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Abstract: In this paper, we discuss and introduce a new study using an integral operator wm
k,µ

in geometric function theory, especially sandwich theorems. We obtained some conclusions for
differential subordination and superordination for a new formula generalized integral operator. In
addition, certain sandwich theorems were found. The differential subordination theory’s features
and outcomes are symmetric to those derived using the differential subordination theory.
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1. Introduction

Let G(U) be the class of analytic functions in the open unit disk U = {z ∈ C : |z| < 1}.
For a positive integer j and a ∈ C, let G [a, j] be the subclass of G(U) of the form:

f (z) = z + ajzj + aj+1zj+1 + . . . (a ∈ C, j ∈ N = {1, 2, . . .}).

Assume that A is a subclass of G(U) of functions f of the form:

f (z) = z +
∞

∑
j=2

ajzj. (1)

If f ∈ A is given by (1) and g ∈ A is given by g(z) = z + ∑∞
j=2 bjzj , the Hadamard

product (or convolution) for the functions f and g is defined by:

( f ∗ g)(z) = z +
∞

∑
j=2

ajbjzj = (g ∗ f )(z).

The above was defined in [1].
Assuming that both f and g are analytically defined in U, f is called subordinate

to g in U and denoted as f ≺ g. If there is a function, w, which is Schwarz an-
alytic in U, and w(0) = 0, |w(z)| < 1, (z ∈ U), such that f (z) = g(w(z)), (z ∈ U).
Moreover, if the function g is univalent in U, we have the following equivalence:
f (z) ≺ g(z)⇔ f (0) = g(0) and f (U) ⊂ g(U) (see [2–5]).

Definition 1 [6,7]. Let ψ : C 3 ×U → C and h(z) be analytic function is in U. If p(z) and
ψ
(

p(z), zp′(z), z2 p′′ (z); z
)

are univalent in U and if p(z) satisfies the second-order differen-
tial superordination

Symmetry 2023, 15, 295. https://doi.org/10.3390/sym15020295 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15020295
https://doi.org/10.3390/sym15020295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7033-8993
https://doi.org/10.3390/sym15020295
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15020295?type=check_update&version=2


Symmetry 2023, 15, 295 2 of 10

h(z) ≺ ψ
(

p(z), zp′(z), z2 p′′ (z); z
)

, (z ∈ U), (2)

then, p(z) is called a solution of the differential superordination (2). An analytic func-
tion q(z) which is called a subordinant of the solutions of the differential superordination (2),
or more simply a subordinant, if q ≺ p for all the functions p(z) satisfying (2). A univalent
subordinant q̃(z) that satisfies q(z) ≺ q̃(z) for all subordinants q(z) of (2) is called the
best subordinant.

Definition 2 [4]. Let ψ : C 3 ×U → C and let h(z) be univalent function in U. If p(z) is analytic
in U and satisfies the second-order differential subordination:

ψ
(

p(z), zp′(z), z2 p′′ (z); z
)
≺ h(z), (z ∈ U), (3)

then, p is called a solution of the differential subordination (3). The univalent function
q(z) is called a dominant of the solution of the differential subordination (3), or more simply
dominant, if p(z) ≺ q(z) for all p(z) satisfying (3). A dominant q̃(z) that satisfies q̃ ≺ q for
all dominant q(z) of (3) is called the best dominant of (3).

Sufficient requirements for the functions h, q, and ψ that satisfy the following condi-
tion, were obtained by many authors (see [8–20]).

h(z) ≺ ψ
(

p(z), zp′(z), z2 p′′ (z); z
)
⇒ p(z) ≺ q(z), (z ∈ U). (4)

By using the results (see [9–14,18,21] and also [19,22–29]), we obtain sufficient condi-
tions for normalized analytic functions satisfying:

q1(z) ≺
z f ′(z)

f (z)
≺ q2(z),

where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1. In addition,
many authors (see [9–15] and also [3,16–18,23,30]) derived some differential subordina-
tion and superordination results with some sandwich theorems. Our subject has some
applications (see [8,31–38]).

Raina and Poonam Sharma [39] defined an integral operator for µ > −1, k > 0

Ik,µ f (z) =
µ + 1

k
z2− µ+1

k

∫ Z

0
t

µ+1
k −2 f (t)dt,

By using the function f of the form (1). We get:

Ik,µ f (z) = z +
∞

∑
j=2

µ + 1
µ + 1 + k(j− 1)

ajzj. (5)

Now, we will generalize this operator as follows:

wm
k,µ f (z) = z +

∞

∑
j=2

(
µ + 1

µ + 1 + k(j− 1)

)m
ajzj. (6)

We observe that: wm+1
k,µ : G(U)→ G(U) integral operator follows that:

From (6), we note that:
wm

0,0 f (z) = f (z)

z
(

wm+1
k,µ f (z)

)′
=

(µ + 1)
k

(
wm

k,µ f (z)
)
−
(

µ + 1
k
− 1
)(

wm+1
k,µ f (z)

)
. (7)



Symmetry 2023, 15, 295 3 of 10

In this paper, we will establish our differential subordination and superordination
results by the operator wm

k,µ f (z).
The target of this paper is to find sufficient conditions for normalized analytic functions

to get:

q1(z) ≺
(

wm+1
k,µ f (z)

z

)δ

≺ q2(z),

and

q1(z) ≺
(

∝ wm
k,µ f (z) + (1− ∝)wm+1

k,µ f (z)

z

)δ

≺ q2(z),

where q1(z) and q2(z) are given univalent functions in U with q1(0) = q2(0) = 1.

2. Preliminaries

In order to establish our subordination and superordination results, we need the
following lemmas and definitions:

Definition 3 [3]. Denote by Q the set of all functions q that are analytic and injective on U \ E(q),
where U = U

⋃
{z ∈ ∂U}, and E(q) = {ζ ∈ ∂U : q(z) = ∞} and are such that q′(ζ) 6= 0

such that for ζ ∈ ∂U\E(q). Further, let the subclass of Q for which q(0) = a be denoted by
Q(a), Q(0) = Q0, and Q(1) = Q1 = {q ∈ Q, q(0) = 1}.

Lemma 1 [3]. Let q(z) be a convex univalent function in U and let ∝∈ C, ζ ∈ C\{0}, and
suppose that

Re
{

1 +
zq′′ (z)
q′(z)

}
> max

{
0,−Re

(
∝
ζ

)}
.

If p(z) is analytic in U, and

∝ p(z) + ζzp′(z) ≺ ∝ q (z) + ζzq′(z), (8)

then p(z) ≺ q(z) and q is the best dominant.

Lemma 2 [4]. Let q be a univalent function in U and let Φ and θ be analytic in the domain
D containing q(U) with Φ(w) 6= 0, when w ∈ q(U). Put Q(z) = zq′(z)Φ(q(z)) and
h(z) = θ(q(z)) + Q(z). Suppose that,

(i) Q is starlike univalent in U.

(ii) Re
{

zh′(z)
Q(z)

}
> 0 for z ∈ U.

If p is analytic in U with p(0) = q(0), p(U) ⊆ D and

θ (p(z)) + zp′(z)Φ (p(z)) ≺ θ (q(z)) + zq′(z)Φ(q(z)), (9)

then p ≺ q and q is the best dominant.

Lemma 3 [4]. Let q(z) be convex univalent in U and q(0) = 1. Let ζ ∈ C, that Re (ζ) > 0.
If p(z) ∈ G [q(0), 1] ∩ Q and p(z) + ζ zp′(z) is univalent in U, then q(z) + ζ zq′(z) ≺
p(z) + ζ zp′(z), which implies that q(z) ≺ p(z) and q(z) is the best subordinant.

Lemma 4 [6]. Let q(z) be convex univalent in the unit disk U and let θ and Φ be analytic in a
domain D containing q(U). Suppose that

(i) Re
{

θ′(q(z))
Φ(q(z))

}
> 0 for z ∈ U,
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(ii) zq′(z)Φ(q(z)) is starlike univalent in z ∈ U

If p ∈ G[q(0), 1] ∩ Q with p(U) ⊆ D, and θ(p(z)) + zp′(z)Φ(p(z)) is univalent in
U, and

θq(z) + zq′(z)Φ(q(z)) ≺ θ p(z) + zp′(z)Φ(p(z)), (10)

then q ≺ p and q is the best subordinant.

3. Differential Subordination Results

Here, some differential subordination results are introduced using the operator wm
k,µ f (z).

Theorem 1. Let q(z) be univalent convex in the unit disk U and let µ, δ ∈ C, k ∈ C \ {0}.
Suppose that:

Re
{

1 +
zq′′ (z)
q′(z)

}
> max

{
0,−Re

(
δ

µ + 1
k

)}
.

If

τ(m, k, µ, δ) =

(
wm+1

k,µ f (z)

z

)δ(
wm

k,µ f (z)

wm+1
k,µ f (z)

)
, (11)

hold the following subordination:

τ(m, k, µ, δ) ≺ q (z) +
k

δ(µ + 1)
zq′(z), (12)

then
(

wm+1
k,µ f (z)

z

)δ

≺ q(z) and q is the best dominant.

Proof. Set

p(z) =

(
wm+1

k,µ f (z)

z

)δ

.

Then the function p(z) is analytic in U and p(0) = 1. Therefore, if we differentiate
p(z) with respect to z and by (7), in the last equation, it follows that:

zp′(z)
p(z)

=

(
δ

µ + 1
k

)( wm
k,µ f (z)

wm+1
k,µ f (z)

− 1

)
, (13)

then

zp′(z) =

(
wm+1

k,µ f (z)

z

)δ(
δ

µ + 1
k

)( wm
k,µ f (z)

wm+1
k,µ f (z)

− 1

)
. (14)

From the hypothesis the subordination (12) follows and becomes

p(z) +
k

δ(µ + 1)
zp′(z) ≺ q (z) +

k
δ(µ + 1)

zq′(z). (15)

Then by apply Lemma 1, we obtain:

(
wm+1

k,µ f (z)

z

)δ

≺ q(z).

The proof is complete. �



Symmetry 2023, 15, 295 5 of 10

Now, in the above theorem, if we taking the convex function q(z) = 1+Dz
1+Ez , we get the

following corollary:

Corollary 1. Let D, E ∈ C, D 6= E, |E| < 1 and δ > 0, with f ∈ A. Suppose that:

Re
{

1 +
zq′′ (z)
q′(z)

}
> max

{
0,−Re

(
δ

µ + 1
k

)}
.

If

τ(m, k, µ, δ) =

(
wm+1

k,µ f (z)

z

)δ(
wm

k,µ f (z)

wm+1
k,µ f (z)

)
,

hold the following subordination:

τ(m, k, µ, δ) ≺ 1 + Dz
1 + Ez

+
k

δ(µ + 1)
(D− E)z

(1 + Ez)2 .

Then (
wm+1

k,µ f (z)

z

)δ

≺ 1 + Dz
1 + Ez

and 1+Dz
1+Ez is the best dominant.

Theorem 2. Let q(z) be univalent convex in the unit disk U with q(0) = 1, q′(z) 6= 0, z ∈ U
and let ξ, µ, δ, ∝ ∈ C, ρ, k ∈ C \ {0}. Suppose that:

Re
{

zq′′ (z)
q′(z)

− 3ξ

ρ
q2(z) + 1

}
> 0.

If f ∈ A satisfies:

N(ξ, ρ, k, µ, ∝, δ) ≺ ξq3(z)− ρzq′(z), (16)

where

N(ξ, ρ, k, µ, ∝, δ)

=

(
∝ wm

k,µ f (z) + (1− ∝)wm+1
k,µ f (z)

z

)δ
ξ

(
∝ wm

k,µ f (z) + (1− ∝)wm+1
k,µ f (z)

z

)2δ

−ρδ

(
µ + 1

k

)( wm−1
k,µ f (z)

∝ wm
k,µ f (z) + (1− ∝)wm

k,µ f (z)
− 1

)) (17)

then (
∝ wm

k,µ f (z) + (1− ∝)wm+1
k,µ f (z)

z

)δ

≺ q(z), (18)

and q is the best dominant.

Proof. Consider a function p by:

p =

(
∝ wm

k,µ f (z) + (1− ∝)wm+1
k,µ f (z)

z

)δ
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is analytic in U and p(0) = 1, differentiating (18) with respect to z, and using the identity (7),
we get:

zp′(z)
p(z)

= δ

∝
(

wm
k,µ f (z)

)′
+ (1− ∝)

(
wm+1

k,µ f (z)
)′

∝ wm
k,µ f (z) + (1− ∝)wm+1

k,µ f (z)
+ 1

 (19)

by setting θ(w) = ξw3 and Φ(w) = −ρ, where θ is analytic in C and Φ is analytic in C\{0}.
By using Lemma 2, we obtain Q(z) = zq′(z)Φ (q(z)) = −ρzq′(z) and h(z) = θ(q(z)) +

Q(z) = ξq3(z)− ρzq′(z), where Q(z) is a starlike function in U.

Re
{

zh′(z)
Q(z)

}
= Re

{
zq′′ (z)
q′(z)

− 3ξ

ρ
q2(z) + 1

}
> 0.

By a straightforward computation, we obtain:

N(ξ, ρ, k, µ, ∝, δ) = ξ p3(z)− ρzp′(z). (20)

By making use of (17), we obtain:

ξ p3(z)− ρZp′(z) ≺ ξq3(z)− ρZq′(z).

Therefore, by Lemma 2, we get:

(
∝ wm

k,µ f (z) + (1− ∝)wm+1
k,µ f (z)

z

)δ

≺ q.

Thus, the proof is complete. �

4. Differential Superordination Results

Theorem 3. Let q(z) be a convex univalent function in U and q(0) = 1. Let µ, δ ∈C, k ∈ C \ {0}
such that Re

{
δ

µ+1
k

}
> 0. If f ∈ A satisfies:

0 6=
(

wm+1
k,µ f (z)

z

)δ

∈ G[q(0), 1] ∩Q

and τ that is defined as Equation (11) is univalent in U, then q (z) + k
δ(µ+1) zq′(z) ≺ τ(m, k, µ, δ),

which implies that

q(z) ≺
(

wm+1
k,µ f (z)

z

)δ

(21)

and q(z) is the best subordinant.

Proof. If, we put

p =

(
wm+1

k,µ f (z)

z

)δ

. (22)

Differentiating (22) with respect to z, we get

zp(z)′

p(z)
= δ

 z
(

wm+1
k,µ f (z)

)′(
wm+1

k,µ f (z)
) − 1

. (23)
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After some computations and using (10), from (23), we obtain:

p +

(
δ

µ + 1
k

)
zp(z)′ =

(
wm+1

k,µ f (z)

z

)δ(
1 +

(
δ

µ + 1
k

)( wm
k,µ f (z)

wm+1
k,µ f (z)

− 1

))
(24)

and by using Lemma 3 we get:

q(z) ≺
(

wm+1
k,µ f (z)

z

)δ

,

where q(z) is the best subordinant. �

Theorem 4. Let q(z) be a convex univalent function in the unit disk U. Let ξ, ∝, µ, δ ∈ C,
k, ρ ∈ C\{0} such that Re

{
δ

µ+1
k

}
> 0 and f ∈ A. Suppose that:

Re

{
−3

ξ(q(z))2

ρ
q′(z)

}
> 0, f or z ∈ U. (25)

If

0 6=
(

∝ wm
k,µ f (z) + (1− ∝)wm+1

k,µ f (z)

z

)δ

∈ G[q(0), 1] ∩Q,

and
(

∝wm
k,µ f (z)+(1−∝)wm+1

k,µ f (z)
z

)δ

is univalent in U, and

ξq3(z)− ρzq′(z) ≺ N(ξ, ρ, k, µ, ∝, δ), (26)

where N is defined in Equation (17), then

q ≺
(

∝ wm
k,µ f (z) + (1− ∝)wm+1

k,µ f (z)

z

)δ

and q is the best subordinant.

Proof. Define the function p by:

p(z) =

(
∝ wm

k,µ f (z) + (1− ∝)wm+1
k,µ f (z)

z

)δ

. (27)

Differentiating (27) with respect to z, we get

zp′(z)
p(z)

= δ

∝
(

wm
k,µ f (z)

)′
+ (1− ∝)

(
wm+1

k,µ f (z)
)′

∝ wm
k,µ f (z) + (1− ∝)wm+1

k,µ f (z)
+ 1

. (28)

By setting
θ(w) = ξw3 and Φ(w) = −ρ,

we see that θ(w) and Φ(w) are analytic in C and Φ(w) 6= 0, w ∈ C\{0}. In addition,
we obtain:

Q(z) = zq′(z)Φ(q(z)) = −ρZq′(z).
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It is clear that Q(z) is a starlike univalent function in U,

Re
{

θ′(q)
Φ(q)

}
= Re

{
−3

ξ(q(z))2

ρ
q′(z)

}
> 0.

By straightforward computation, we get:

N(ξ, ρ, k, µ, ∝, δ) = ξq3(z)− ρzq′(z), (29)

where N(ξ, ρ, k, µ, ∝, δ) is given by (17). From (26) and (29), we have

ξq3(z)− pzq′(z) ≺ ξ p3(z)− pzp′(z)

Therefore, by Lemma 4, we get:

q ≺
(

∝ wm
k,µ f (z) + (1− ∝)wm+1

k,µ f (z)

z

)δ

,

and q is the best subordinant. �

5. Sandwich Results

If we set Theorem 1 against Theorem 3, we will get the following sandwich result:

Theorem 5. Let q1 and q2 be convex univalent in U with q1(0) = q2(0) = 1, where q1 satisfies
Theorem 1 and q2 satisfies Theorem 3 with

0 6=
(

wm+1
k,µ f (z)

z

)δ

∈ G[q(0), 1] ∩Q,

and τ(z) is defined by (11) such that:

q1 (z) +
k

δ(µ + 1)
zq′1(z) ≺ τ(m, k, µ, δ) ≺ q2 (z) +

k
δ(µ + 1)

zq′2(z).

Then

q1(z) ≺
(

wm+1
k,µ f (z)

z

)δ

≺ q2 (z),

where q1 is the best subordinant and q2 is the best dominant.

Theorem 6. Let q1 and q2 be convex univalent in U with q1(0) = q2(0) = 1, where q1 satisfies
Theorem 2 and q2 satisfies Theorem 4 with

0 6=
(

∝ wm
k,µ f (z) + (1− ∝)wm+1

k,µ f (z)

z

)δ

∈ G[q(0), 1] ∩Q,

and N(z) is defined by relation (17), and suppose Re
{
−3 ξ(q(z))2

ρ q′(z)
}

> 0 such that:

ξq3
1(z)− ρzq′1(z) ≺ N(ξ, ρ, k, µ, ∝, δ) ≺ ξq3

2(z)− ρzq′2(z).

Then

q1 ≺
(

∝ wm
k,µ f (z) + (1− ∝)wm+1

k,µ f (z)

z

)δ

≺ q2,
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where q1 and q2 are the best subordinant and the best dominant, respectively.

6. Conclusions and Future Work

We aimed to give some new results for an integral operator wm
k,µ f (z) for a subclass of

analytic functions in the open unit disk U = {z ∈ C : |z| < 1} using differential subordina-
tions and superordinations. The theorems and corollaries were derived by investigating
relevant lemmas of second-order differential subordinations. Some new outcomes on dif-
ferential subordination and superordination with some sandwich theorems were expressed.
Moreover, several particular cases were also noted. The properties and outcomes of the
differential subordination are symmetry to the properties of the differential superordination
to form the sandwich theorems. The outcomes included in this current paper revealed new
ideas for continuing the study, and we opened some windows for researchers to generalize
the classes to establish new results in univalent and multivalent function theory.
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