018
12 M-of-n 0.035 0.036 0.016 0.031 0.027 0.035 0.030 0.031 0.025 0.015
13 Penglung 0.020 0.053 0.006 0.026 0.034 0.007 0.023 0.025 0.021 0.018
14 Semeion 0.019 0.057 0.009 0.029 0.019 0.010 0.019 0.024 0.020 0.008
15 SonarMR 0.004 0.088 0.003 0.012 0.012 0.001 0.009 0.009 0.006 0.001
16 Spectheart 0.012 0.067 0.011 0.033 0.012 0.010 0.013 0.014 0.015 0.012
17 3T Endgame 0.035 0.128 0.015 0.047 0.050 0.044 0.037 0.047 0.028 0.041
18 Vote 0.021 0.026 0.009 0.022 0.028 0.016 0.018 0.029 0.022 0.015
19 WaveformV2 0.004 0.005 0.004 0.002 0.001 0.001 0.003 0.002 0.004 0.001
20 Wine 0.072 0.102 0.018 0.046 0.077 0.056 0.077 0.093 0.052 0.018
21 Zoology 0.007 0.002 0.001 0.005 0.002 0.004 0.003 0.006 0.004 0.002

The bolded values represent the best outcomes.

The average execution time of each method in the experiment is shown in Table 19.
Because almost all optimization algorithms employ the same amount of iterations, the
computation time can be used to compare algorithm performance. We receive the fol-
lowing observations from Table 19. The ten EAs have intimate performances regarding
the time consumption for all 21 datasets. As we all know, an EA-based feature selection
technique requires a classifier to evaluate an individual. The time it takes the classifier
to assess a set of features and samples is usually proportional to the number of features
and samples. Therefore, the fitness function is the most time-consuming part of EA-based
feature selection algorithms for datasets with many features or/and models, such as Wave-
formV2, Clean-2, and Semeion. The 10 EA-based algorithms used in the trials all had the
same maximum number of evaluations as their termination conditions, which resulted in
identical time consumption. Among them, TFSSA has the best computing time on seven

Symmetry 2023, 15, 316 31 of 39

datasets. In comparison, GWO performs better on five datasets, and GA performs better
than other optimizers on six datasets, DA, SSA, and ISSA each have a better performance
on one dataset.

Table 19. Comparison of the running time of each algorithm.

No. Dataset ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA

1 BreastCO 4.90 3.02 2.34 3.45 2.39 2.48 2.36 2.32 2.45 2.27
2 BreastCWD 2.87 2.85 2.37 3.61 2.43 2.82 2.41 2.36 2.35 2.32
3 Clean-1 5.31 3.58 4.07 3.39 3.66 4.05 3.61 3.50 3.54 3.84
4 Clean-2 310.83 223.69 279.32 158.67 227.16 171.84 223.70 173.07 182.94 159.32
5 CongressVR 2.88 3.33 2.81 3.32 2.64 3.03 2.59 2.61 2.72 2.59
6 Exactly-1 3.92 4.58 3.85 4.04 4.53 4.06 4.63 5.18 4.65 4.96
7 Exactly-2 4.22 4.62 4.15 4.52 4.82 4.60 4.88 4.20 4.22 4.20
8 StatlogH 2.69 2.96 2.46 3.09 2.49 2.78 2.52 2.62 2.47 2.50
9 IonosphereVS 3.14 3.10 2.58 3.25 2.64 2.96 2.60 2.54 2.57 2.47
10 KrvskpEW 18.16 11.56 10.42 9.53 17.16 13.84 15.89 13.89 13.03 12.07
11 Lymphography 2.68 2.94 2.46 2.98 3.04 2.82 2.38 2.87 2.91 2.69
12 M-of-n 4.08 4.07 3.53 3.39 4.56 4.04 3.74 4.26 4.14 4.19
13 Penglung 7.65 3.10 2.51 2.49 2.56 4.13 2.55 2.50 2.50 2.45
14 Semeion 28.41 14.33 13.10 31.67 24.51 19.92 24.06 21.82 19.21 15.45
15 SonarMR 3.30 2.93 2.39 2.97 2.62 2.92 2.72 2.75 2.59 2.45
16 Spectheart 2.88 2.96 2.45 3.00 2.40 2.80 2.38 2.40 2.38 2.29
17 3T Endgame 4.36 3.99 3.28 4.38 4.49 3.91 4.38 4.25 4.10 4.45
18 Vote 2.89 3.26 2.62 3.25 2.57 2.82 2.60 2.53 2.62 2.47
19 WaveformV2 40.51 25.03 23.48 20.63 27.09 35.56 43.72 34.14 36.64 21.26
20 Wine 2.68 2.92 2.46 3.13 2.45 2.68 2.43 2.43 2.47 2.52
21 Zoology 2.79 4.85 2.33 3.25 2.24 2.66 2.30 2.21 2.19 2.15

In addition, Table 20 shows the Wilcoxon rank-sum test p-values at the 5% significance
level for the Wilcoxon rank-sum test. A p-value of less than 0.05 implies that the null
hypothesis of no meaningful difference at the 5% level is rejected. The p-values in Table 20
confirm that the results of TFSSA are significantly different from those of classical and
top-of-the-line algorithms on most datasets. Specifically, in 12 datasets, the performance is
outstanding, including BreastCWD, Clean-2, Exactly-1, Exactly-2, StatlogH, Lymphography,
M-of-n, SonarMR, Spectheart, 3T Endgame, Vote, and Wine.

Table 20. p-values of the Wilcoxon test of TFSSA vs. others.

Dataset ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA

1 BreastCO 1.09× 10−2 5.06× 10−3 5.03× 10−3 6.91× 10−3 1.09× 10−2 1.14× 10−1 6.87× 10−3 5.06× 10−3 7.63× 10−3 6.11× 10−4

2 BreastCWD 6.48× 10−4 6.23× 10−4 6.32× 10−4 6.49× 10−4 6.43× 10−4 6.58× 10−4 7.12× 10−4 6.58× 10−4 6.45× 10−4 7.62× 10−3

3 Clean-1 6.58× 10−4 9.85× 10−4 2.15× 10−3 8.01× 10−4 2.15× 10−3 8.03× 10−4 1.79× 10−3 6.53× 10−4 4.51× 10−3 7.21× 10−1

4 Clean-2 1.03× 10−2 6.23× 10−4 6.23× 10−4 6.23× 10−4 6.23× 10−4 2.07× 10−3 6.23× 10−4 6.23× 10−4 6.23× 10−4 6.11× 10−4

5 CongressVR 9.85× 10−4 6.58× 10−4 1.19× 10−3 1.21× 10−3 6.58× 10−4 4.51× 10−3 2.16× 10−3 1.47× 10−3 4.51× 10−3 3.44× 10−1

6 Exactly-1 6.52× 10−4 6.58× 10−4 6.42× 10−4 6.48× 10−4 6.58× 10−4 6.48× 10−5 6.58× 10−4 6.52× 10−4 6.58× 10−4 5.39× 10−3

7 Exactly-2 9.87× 10−4 6.58× 10−4 6.47× 10−4 6.58× 10−4 8.05× 10−4 1.21× 10−3 8.05× 10−4 8.05× 10−4 8.98× 10−3 8.86× 10−3

8 StatlogH 9.87× 10−4 6.53× 10−4 6.47× 10−4 9.79× 10−4 6.53× 10−4 8.05× 10−4 6.41× 10−3 6.53× 10−4 7.59× 10−3 8.86× 10−3

9 IonosphereVS 3.09× 10−2 2.31× 10−2 8.20× 10−1 7.83× 10−2 3.34× 10−1 6.09× 10−2 3.07× 10−1 5.32× 10−1 4.60× 10−1 5.23× 10−2

10 KrvskpEW 4.35× 10−2 4.31× 10−2 7.96× 10−2 4.31× 10−2 7.96× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 4.19× 10−2

11 Lymphography 6.58× 10−4 6.58× 10−4 6.47× 10−4 6.58× 10−4 6.58× 10−4 6.58× 10−4 6.52× 10−4 6.58× 10−4 6.58× 10−4 6.11× 10−4

12 M-of-n 6.58× 10−4 6.58× 10−4 6.53× 10−4 6.53× 10−4 6.58× 10−4 6.58× 10−4 6.58× 10−4 6.53× 10−4 6.58× 10−4 6.43× 10−4

13 Penglung 1.71× 10−2 3.14× 10−3 1.40× 10−1 8.83× 10−2 3.09× 10−2 7.83× 10−2 3.56× 10−2 2.68× 10−2 4.95× 10−1 3.02× 10−1

14 semeion 1.38× 10−1 4.31× 10−2 7.96× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 5.31× 10−2

15 SonarMR 6.58× 10−4 6.58× 10−4 6.53× 10−4 6.58× 10−4 1.79× 10−3 6.58× 10−4 6.58× 10−4 6.53× 10−4 6.58× 10−4 6.43× 10−4

16 Spectheart 1.25× 10−2 6.58× 10−4 4.48× 10−3 6.58× 10−4 6.58× 10−4 5.37× 10−3 1.79× 10−3 6.58× 10−4 1.46× 10−2 4.59× 10−2

17 3T Endgame 6.50× 10−4 6.58× 10−4 6.53× 10−4 6.58× 10−4 8.03× 10−4 6.58× 10−4 6.58× 10−4 6.53× 10−4 8.05× 10−4 1.46× 10−2

18 Vote 9.85× 10−4 6.53× 10−4 6.47× 10−4 9.87× 10−4 6.53× 10−4 6.58× 10−4 6.58× 10−4 6.58× 10−4 6.53× 10−4 2.30× 10−2

19 WaveformV2 4.31× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 4.31× 10−2 2.23× 10−1 5.24× 10−2

20 Wine 6.48× 10−4 6.53× 10−4 6.50× 10−4 3.77× 10−3 8.03× 10−4 6.52× 10−4 8.01× 10−4 6.48× 10−4 1.19× 10−3 4.19× 10−3

21 Zoology 3.56× 10−2 3.14× 10−3 4.67× 10−2 6.09× 10−1 3.07× 10−1 1.40× 10−1 6.91× 10−2 3.63× 10−1 9.55× 10−1 2.60× 10−1

The p ≥ 0.05 are underlined.

Symmetry 2023, 15, 316 32 of 39

Overall, the results in Tables 13–18 show that TFSSA can balance exploration and
exploitation in the optimization search process. This experiment employed four large
datasets: Clean-2 (No. 4), krvskpEW (No. 10), Penglung (No. 13), and Semeion (No. 14).
The results indicate that TFSSA outperforms other algorithms in both small and large
datasets. TFSSA outperforms all algorithms in classification average accuracy, selected
average feature number, chose average feature rate, measures of fitness (best, worst, mean,
and Std), and the Wilcoxon rank-sum test.

0.0211

0.0528

0.0191
0.0238

0.0286

0.0163
0.0225

0.0281
0.0213

0.0153

0.00

0.02

0.04

ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA
Algorithms

A
ve

ra
ge

 s
td

 o
f t

he
 fi

tn
es

s
va

lu
es

Figure 8. Comparison of total average standard deviation for mean fitness values among algorithms.

We can conclude from all of these experiments that employing the improved Tent
chaos, LF strategy, and self-adaptive hyper-parameters improves the robustness and per-
formance of the proposed algorithm. This method solves FS difficulties by combining
global search algorithms (suitable for exploration) and local search algorithms (suitable
for development). Establishing a balance between exploration and production in the FS
problem is critical to avoiding many local solutions and discovering an accurate approx-
imation of the optimal solution. This is the primary reason behind TFSSA’s improved
performance compared to the comparative algorithm used in this study. TFSSA has the
fewest features and the highest accuracy among the ten approaches. However, compared
to the other methods utilized in this study, TFSSA takes more calculation time. Another
drawback of the suggested random wrapper-based FS strategy is the imprecision with
which the optimization results can be repeated. The algorithm’s subset of features selected
for different applications has been noted, which may mislead users when determining
which subset to evaluate.

6. Real-World Dataset Instances

COVID-19 is an infectious disease caused by SARS-CoV-2, which has led to an epi-
demic that has continued to this day and has become one of the epidemics with the most
significant number of deaths in human history [106]. The first known patient with the
disease was diagnosed in Wuhan, Hubei Province, China, at the end of 2019 (although the
disease is likely to have infected humans before). Since then, the disease has been detected
worldwide and is still spreading. At the same time, humanity hopes to defeat the virus
through various technologies, so it has once again started a protracted war against the
virus. According to research, Artificial Intelligence (AI) has become a weapon with great
potential to fight SARS-CoV-2 [107].

This section employs the proposed TFSSA for 2019 Coronavirus Disease patient health
prediction, as shown in Figure 9. The dataset of COVID-19 patients (https://github.com/
yyy24601/Covid-19-Patient-Health-Analytics, accessed on 20 January 2023) was gathered
completely from [108]. Tables 21 and 22 give a summary of the real-world datasets used.
This study aimed to predict illness and health based on a given variable. First, the 15
attributes are then translated into numerical numbers. Then, dividing the data into two
groups: the training set and the test set, with a ratio of 8:2.

https://github.com/yyy24601/Covid-19-Patient-Health-Analytics
https://github.com/yyy24601/Covid-19-Patient-Health-Analytics

Symmetry 2023, 15, 316 33 of 39

Figure 9. The proposed TFSSA classification strategy for COVID-19.

Table 21. COVID-19 dataset description.

Dateset No. Features No. Instances Area

COVID-19 15 1085 Medical

Table 22. The description of the 2019 Coronavirus Disease dataset.

No. Features Feature Description

1 code(id) Patients’ identification numbers
2 location The place where patients are situated
3 nationality The country from which the patients come
4 gender The patients’ gender
5 age How old patients are
6 sym_on When people first show symptoms
7 hosp_vis The date patients visit hospital
8 vis_wuhan Whether or not the patients visited Wuhan, CN
9 from_wuhan Whether or not the patients from Wuhan, CN
10 symptom_1 One of the symptoms encountered by patients
11 symptom_2 One of the symptoms encountered by patients
12 symptom_3 One of the symptoms encountered by patients
13 symptom_4 One of the symptoms encountered by patients
14 symptom_5 One of the symptoms encountered by patients
15 symptom_6 One of the symptoms encountered by patients

As can be seen from Figure 10, TFSSA achieves the highest average classification
accuracy of 93.47% and the lowest average feature selection number of 2.1. On the other
hand, the results reveal that for TFSSA inpatient health prediction, around three features
were sufficient. According to the results, the most popular features were id, age, and
nationality. The list of features selected by all FS algorithms is shown in Table 23, where
the selected features are the main features selected by all FS algorithms in all experiments,
and the features not shown in the table are the features that are eliminated. Furthermore,
the data suggest that the TFSSA algorithm has never chosen symptom_4, symptom_5, or
symptom_6. Further, to validate TFSSA’s classification performance, we try to remove
symptoms 4, 5, and 6, and the difference is minor compared to previous experimental
findings. As a result, these features cannot appropriately detect the data pattern in the

Symmetry 2023, 15, 316 34 of 39

patient health prediction process. The performance of TFSSA is observed after eliminating
these characteristics, and the classification accuracy is barely affected. To continue studying
the performance of TFSSA, we remove the original feature (ID) from the dataset. The
experiment revealed that the classification average accuracy is about 91.3%. The researchers
said that in the future, more abundant, detailed, and comprehensive clinical features should
be collected to more accurately predict the health status of patients.

87.42 89.22 87.50 87.16 88.70 88.16 91.12 87.88 89.56 86.74 89.36
93.47

94.58 95.78 95.09 95.24 95.90 94.24 97.48 96.22 97.04 96.46 96.84 98.13

0

25

50

75

100

Original ALO BSO GA GWO PSO bBOA DA SCA SSA ISSA TFSSA
Algorithms

A
cc

ur
ac

y(
%

)

15

3.4 3.2 2.7 3.6 3.2 2.5
3.6 3.9 3.7

2.1
0

5

10

15

Original ALO BSO GA GWO PSO bBOA DA SSA ISSA TFSSA
Algorithms

A
vg

. N
o.

 o
f s

el
ec

te
d

fe
at

ur
es

Figure 10. Accuracy rating and feature size of TFSSA on the COVID-19 dataset.

Table 23. The list of features selected by all FS algorithms.

Algorithm id Age Nationality sym_on from_wuhan

ALO X X X
BSO X X X
GA X X X
GWO X X X
PSO X X X
bBOA X X
DA X X X X
SSA X X X X
ISSA X X X X
TFSSA X X

7. Conclusions

In this paper, we propose a TFSSA that mainly combines a Tent chaotic map, LF,
and self-adaptive hyper-parameters to solve the optimization problems. First, we test the
performance of TFSSA using the scientific standard test function—the CEC2020 benchmark
function and compare it with seven methods in multiple aspects. Second, TFSSA combines a
K-NN classifier to solve the FS problem in wrapper-based mode. Twenty-one datasets from
the UC Irvine Machine Learning Repository are utilized to validate the proposed method’s
performance. In addition, the method is also applied to the diagnosis and prediction of
COVID-19. Nine criteria are reported to evaluate each technique: classification average
accuracy, average selection size, average selection rate, measures of fitness (best, worst,
mean, and Std), computation time, and rank-sum test. Comparing TFSSA with five top-of-
the-line methods (BSO, ALO, PSO, GWO, and GA) and the four latest high-performance
methods (bBOA, DA, SSA, and ISSA), the experimental results show TFSSA achieves the
goal of lowering the number of features and boosting the model’s accuracy by removing
as many irrelevant and redundant features as possible. Therefore, TFSSA can find the
best feature subset and obtain high accuracy when applied to various FS tasks. During
the experiments, we also found that multiple sophisticated initialization processes can
be employed in TFSSA to improve the speed. How to strengthen multiple advanced
initialization procedures will be our future work.

Author Contributions: Conceptualization, Q.Y. and Y.G.; methodology, Q.Y. and Y.G.; software, Q.Y.;
validation, Q.Y., Y.G. and Y.S.; formal analysis, Y.G. and Y.S.; investigation, Y.G.; resources, Y.G.; data
curation, Q.Y. and Y.G.; writing—original draft preparation, Q.Y., Y.G. and Y.S.; writing—review
and editing, Q.Y., Y.G. and Y.S.; visualization, Q.Y., Y.G. and Y.S.; supervision, Y.G. and Y.S.; project

Symmetry 2023, 15, 316 35 of 39

administration, Y.G.; funding acquisition, Y.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Key Project in
Ningxia, China (No. 2022AAC02043), the National Natural Science Foundation of China
(No. 11961001, No. 61561001), the Construction Project of First-class Subjects in Ningxia Higher
Education, China (No. NXYLXK2017B09), the Major Proprietary Funded Project of North Minzu
University, China (No. ZDZX201901), and Basic discipline research projects supported by Nanjing
Securities (NJZQJCXK202201).

Data Availability Statement: Datasets related to this article can be found at (https://archive.ics.uci.
edu/ml/datasets.php, accessed on 20 January 2023), (https://github.com/yyy24601/TFSSA, accessed
on 20 January 2023) and (https://github.com/yyy24601/COVID-19, accessed on 20 January 2023).

Acknowledgments: We acknowledge the valuable comments from the anonymous reviewers. We
would also like to thank the Editors for their generous comments and support during the review process.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Too, J.; Mirjalili, S. A hyper learning binary dragonfly algorithm for feature selection: A COVID-19 case study. Knowl.-Based Syst.

2021, 212, 106553. [CrossRef]
2. Frawley, W.J.; Piatetsky-Shapiro, G.; Matheus, C.J. Knowledge discovery in databases: An overview. AI Mag. 1992, 13, 57.
3. Cios, K.J.; Pedrycz, W.; Swiniarski, R.W. Data mining and knowledge discovery. In Data Mining Methods for Knowledge Discovery;

Springer: Berlin/Heidelberg, Germany, 1998; pp. 1–26.
4. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012,

17, 4831–4845. [CrossRef]
5. García, S.; Ramírez-Gallego, S.; Luengo, J.; Benítez, J.M.; Herrera, F. Big data preprocessing: Methods and prospects. Big Data

Anal. 2016, 1, 9. [CrossRef]
6. Alasadi, S.A.; Bhaya, W.S. Review of data preprocessing techniques in data mining. J. Eng. Appl. Sci. 2017, 12, 4102–4107.
7. Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple

preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [CrossRef]
8. Kamiran, F.; Calders, T. Data preprocessing techniques for classification without discrimination. Knowl. Inf. Syst. 2012, 33, 1–33.

[CrossRef]
9. Luengo, J.; García-Gil, D.; Ramírez-Gallego, S.; García, S.; Herrera, F. Big Data Preprocessing; Springer: Cham, Switzerland, 2020.
10. Shen, C.; Zhang, K. Two-stage improved Grey Wolf optimization algorithm for feature selection on high-dimensional classification.

Complex Intell. Syst. 2021, 8, 2769–2789. [CrossRef]
11. Fu, W.; Wang, K.; Tan, J.; Zhang, K. A composite framework coupling multiple feature selection, compound prediction models

and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed
forecasting. Energy Convers. Manag. 2020, 205, 112461. [CrossRef]

12. Di Mauro, M.; Galatro, G.; Fortino, G.; Liotta, A. Supervised feature selection techniques in network intrusion detection: A critical
review. Eng. Appl. Artif. Intell. 2021, 101, 104216. [CrossRef]

13. Kashef, S.; Nezamabadi-pour, H.; Nikpour, B. Multilabel feature selection: A comprehensive review and guiding experiments.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1240. [CrossRef]

14. Zheng, Q.; Yang, M.; Tian, X.; Jiang, N.; Wang, D. A full stage data augmentation method in deep convolutional neural network
for natural image classification. Discrete Dyn. Nat. Soc. 2020, 2020, 4706576. [CrossRef]

15. Lee, C.Y.; Hung, C.H. Feature ranking and differential evolution for feature selection in brushless DC motor fault diagnosis.
Symmetry 2021, 13, 1291. [CrossRef]

16. Li, J.; Gao, Y.; Wang, K.; Sun, Y. A dual opposition-based learning for differential evolution with protective mechanism for
engineering optimization problems. Appl. Soft Comput. 2021, 113, 107942. [CrossRef]

17. Tsamardinos, I.; Charonyktakis, P.; Papoutsoglou, G.; Borboudakis, G.; Lakiotaki, K.; Zenklusen, J.C.; Juhl, H.; Chatzaki, E.;
Lagani, V. Just Add Data: Automated predictive modeling for knowledge discovery and feature selection. NPJ Precis. Oncol.
2022, 6, 38. [CrossRef]

18. Song, Y.; Wei, L.; Yang, Q.; Wu, J.; Xing, L.; Chen, Y. RL-GA: A reinforcement learning-based genetic algorithm for electromagnetic
detection satellite scheduling problem. Swarm Evol. Comput. 2023, 77, 101236. [CrossRef]

19. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
20. Zhang, J.; Lin, Y.; Jiang, M.; Li, S.; Tang, Y.; Tan, K.C. Multi-label Feature Selection via Global Relevance and Redundancy

Optimization. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Yokohama, Japan, 7–15
January 2020; pp. 2512–2518.

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://github.com/yyy24601/TFSSA
https://github.com/yyy24601/COVID-19
http://doi.org/10.1016/j.knosys.2020.106553
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://dx.doi.org/10.1186/s41044-016-0014-0
http://dx.doi.org/10.1016/j.trac.2020.116045
http://dx.doi.org/10.1007/s10115-011-0463-8
http://dx.doi.org/10.1007/s40747-021-00452-4
http://dx.doi.org/10.1016/j.enconman.2019.112461
http://dx.doi.org/10.1016/j.engappai.2021.104216
http://dx.doi.org/10.1002/widm.1240
http://dx.doi.org/10.1155/2020/4706576
http://dx.doi.org/10.3390/sym13071291
http://dx.doi.org/10.1016/j.asoc.2021.107942
http://dx.doi.org/10.1038/s41698-022-00274-8
http://dx.doi.org/10.1016/j.swevo.2023.101236

Symmetry 2023, 15, 316 36 of 39

21. Xue, B.; Zhang, M.; Browne, W.N. Particle swarm optimisation for feature selection in classification: Novel initialisation and
updating mechanisms. Appl. Soft Comput. 2014, 18, 261–276.

22. Diao, R.; Shen, Q. Nature inspired feature selection meta-heuristics. Artif. Intell. Rev. 2015, 44, 311–340.
23. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and

min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]
24. Park, C.H.; Kim, S.B. Sequential random k-nearest neighbor feature selection for high-dimensional data. Expert Syst. Appl. 2015,

42, 2336–2342. [CrossRef]
25. Oh, I.S.; Lee, J.S.; Moon, B.R. Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 2004,

26, 1424–1437. [PubMed]
26. Du, G.; Zhang, J.; Luo, Z.; Ma, F.; Ma, L.; Li, S. Joint imbalanced classification and feature selection for hospital readmissions.

Knowl.-Based Syst. 2020, 200, 106020. [CrossRef]
27. Zhao, M.; Jha, A.; Liu, Q.; Millis, B.A.; Mahadevan-Jansen, A.; Lu, L.; Landman, B.A.; Tyska, M.J.; Huo, Y. Faster Mean-shift:

GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking. Med. Image Anal. 2021, 71, 102048.
[CrossRef] [PubMed]

28. Zhao, M.; Chang, C.H.; Xie, W.; Xie, Z.; Hu, J. Cloud shape classification system based on multi-channel cnn and improved fdm.
IEEE Access 2020, 8, 44111–44124. [CrossRef]

29. Zimbardo, G.; Malara, F.; Perri, S. Energetic particle superdiffusion in solar system plasmas: Which fractional transport equation?
Symmetry 2021, 13, 2368. [CrossRef]

30. Bi, Y.; Xue, B.; Mesejo, P.; Cagnoni, S.; Zhang, M. A Survey on Evolutionary Computation for Computer Vision and Image
Analysis: Past, Present, and Future Trends. arXiv 2022, arXiv:2209.06399.

31. Xu, J.; Sun, Y.; Qu, K.; Meng, X.; Hou, Q. Online group streaming feature selection using entropy-based uncertainty measures for
fuzzy neighborhood rough sets. Complex Intell. Syst. 2022, 8, 5309–5328. [CrossRef]

32. Chen, L.Q.; Wang, C.; Song, S.L. Software defect prediction based on nested-stacking and heterogeneous feature selection.
Complex Intell. Syst. 2022, 8, 3333–3348. [CrossRef]

33. Xu, J.; Yuan, M.; Ma, Y. Feature selection using self-information and entropy-based uncertainty measure for fuzzy neighborhood
rough set. Complex Intell. Syst. 2021, 8, 287–305. [CrossRef]

34. Jain, R.; Joseph, T.; Saxena, A.; Gupta, D.; Khanna, A.; Sagar, K.; Ahlawat, A.K. Feature selection algorithm for usability
engineering: A nature inspired approach. Complex Intell. Syst. 2021, 1–11. [CrossRef]

35. Jin, B.; Cruz, L.; Gonçalves, N. Deep facial diagnosis: Deep transfer learning from face recognition to facial diagnosis. IEEE Access
2020, 8, 123649–123661. [CrossRef]

36. Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016,
172, 371–381. [CrossRef]

37. Djemame, S.; Batouche, M.; Oulhadj, H.; Siarry, P. Solving reverse emergence with quantum PSO application to image processing.
Soft Comput. 2019, 23, 6921–6935. [CrossRef]

38. Hosseini, S.; Zade, B.M.H. New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and
ANN. Comput. Netw. 2020, 173, 107168. [CrossRef]

39. Wu, H.; Gao, Y.; Wang, W.; Zhang, Z. A hybrid ant colony algorithm based on multiple strategies for the vehicle routing problem
with time windows. Complex Intell. Syst. 2021, 1–18. [CrossRef]

40. Moghaddasi, S.S.; Faraji, N. A hybrid algorithm based on particle filter and genetic algorithm for target tracking. Expert Syst.
Appl. 2020, 147, 113188. [CrossRef]

41. Hamdi, T.; Ali, J.B.; Di Costanzo, V.; Fnaiech, F.; Moreau, E.; Ginoux, J.M. Accurate prediction of continuous blood glucose based
on support vector regression and differential evolution algorithm. Biocybern. Biomed. Eng. 2018, 38, 362–372. [CrossRef]

42. Euchi, J.; Masmoudi, M.; Siarry, P. Home health care routing and scheduling problems: A literature review. 4OR 2022, 20, 351–389.
[CrossRef]

43. Harizan, S.; Kuila, P. Evolutionary algorithms for coverage and connectivity problems in wireless sensor networks: A study. In
Design Frameworks for Wireless Networks; Springer: Berlin/Heidelberg, Germany, 2020; pp. 257–280.

44. Mirjalili, S. Evolutionary algorithms and neural networks. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg,
Germany, 2019; Volume 780.

45. Kamath, U.; Compton, J.; Islamaj-Doğan, R.; De Jong, K.A.; Shehu, A. An evolutionary algorithm approach for feature generation
from sequence data and its application to DNA splice site prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9, 1387–1398.
[CrossRef]

46. Abd-Alsabour, N. A review on evolutionary feature selection. In Proceedings of the 2014 European Modelling Symposium, Pisa,
Italy, 21–23 October 2014; pp. 20–26.

47. Jadhav, S.; He, H.; Jenkins, K. Information gain directed genetic algorithm wrapper feature selection for credit rating. Appl. Soft
Comput. 2018, 69, 541–553. [CrossRef]

48. Ghamisi, P.; Benediktsson, J.A. Feature selection based on hybridization of genetic algorithm and particle swarm optimization.
IEEE Geosci. Remote Sens. Lett. 2014, 12, 309–313. [CrossRef]

49. Wang, X.; Yang, J.; Teng, X.; Xia, W.; Jensen, R. Feature selection based on rough sets and particle swarm optimization. Pattern
Recognit. Lett. 2007, 28, 459–471. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1016/j.eswa.2014.10.044
http://www.ncbi.nlm.nih.gov/pubmed/15521491
http://dx.doi.org/10.1016/j.knosys.2020.106020
http://dx.doi.org/10.1016/j.media.2021.102048
http://www.ncbi.nlm.nih.gov/pubmed/33872961
http://dx.doi.org/10.1109/ACCESS.2020.2978090
http://dx.doi.org/10.3390/sym13122368
http://dx.doi.org/10.1007/s40747-022-00763-0
http://dx.doi.org/10.1007/s40747-022-00676-y
http://dx.doi.org/10.1007/s40747-021-00356-3
http://dx.doi.org/10.1007/s40747-021-00384-z
http://dx.doi.org/10.1109/ACCESS.2020.3005687
http://dx.doi.org/10.1016/j.neucom.2015.06.083
http://dx.doi.org/10.1007/s00500-018-3331-6
http://dx.doi.org/10.1016/j.comnet.2020.107168
http://dx.doi.org/10.1007/s40747-021-00401-1
http://dx.doi.org/10.1016/j.eswa.2020.113188
http://dx.doi.org/10.1016/j.bbe.2018.02.005
http://dx.doi.org/10.1007/s10288-022-00516-2
http://dx.doi.org/10.1109/TCBB.2012.53
http://dx.doi.org/10.1016/j.asoc.2018.04.033
http://dx.doi.org/10.1109/LGRS.2014.2337320
http://dx.doi.org/10.1016/j.patrec.2006.09.003

Symmetry 2023, 15, 316 37 of 39

50. Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic
algorithm for global optimization problems. Knowl.-Based Syst. 2022, 243, 108457. [CrossRef]

51. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A survey on evolutionary computation approaches to feature selection. IEEE Trans.
Evol. Comput. 2015, 20, 606–626. [CrossRef]

52. Maleki, N.; Zeinali, Y.; Niaki, S.T.A. A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature
selection. Expert Syst. Appl. 2021, 164, 113981. [CrossRef]

53. Zhou, Y.; Zhang, W.; Kang, J.; Zhang, X.; Wang, X. A problem-specific non-dominated sorting genetic algorithm for supervised
feature selection. Inf. Sci. 2021, 547, 841–859. [CrossRef]

54. Xue, Y.; Zhu, H.; Liang, J.; Słowik, A. Adaptive crossover operator based multi-objective binary genetic algorithm for feature
selection in classification. Knowl.-Based Syst. 2021, 227, 107218. [CrossRef]

55. Song, X.f.; Zhang, Y.; Gong, D.w.; Sun, X.y. Feature selection using bare-bones particle swarm optimization with mutual
information. Pattern Recognit. 2021, 112, 107804. [CrossRef]

56. Song, X.F.; Zhang, Y.; Gong, D.W.; Gao, X.Z. A fast hybrid feature selection based on correlation-guided clustering and particle
swarm optimization for high-dimensional data. IEEE Trans. Cybern. 2021, 52, 9573–9586. [CrossRef]

57. Li, A.D.; Xue, B.; Zhang, M. Improved binary particle swarm optimization for feature selection with new initialization and search
space reduction strategies. Appl. Soft Comput. 2021, 106, 107302. [CrossRef]

58. Jangir, P.; Jangir, N. A new non-dominated sorting grey wolf optimizer (NS-GWO) algorithm: Development and application to
solve engineering designs and economic constrained emission dispatch problem with integration of wind power. Eng. Appl. Artif.
Intell. 2018, 72, 449–467. [CrossRef]

59. Sathiyabhama, B.; Kumar, S.U.; Jayanthi, J.; Sathiya, T.; Ilavarasi, A.; Yuvarajan, V.; Gopikrishna, K. A novel feature selection
framework based on grey wolf optimizer for mammogram image analysis. Neural Comput. Appl. 2021, 33, 14583–14602. [CrossRef]

60. Chen, H.; Ma, X.; Huang, S. A Feature Selection Method for Intrusion Detection Based on Parallel Sparrow Search Algorithm. In
Proceedings of the 2021 16th International Conference on Computer Science & Education (ICCSE), Lancaster, UK, 17–21 August
2021; pp. 685–690.

61. Da Silva, R.G.; Ribeiro, M.H.D.M.; Mariani, V.C.; dos Santos Coelho, L. Forecasting Brazilian and American COVID-19 cases
based on artificial intelligence coupled with climatic exogenous variables. Chaos Solitons Fractals 2020, 139, 110027. [CrossRef]
[PubMed]

62. Dey, A.; Chattopadhyay, S.; Singh, P.K.; Ahmadian, A.; Ferrara, M.; Senu, N.; Sarkar, R. MRFGRO: A hybrid meta-heuristic
feature selection method for screening COVID-19 using deep features. Sci. Rep. 2021, 11, 24065. [CrossRef]

63. Shaban, W.M.; Rabie, A.H.; Saleh, A.I.; Abo-Elsoud, M. Accurate detection of COVID-19 patients based on distance biased Naïve
Bayes (DBNB) classification strategy. Pattern Recognit. 2021, 119, 108110. [CrossRef]

64. Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No free lunch theorem: A review. In Approximation and
Optimization; Springer: Berlin, Germany, 2019; pp. 57–82. [CrossRef]

65. Liu, T.; Yuan, Z.; Wu, L.; Badami, B. An optimal brain tumor detection by convolutional neural network and enhanced sparrow
search algorithm. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 459–469. [CrossRef]

66. Zhu, Y.; Yousefi, N. Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm. Int. J.
Hydrogen Energy 2021, 46, 9541–9552. [CrossRef]

67. Zhang, C.; Ding, S. A stochastic configuration network based on chaotic sparrow search algorithm. Knowl.-Based Syst. 2021,
220, 106924. [CrossRef]

68. Tuerxun, W.; Chang, X.; Hongyu, G.; Zhijie, J.; Huajian, Z. Fault diagnosis of wind turbines based on a support vector machine
optimized by the sparrow search algorithm. IEEE Access 2021, 9, 69307–69315. [CrossRef]

69. Gad, A.G.; Sallam, K.M.; Chakrabortty, R.K.; Ryan, M.J.; Abohany, A.A. An improved binary sparrow search algorithm for feature
selection in data classification. Neural Comput. Appl. 2022, 34, 15705–15752. [CrossRef]

70. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020,
8, 22–34. [CrossRef]

71. Wu, R.; Huang, H.; Wei, J.; Ma, C.; Zhu, Y.; Chen, Y.; Fan, Q. An improved sparrow search algorithm based on quantum
computations and multi-strategy enhancement. Expert Syst. Appl. 2023, 215, 119421. [CrossRef]

72. Ma, J.; Hao, Z.; Sun, W. Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems. Inf.
Process. Manag. 2022, 59, 102854. [CrossRef]

73. Wang, P.; Zhang, Y.; Yang, H. Research on economic optimization of microgrid cluster based on chaos sparrow search algorithm.
Comput. Intell. Neurosci. 2021, 2021, 5556780. [CrossRef]

74. Zhang, N.; Zhao, Z.; Bao, X.; Qian, J.; Wu, B. Gravitational search algorithm based on improved Tent chaos. Control Decis. 2020,
35, 893–900.

75. Kuang, F.; Xu, W.; Jin, Z. Artificial bee colony algorithm based on self-adaptive Tent chaos search. Control Theory Appl. 2014,
31, 1502–1509.

76. Shan, L.; Qiang, H.; Li, J.; Wang, Z. Chaotic optimization algorithm based on Tent map. Control Decis. 2005, 20, 179–182.
77. Yang, X.S. Firefly algorithm, Levy flights and global optimization. In Research and Development in Intelligent Systems XXVI;

Springer: Berlin/Heidelberg, Germany, 2010; pp. 209–218.

http://dx.doi.org/10.1016/j.knosys.2022.108457
http://dx.doi.org/10.1109/TEVC.2015.2504420
http://dx.doi.org/10.1016/j.eswa.2020.113981
http://dx.doi.org/10.1016/j.ins.2020.08.083
http://dx.doi.org/10.1016/j.knosys.2021.107218
http://dx.doi.org/10.1016/j.patcog.2020.107804
http://dx.doi.org/10.1109/TCYB.2021.3061152
http://dx.doi.org/10.1016/j.asoc.2021.107302
http://dx.doi.org/10.1016/j.engappai.2018.04.018
http://dx.doi.org/10.1007/s00521-021-06099-z
http://dx.doi.org/10.1016/j.chaos.2020.110027
http://www.ncbi.nlm.nih.gov/pubmed/32834591
http://dx.doi.org/10.1038/s41598-021-02731-z
http://dx.doi.org/10.1016/j.patcog.2021.108110
http://dx.doi.org/10.1007/978-3-030-12767-1_5
http://dx.doi.org/10.1177/0954411920987964
http://dx.doi.org/10.1016/j.ijhydene.2020.12.107
http://dx.doi.org/10.1016/j.knosys.2021.106924
http://dx.doi.org/10.1109/ACCESS.2021.3075547
http://dx.doi.org/10.1007/s00521-022-07203-7
http://dx.doi.org/10.1080/21642583.2019.1708830
http://dx.doi.org/10.1016/j.eswa.2022.119421
http://dx.doi.org/10.1016/j.ipm.2021.102854
http://dx.doi.org/10.1155/2021/5556780

Symmetry 2023, 15, 316 38 of 39

78. Cao, W.; Tan, Y.; Huang, M.; Luo, Y. Adaptive bacterial foraging optimization based on roulette strategy. In Proceedings of the
International Conference on Swarm Intelligence, Barcelona, Spain, 26–28 October 2020; Springer: Berlin/Heidelberg, Germany,
2020; pp. 299–311.

79. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185.
80. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem definitions and evaluation criteria for

the CEC 2005 special session on real-parameter optimization. KanGAL Rep. 2005, 2005005, 2005.
81. Tang, K.; Yáo, X.; Suganthan, P.N.; MacNish, C.; Chen, Y.P.; Chen, C.M.; Yang, Z. Benchmark Functions for the CEC’2008 Special

Session and Competition on Large Scale Global Optimization; Nature Inspired Computation and Applications Laboratory, USTC:
Beijing, China, 2007; Volume 24, pp. 1–18.

82. Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter
Optimization; Nanyang Technological University: Singapore, 2010; Volume 24.

83. Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on
Single Objective Real-Parameter Numerical Optimization; Technical Report; Computational Intelligence Laboratory, Zhengzhou
University: Zhengzhou, China; Nanyang Technological University: Singapore, 2013; Volume 635, p. 490.

84. Liang, J.; Qu, B.; Suganthan, P.; Chen, Q. Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-Based
Real-Parameter Single Objective Optimization; Technical Report 201411A; Computational Intelligence Laboratory, Zhengzhou
University: Zhengzhou, China; Nanyang Technological University: Singapore, 2014; Volume 29, pp. 625–640.

85. Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained
Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook
National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017.

86. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Awad, N.H. Evaluating the performance of adaptive GainingSharing knowledge
based algorithm on CEC 2020 benchmark problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation
(CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8.

87. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
88. Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [CrossRef]
89. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
90. Cheng, R.; Jin, Y. A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 2014, 45, 191–204. [CrossRef]

[PubMed]
91. Liu, J.; Lampinen, J. A fuzzy adaptive differential evolution algorithm. Soft Comput. 2005, 9, 448–462. [CrossRef]
92. Zhu, G.Y.; Zhang, W.B. Optimal foraging algorithm for global optimization. Appl. Soft Comput. 2017, 51, 294–313. [CrossRef]
93. Viktorin, A.; Pluhacek, M.; Senkerik, R. Success-history based adaptive differential evolution algorithm with multi-chaotic

framework for parent selection performance on CEC2014 benchmark set. In Proceedings of the 2016 IEEE Congress on
Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 4797–4803.

94. Li, J.; Gao, Y.; Zhang, H.; Yang, Q. Self-adaptive opposition-based differential evolution with subpopulation strategy for numerical
and engineering optimization problems. Complex Intell. Syst. 2022, 8, 2051–2089. [CrossRef]

95. Asuncion, A.; Newman, D. UCI Machine Learning Repository; Irvine University of California: Irvine, CA, USA, 2007.
96. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
97. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]
98. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
99. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
100. Arora, S.; Anand, P. Binary butterfly optimization approaches for feature selection. Expert Syst. Appl. 2019, 116, 147–160.

[CrossRef]
101. Shi, Y. Brain storm optimization algorithm. In Proceedings of the International Conference in Swarm Intelligence, Chongqing,

China, 12–15 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 303–309.
102. Yuan, J.; Zhao, Z.; Liu, Y.; He, B.; Wang, L.; Xie, B.; Gao, Y. DMPPT control of photovoltaic microgrid based on improved sparrow

search algorithm. IEEE Access 2021, 9, 16623–16629. [CrossRef]
103. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
104. Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany,

1992; pp. 196–202.
105. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]
106. Sayed, A.M.; Khattab, A.R.; AboulMagd, A.M.; Hassan, H.M.; Rateb, M.E.; Zaid, H.; Abdelmohsen, U.R. Nature as a treasure

trove of potential anti-SARS-CoV drug leads: A structural/mechanistic rationale. RSC Adv. 2020, 10, 19790–19802. [CrossRef]

http://dx.doi.org/10.1016/j.amc.2009.03.090
http://dx.doi.org/10.1109/TCYB.2014.2322602
http://www.ncbi.nlm.nih.gov/pubmed/24860047
http://dx.doi.org/10.1007/s00500-004-0363-x
http://dx.doi.org/10.1016/j.asoc.2016.11.047
http://dx.doi.org/10.1007/s40747-022-00734-5
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.eswa.2018.08.051
http://dx.doi.org/10.1109/ACCESS.2021.3052960
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1039/D0RA04199H

Symmetry 2023, 15, 316 39 of 39

107. Chen, X.; Tang, Y.; Mo, Y.; Li, S.; Lin, D.; Yang, Z.; Yang, Z.; Sun, H.; Qiu, J.; Liao, Y.; et al. A diagnostic model for coronavirus
disease 2019 (COVID-19) based on radiological semantic and clinical features: A multi-center study. Eur. Radiol. 2020, 30, 4893–4902.
[CrossRef]

108. Iwendi, C.; Bashir, A.K.; Peshkar, A.; Sujatha, R.; Chatterjee, J.M.; Pasupuleti, S.; Mishra, R.; Pillai, S.; Jo, O. COVID-19 patient
health prediction using boosted random forest algorithm. Front. Public Health 2020, 8, 357. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00330-020-06829-2
http://dx.doi.org/10.3389/fpubh.2020.00357

	Introduction
	SSA
	Background of SSA
	Advantages of SSA from Other EA
	Rule Design
	Algorithm Design

	The Proposed Algorithm
	Initialized Population
	LF Mechanism
	Self-Adaptive Hyper-Parameters
	Optimal Individual Mutation by Tent Chaos
	Computational Complexity Analysis
	Time Complexity Analysis
	Space Complexity Analysis

	TFSSA Applied for FS
	Initialization
	Fitness Evaluation
	Termination

	Experimental
	Evaluation of TFSSA
	Benchmark Functions
	Parameter Setting
	Statistical Test
	Solution Accuracy Analysis
	Algorithm Stability Analysis
	Convergence Rate Analysis
	Sensitivity Analysis
	Runtime Analysis

	Performance of Proposed Model
	Description of Data
	Parameter Configuration
	Evaluation Criteria
	Comparison of TFSSA and Other FS Methods

	Real-World Dataset Instances
	Conclusions
	References

