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Abstract: Various scholars have lately employed a wide range of strategies to resolve two specific
types of symmetrical fractional differential equations. The evolution of a number of real-world
systems in the physical and biological sciences exhibits impulsive dynamical features that can be
represented via impulsive differential equations. In this paper, we explore some existence and
controllability theories for the Caputo order q ∈ (1, 2) of delay- and random-effect-affected fractional
functional integroevolution equations (FFIEEs). In order to prove that random solutions exist, we
must prove a random fixed point theorem using a stochastic domain and the mild solution. Then we
demonstrate that our solutions are controllable. At the end, applications and example is illustrated
which indicates the applicability of this manuscript.

Keywords: random fixed point; state dependent delay; controllability; functional differential equation;
mild solution; finite delay; cosine and sine family
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1. Introduction

Many different applications have been investigated through the theory of impulsive
fractional differential equations (IFDEs) in the accurate mathematical representation of a
wide variety of practical problems. It is acknowledged as a crucial area for research, as
much as the modelling of impulsive issues in population dynamics, ecology, biotechnology,
and other fields. In real-world situations, many processes and phenomena are characterised
by rapid shifts in their states. The mentioned quick modifications are called impulsive
effects within the system. Instantaneous and noninstantaneous impulses are the two main
forms of impulses discussed in the literature to date. In contrast to the length of a whole
evolution, such as that of shocks and natural disasters, the period of these fluctuations in
instantaneous impulses is insignificant; in the case of noninstantaneous impulses, on the
other hand, the duration of the changes exists throughout a finite time period.

Over the past three decades, the field of mathematical analysis has incorporated
fractional calculus, FDEs, and integrodifferential equations, and the qualitative theory
of these equations on both a theoretical and a practical level. Fundamentally, fractional
calculus theory, the qualitative theory of FDEs and fractional integrodifferential equations,
numerical simulations, and symmetry analysis are mathematical analytical tools used to
study arbitrary-order integrals and derivatives that unify and generalise the conventional
ideas of differentiation and integration. Compared to classical formulations, nonlinear
operators with a fractional order are more useful. Throughout the development of emerging
control theory, the controllability of DEs problems has played a major role. Typically, it
means that a dynamical system may be moved from any initial state to the desired terminal
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state using a set of legal controls. Control theory places much emphasis on the qualitative
characteristics of control systems. There has been particular focus on the controllability of
linear and nonlinear systems in a finite-dimensional space that are described by ordinary
DEs; see [1–4] for a list of researchers who have extended the idea to infinite-dimensional
systems with bounded operators in Banach spaces (BS). The controllability problem was
converted into a fixed-point problem by the authors of [5]. We advise reading [6,7] for
additional information. The authors of [8,9] investigated a variety of functional DEs and
inclusions, and proposed various controllability findings. A family of integrodifferential
evolution equations’ controllability was examined by Dilao et al. [10].

It is often advantageous to handle second-order abstract DEs explicitly rather than
always reducing them to first-order systems. For the investigation of second-order issues,
the theory of strongly continuous cosine families is an invaluable resource. We use some of
the core ideas in cosine family theory [11]. Typically, this means that a dynamical system
may be moved from any initial state to the desired terminal state using a set of legal controls.
Control theory places much emphasis on the qualitative characteristics of control systems.
There has been particular focus on the controllability of linear and nonlinear systems in
finite-dimensional space that are described by ordinary DEs [12,13].

The reader is recommended to read [14–16] for more information on random differ-
ential equations, which are natural generalisations of deterministic DEs and appear in a
variety of applications. The accuracy of our knowledge about the system’s characteristics
determines the nature of a dynamic system. When knowledge about a dynamic system is
exact, a deterministic dynamical system emerges. Moreover, many of the available details
for identifying and assessing dynamic system characteristics are incorrect, uncertain, or im-
precise. To put it another way, determining the parameters of a dynamic system is highly
risky. However, when we have probable knowledge and an understanding of statistical
characteristics, we can use stochastic DEs in mathematically modelling such systems.

Ji-Huan He [17] studied fractal calculus. Wang et al. [18–20] worked on nondifferen-
tiable exact solutions, the modification of the unsteady model, and diverse exact and explicit
solutions. Mehmood et al. [21] worked on a partial DE. Niazi et al. [22], Shafqat et al. [23],
Alnahdi [24], and Abuasbeh et al. [25] investigated the existence and uniqueness of FEEs.
Inspired by the above studies [26], this paper deals with the controllability of the fractional
functional integroevolution equation with delay and random effects:

c
0Dq

νU(χ, ξ) = B1U(χ, ξ) + ϕ(χ, Uχ(., ξ), ξ) +
∫ ν

0 B2 f (χ, ξ)dCv + Bx(ν)Cx(ν)dν, ξ ∈ Θ := [0, κ], ν ∈ [0, T]
U(χ, ξ) + m(U) = $1(χ, ξ); ξ ∈ (−∞, 0],
U′(χ, ξ) = $2(ξ)

(1)

Knowing that complete probability space (Φ, F,℘) given functions ϕ : Θ × D × Ψ →
Ξ, σ1 ∈ D ∈ D × Φ, and infinitesimal generator B1 : D(B1) ⊂ Ξ → Ξ of a strongly
continuous cosine family, the phase space is (Hq(χ))χ∈Rm on Ξ, D, and a real BS is (Ξ, |.|).
Control function P(., ξ) is specified in L2(Θ, Ω), a BS of possible control functions with Ω
as a BS, and B2 is a bounded linear operator (LO) from Ω into Ξ.

The component of D×Φ determined with D×Φ, given by Uξ(ι, ξ) = U(ξ + ι, ξ), ι ∈
(−∞, 0] is denoted by Uχ(., ξ). Here, the state’s existence from the year −∞ to the current
day ξ is represented by the string Uχ(., ξ). Eras Uχ(., ξ) were presumptively part of some
abstract phases D.

First, we suppose random issue

c
0Dq

νU(χ, ξ) = B1U(χ, ξ) + ϕ(χ, Uϑ(χ,Uχ)(., ξ), ξ) +
∫ ν

0 B2 f (χ, ξ)dCv + Bx(ν)Cx(ν)dν, ξ ∈ Θ := [0, κ], ν ∈ [0, T]
U(χ, ξ) + m(U) = $1(χ, ξ); ξ ∈ (−∞, 0],
U′(χ, ξ) = $2(ξ)

(2)

where ϕ : Θ× D × Ψ → Ξ, σ1 ∈ D ∈ D ×Φ are given random functions, B1 : D(B1) ⊂
Ξ→ Ξ is as in problem (1), D is the phase space, ψ; Θ× D → (−∞, κ], and (Ξ, |.|) is a real
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BS. For the key conclusions on Schauder’s fixed theorem [27], and random fixed-point
theorem paired with the family of cosine operators, we employ our’ arguments.

The layout of this article is as follows. Section 2 contains some needed preliminaries
and fundamental results. Sections 3 and 4 present our main results in two cases: infinite
fixed delay and state-dependent delay, respectively. In Sections 5 and 6, we give applications
and an example, respectively. In Section 7, we present the conclusion.

Motivation and Novelties

The incorporation of fractional-order derivatives in delay DEs provides a range of
advantages, including hereditary properties, additional degrees of freedom, and other
advantages of fractional modelling. As these equations are primarily used in control
theory and robotics, the stability and asymptotics of these equations are of vital importance.
However, stability and asymptotic analyses of fractional delay DEs are still in their early
stages. Most of the current stability results on autonomous equations of this type are based
on the root locus of their corresponding characteristic equations, and do not offer a universal
and reliable way of assessing the stability of a given fractional delay DE.

FDEs with a time delay are widely used in natural phenomena, and the fields of science
and engineering. To capture the dynamic behavior of travelling wave solutions on the basis
of these equations, researchers have created algorithms with high performance for various
spatial and time fractional delay DEs. However, there are still challenges to be addressed in
the field of fractional delay DEs, such as the stability analysis of numerical time integration
schemes and the numerical theory of the numerical scheme. Additionally, there is a need
for stability and numerical simulations of travelling wave solutions, critical travelling wave
solutions, and the design of compact fourth- and sixth-order schemes for fractional delay
DEs with strong nonlinearity.

This paper aims to investigate the existence and controllability of solutions to FDEs
with delay and random effects. While the majority of results in the literature have focused
on first-order equations, some researchers produced FDE results. In our study, we obtained
findings for Caputo derivatives of order (1,2) using a mild solution. Stability is a major
area of research in DE theory, and over the past 20 years, stability for FDE has been a
major focus of research. In order to illustrate this, we consider the prerequisites for solution
stability and FDE asymptotic stability. We also examine delay fractional functional random
integroevolution equations.

2. Preliminaries

We discuss a few of the abbreviations, definitions, and theorems that are used through-
out the work in this part. Considering the BS D(Ξ) of bounded LOs from Ξ into Ξ, where
Θ := [0, κ], κ > 0,

||ℵ||D(Ξ) = sup
||χ||=1

||ℵ(U)||.

Let C := C(I, Ξ) be the Banach space of continuous functions U : Θ→ Ξ with the norm

||U||C = sup
χ∈Θ
|U(χ)|.

We follow to the methodology described in [28] and apply the axiomatic description of the
phase space D given in [29]. Once (D, ||.||D) is defined as a seminormed linear space of
functions translating (−∞, 0] into Ξ, we have

(J1) Let U : (−∞, κ)→ Ξ, κ > 0, is a continuous function on Θ and U0 ∈ D, then, for every
χ ∈ Θ, the following hold.

(a) Uχ ∈ D;
(b) There ∃ a positive constant ρ, |U(χ)| ≤ v||Uχ||D.
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(c) There ∃ two functions β(.), ω(.) : Rm
+ → Rm

+ independent of U with β continuous
and bounded and ω locally bounded where:

||Uχ||D ≤ β(χ) sup{|U(ρ)| : 0 ≤ ρ ≤ ρ}+ ω(χ)||U0||D.

(J2) For function U in (A1), Uχ is a D-valued continuous function on Θ.
(J3) The space D is complete.

Set
ς = sup{β(χ) : χ ∈ Θ}, and ω = sup{ω(χ) : χ ∈ Θ}.

Remark 1. 1. (2) is equivalent to |$1||D ≤ v||$1||D∀$1 ∈ D.
2. ||.||D is a seminorm, this implies that the two elements $1, η ∈ D satisfy ||$1 − η||D = 0 not

necessarily that $1(ι) = η(ι)∀ι ≤ 0.
3. For all $1, η ∈ D where ||$1 − χ||D = 0. ⇒ $1(0) = η(0).

Let us present the space

Ξ := {U : (−∞, κ] : U|(∞,0] ∈ D and U|Θ ∈ C},

and let ||U||Ξ be the seminorm in Ξ given by

||U||Ξ = ||$1||D + ||U||C.

Definition 1. Let {Hq(χ) : χ ∈ Rm} be a family of bounded LOs in the Banach space Ψ, which is
a strongly continuous cosine family if

• Hq(0) = I.
• Hq(χ)η is strongly continuous in χ on Rm for each fixed η ∈ Ψ.
• Hq(χ− ρ) = 2Hq(χ)Hq(ρ)∀χ, ρ ∈ Rm.

Let {Hq(χ) : χ ∈ Rm} be a strongly continuous cosine family in Ψ. Define the sine family
{Kq(χ) : χ ∈ Rm} with

Kq(χ)η =
∫ χ

0
Hq(ρ)ηdρ, η ∈ Ξ, χ ∈ Rm.

The infinitesimal generator B1 : Ξ→ Ξ of the cosine family {S(χ) : χ ∈ Rm} is defined by

B1η =
d2

dχ2 Hq(χ)η|χ=0, η ∈ D(B1),

where
D(B1) = {η ∈ Ξ : Hq(.)η ∈ C2(Rm, Ξ)}.

Definition 2. Consider the map φ : Θ× D× ψ→ Ξ is random Caratheodory if

(i) χ→ φ(χ, U, ∆), this map measurable ∀ U ∈ D and for all ∆ ∈ ψ.
(ii) U → φ(χ, U, ∆) is measurable ∀ U ∈ D and for all ∆ ∈ ψ.
(iii) ∆→ φ(χ, U, ∆) is measurable ∀ U ∈ D, and almost χ ∈ Θ.

Let DΞ be the Borel σ-algebra in separable BS Ξ. If, for each Π ∈ DΞ, p−1(Π) ∈ F, then the map
p : ψ → Ξ is a random variable. If G(., p), written as G(∆, p) = G(∆)p, is measurable for each
p ∈ Ξ, then G : ψ× Ξ→ Ξ is a random operator.

Definition 3 ([30]). Let Ǵ be a mapping from ψ into 2Ξ. A mapping G : {(∆, p) : ∆ ∈ ψ ∧
p ∈ Ǵ(∆)} → Ξ is a random operator with stochastic domain Ǵ if and only if, for all closed
Π1 ⊆ Ξ, {∆ ∈ ψ : Ǵ(∆) ∩ Ǵ1 6= ∅} ∈ F, and for all open Π2 ⊆ Ξ and all p ∈ Ξ, {∆ ∈ ψ : p ∈
Ǵ(∆) ∧ G(∆, p) ∈ Π2} ∈ F. G is continuous if every G(∆) is continuous. A mapping p : ψ→ Ξ
is a random fixed point of G if and only if for all ∆ ∈ ψ, p(∆) ∈ Ǵ(∆) and G(∆)p(∆) = p(∆) and
p is measurable if for all open Π2 ⊆ Ξ, {∆ ∈ ψ : p(∆) ∈ Π2} ∈ F.
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Lemma 1 ([30]). Let Ǵ : ψ → 2Ξ be measurable for every ∆ ∈ ψ with Ǵ(∆) closed, convex,
and solid (i.e.,

∫
G(∆) 6= ∅). We assumed the existence of a measurable p0 : ψ → Ξ with

p0 ∈
∫

Ǵ(∆) for all ∆ ∈ ψ. Assume that G is a continuous random operator with the stochastic
domain Ǵ; as such, G(∆)p = p 6= ∅ for any ∆ ∈ ψ, {p ∈ Ǵ(∆). Once this happens, G has a
stochastic fixed point. If the function p(χ, .) is measurable for each χ ∈ Θ, then the mapping of p of
Θ× ψ into Ξ is stochastic.

Definition 4 ([31]). Assume that U is a BS, and φU is the bounded subsets of Ξ. The Kuratowski
measure of noncompactness is map µ : ψU → [0, ∞) given by µ(Π) = inf{ε > 0 : Π ⊆ ∪n

i=1 and
diam(Πi) ≤ ε}; here Π ∈ ψU and verifies the following properties:

(a) µ(Π) = 0⇔ Π̄ is compact.
(b) µ(Π) = µ(Π̄).
(c) Π̃ ⊂ Π⇒ µ(Π̃) ≤ (Π).
(d) µ(Π̃ + Π) ≤ µ(Π̃ + µ(Π)).
(e) µ(εΠ) = |ε|µ(Π); ε ∈ Rm.
(f) µ(convΠ) = µ(B).

Lemma 2 ([32]). µ(g(χ)) is continuous on theta if and only if g ⊂ C(Θ, Ξ) is bounded and
equicontinuous:

µ

({ ∫
Θ

η(ρ)dρ : η ∈ g}
)
≤
∫

Θ
µ(g(ρ))dρ,

where g(χ) = {η(χ) : η ∈ g}, χ ∈ Θ.

Lemma 3 (Gronwall lemma [28]). Assume µ, y ∈ H([0, 1],R+) and let µ be increasing. If u ∈
H([0, 1],R+) satisfies

u(ω) 6 µ(ω) +
∫ ω

0
y(s)u(s)ds, ω ∈ [0, 1],

then
u(ω) 6 µ(ω) exp

∫ ω

0
y(s)u(s)ds, ω ∈ [0, 1].

Definition 5 ([30]). The fractional Riemann–Liouville (RL) derivative is defined as follows.

aDp
ωχ(ω) =

1
Γ(n− p + 1)

(
d

dω

)n+1

∫ ω

a
(ω− τ)n−pχ(τ)dτ, n 6 p 6 n + 1.

Definition 6 ([30]). Caputo fractional derivatives Ca Dα
ωχ(ω) of order α ∈ R+ are defined by

C
a Dα

ωχ(ω) = aDα
ω(χ(ω)−

k−1

∑
=0

χ()(a)
!

(ω− a)),

in which k = [α] + 1.

Definition 7 ([31]). Wright function ψα is defined by

ψα(κ) =
∞

∑
=0

(−κ)

!Γ(−α + 1− α)

=
1
π

∞

∑
=1

(−κ)

(− 1)!
Γ(α) sin(πα),
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α ∈ (0, 1), κ ∈ C.

3. Results of Controllability for the Steady Delay Case

Definition 8. Equation (1) is controllable on the interval (−∞, κ] if, for all final state U1(ξ), there
∃ a control P(., ξ) in L2(Θ, Ω), such that the solution U(χ, ξ) of (1) satisfies U(κ, ξ) = U1(ξ).

Definition 9. A stochastic process U : (−∞, κ]×Φ→ Ξ is a random mild solution of Problem
(1) if U(χ, ξ) = $1(χ, ξ); χ ∈ (−∞, χ], U∞(0, ξ) = $2(ξ), and the restriction of U(., ξ) to the
interval Θ is continuous and verifies:

U(χ, ξ) = Hq(χ)($1(χ, ξ)−m(U)) + Kq(χ)$2(χ) +
∫ ν

0
(χ− ρ)Pq(χ− ρ)B1U(χ, ξ)dρ +

∫ ν

0
(χ− ρ)Pq(χ− ρ)

[ϕ(χ, Uχ(., ξ), ξ)]dρ +
∫ χ

0

(
(χ− ρ)Pq(χ− ρ)

∫ ν

0
B2 f (χ, ξ)dCv + Bx(ρ)Cx(ρ)

)
dρ

Let
ω = sup{||Hq(χ)||D(Ξ) : χ ≥ 0}

and
ω = sup{||Kq(χ)||D(Ξ) : χ ≥ 0}.

The following hypotheses must be introduced:

(H1)Hq(χ) is compact for χ > 0,
(H2)The function φ : Θ× D× ψ→ Ψ is random Caratheodory.
(H3)There ∃ functions η : Θ× φ → Rm

+ and p : Θ× ψ → Rm
+ for each ∆ ∈ ψ, η(., ∆) is

continuous nondecreasing and p(., ∆) integrable with:

|φ(χ,P , ∆)| ≤ p(χ, ∆)η(||P||D, ∆) f ora.e. χ ∈ Θ and each P ∈ D,

(H4)There ∃ a random function Q : ψ→ Rm
+ {0} where:

ω(1 + κωζ(||$1||D + η(D, ∆||p||L1) + κωζ||η1||+ ω′(1 + κωζ)|$2| ≤ Q(∆)

where
D := ζQ(∆) + σ||$1||D,

(H5)The linear i : L2(Θ, Ω)→ Ψ given by

iP =
∫ κ

0
Hq(κ − ρ)B2P(ρ, ∆)dρ

has an inverse operator i−1 in L2(Θ, Ω)/ keri, and there ∃ a positive constant ζ, such
that ||B2i−1|| ≤ ζ,

(H6) for each ∆ ∈ ψ, $(., ∆) is continuous and χ, $1(χ, .) and ∆ ∈ ψ, $2(∆) are measurable.

Theorem 1. Assume that (H1)–(H2) are met; then Problem (1) is controllable on Θ.

Proof. Define the control:

P(χ, ∆) = i−1
(

p1(Θ)− Hq(χ)($1(χ, ξ)−m(U))− Kq(χ)$2(χ)−
∫ ν

0
(χ− ρ)Pq(χ− ρ)B1U(χ, ξ)dρ

−
∫ ν

0
(χ− ρ)Pq(χ− ρ)[ϕ(χ, Uχ(., ξ), ξ)]dρ

)
.

The operator I : ψ × Ξ → Ξ defined by (I(ξ)p)(χ) = $1(χ, ξ), if χ ∈ (−∞, 0], and for
χ ∈ Θ:
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U(χ, ξ) = Hq(χ)($1(χ, ξ)−m(U)) + Kq(χ)$2(χ) +
∫ ν

0
(χ− ρ)Pq(χ− ρ)B1U(χ, ξ)dρ +

∫ ν

0
(χ− ρ)Pq(χ− ρ)

[ϕ(χ, Uχ(., ξ), ξ)]dρ +
∫ χ

0

(
(χ− ρ)Pq(χ− ρ)B−1

i

(
U1(Θ)− Hq(χ)($1(χ, ξ)−m(U))

−Kq(χ)$2(χ)−
∫ ν

0
(χ− ρ)Pq(χ− s)B1U(χ, ξ)dρ−

∫ ν

0
(χ− ρ)Pq(χ− ρ)

[ϕ(χ, Uχ(., ξ), ξ)]dCρ

)
+ Bx(ρ)Cx(ρ)

)
dρ. (3)

We use (H5) to show that I has a fixed point U(χ, ξ) that is a mild solution of (1). This
suggests that Issue (1) is manageable on Θ. Additionally, we establish that I is a random
operator. To prove this, we show that I(.)(U) : ψ→ Ξ is a random variable for any U ∈ Ξ.
The measurement of I(.)(U) : ψ→ Ξ is then shown. Because of the assumptions (H2) and
(H6), the mapping ϕ(χ, U, .), χ ∈ Θ, U ∈ Ξ is measurable. Assume that D : ψ → 2Ξ is
provided by:

D(ξ) = {U ∈ Ξ : ‖U‖Ξ ≤ Q(ξ)}.

D(χ) is bounded, convex, closed, and solid for all ξ ∈ ψ. So, D is measurable. Suppose
ξ ∈ ψ is fixed; then, U ∈ D(ξ) and by (A1), we obtain:

‖Uρ‖D ≤ β(ρ)|U(ρ)|W + ω(ρ)‖U0‖D

≤ ζκ |U(ρ)|+ ωκ‖$1‖D,

and via (H3) and (H4), we have

|(I(ξ)U)(χ)| ≤ ω‖$1‖D + ω′|$2|+ ω
∫ χ

0
|ϕ(ρ, Uρ, ξ)|dρ + ωζ

∫ χ

0
|U1(ξ)|+ ω‖$1‖D

+ω′|$2|dρωζ
∫ χ

0

∫ κ

0
‖Hq(ε− ρ)‖|ϕ(ε, Uε(., ξ), ξ)|dεdρ

≤ ω‖$1‖D + ω′|$2|+ ω
∫ κ

0
p($, ξ)χ(‖Uχ‖D, ξ)dρ + κωζ|U1(ξ)|+ κω2ζ‖$1‖D + κωω′ζ|$2|

+κω2ζ
∫ κ

0
p(ε, ξ)U(‖Uε‖D, ω)dε

≤ ω(1 + κωζ)‖$1|D + κωζ|U1(ξ)|+ ω′(1 + κωζ)|$2|+ ω(1 + κωζ)
∫ κ

0
p(ρ, ξ)U(‖pρ‖D, ξ)dρ

≤ ω(1 + κωζ)

(
‖$1|D + U(Dκ , ξ)

∫ κ

0
p(ρ, ξ)dρ

)
κωζ‖U1(ξ)‖+ ω′(1 + κωζ)|$2|.

Set
Dκ := ζκQ(ξ) + ρκ‖$1‖D.

Then, we have

|(I(ξ)U(χ)| ≤ ω(1 + κωζ)

(
‖$1|D + U(Dκ , ξ)

∫ κ

0
p(ρ, ξ)dρ

)
κωζ‖p1(ξ)‖+ ω′|$2|(1 + κωζ).

Thus

‖I(ξ)U‖Ξ ≤ ω(1 + κωζ)(‖$1‖D + U(Dκ , ω)‖$‖1
L)κωζ|U1(ξ)|+ ω′(1 + κωζ)|$2|

≤ Q(ω).

Thus, we deduce that, with stochastic domain D, I is a random operator and I(ξ) : D(ξ)→
D(ξ) for each ξ ∈ ψ.

Claim 1: I is continuous.
Assume that Un is a sequence where Un → U in Y. Then,
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|(I(ξ)Un)(χ)− (I(ξ)U(χ)| ≤ ω
∫ χ

0
|ϕ(ρ, Un

ρ , ξ)− ϕ(ρ, Uρ, ξ)|dεdρ + ζω
∫ χ

0

∫ κ

0
‖Hq(κ − ε)‖

|ϕ(ε, Un
ε (., ξ)− ϕ(ε, Uε, ξ)|dεdρ

≤ ω
∫ χ

0
|ϕ(ρ, Un

ρ , ξ)− ϕ(ρ, Uρ, ξ)|dεdρ + κω2ζ
∫ κ

0
|ϕ(ε, Un

ε (., ξ)− ϕ(ε, Uε, ξ)|dε

≤ ω(1 + κωζ)
∫ κ

0
|ϕ(ε, Un

ε (., ξ)− ϕ(ε, Uε, ξ)|dε

As ϕ(χ, ., ξ) is continuous, we obtain

‖ϕ(., Un, ξ)− ϕ(., U, ξ)‖L1 → 0 as n→ +∞.

I is continuous.
Claim 2: we show that ξ ∈ ψ, {U ∈ D(ξ) : I(ξ)U = U} 6= ∅ by applying Schauder’s

theorem.

(a) I maps bounded sets into equicontinuous sets in D(ξ).
Assume that ε1, ε2 ∈ [0, κ] with ε2 > ε1, D(ξ) are a bounded set, as in Claim 2,
and U ∈ D(ξ). Now,

|(I(ξ)U)(ε2)− (I(ξ)U)(ε1)| ≤ ‖Hq(ε2)− Hq(ε1)‖D(Ψ)‖$1‖D + ‖Kq(ε2)− Kq(ε1)‖D(Ψ)|$ +
∫ ε1

0
‖Hq(ε2

−ρ)− Hq(ε1 − ρ)‖D(Ψ)|ϕ(ρ, Uρ, ξ)|dρ +
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)|ϕ(ρ, Uρ, ξ)|dρ

+ζ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(Ψ) × [|U1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖$1‖D +

‖Kq(κ)‖D(Ψ)|$2|]dρ + ζ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(Ψ)

∫ κ

0
‖Hq(κ − ε)‖D(Ψ)|

ϕ(ε, Uε(., ξ), ξ)|dεdρ + ζ
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)[|U1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖$1‖D + ‖Hq(κ)‖D(Ψ)|$2|]dρ

+ζ
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)

∫ κ

0
‖Hq(κ − ε)‖D(Ψ)|ϕ(ε, Uε(., ξ)ξ)|dεdρ

≤ ‖Hq(ε− ρ)− Hq(ε1 − ρ)‖D(Ψ)‖$1‖D + ‖Kq(ε2)− Kq(ε1)‖D(Ψ)|$2|U(Dκ , ξ)
∫ ε1

0
‖Hq(ε2 − ρ)

−Hq(ε1 − ρ)‖D(Ψ)U(ρ, ξ)dρ + ωx(Dκ , ξ)
∫ ε2

ε1

p(ρ, ξ)dρ + ζ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(Ψ)

×[|U1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖$1‖D + ‖Kq(κ)‖D(Ψ)|$2|]dρ + ζωU(Dκ , ξ)
∫ ε1

0
‖Hq(ε2 − ρ)

−Hq(ε1 − ρ‖D(Ψ)

∫ κ

0
U(ε, ξ)dεdρζω

∫ ε2

ε1

(|U1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖$1‖D + ‖Kq(κ)‖D(Ψ)|$2|

+ωU(Dκ , ξ)
∫ κ

0
U(ε, ξ)dεdρ.

In the above inequality, right-hand side tends to zero as ε2− ε1 → 0, since Hq(χ), Kq(χ)
are compact for χ > 0 and strongly continuous; then, we obtain the continuity in the
uniform operator topology [12,33].

(b) Assume that χ ∈ [0, κ] is, fixed and U ∈ D(ξ): by assumption (H3), (H5); since Hq(χ)
is compact, the set{ ∫ χ

0
Hq(χ− ρ)ϕ(ρ, Uρ(., ξ), ξ)dρ

∫ χ

0
Hq(χ− ρ)B2p(χ, ξ)dρ

}
is precompact in Ψ; then, the set
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{
Hq(χ)($1(χ, ξ)−m(U)) + Kq(χ)$2(χ) +

∫ χ

0
(χ− ρ)Pq(χ− s)B1U(χ, ξ)dρ +

∫ χ

0
(χ− ρ)Pq(χ− s)

[ϕ(χ, U2(., ξ), ξ)]dρ +
∫ χ

0

(
(χ− ρ)Pq(χ− ρ)

∫ ν

0
B2 f (χ, ξ)dCv + Bx(ρ)Cx(ρ)

)
dρ

}
is precompact in Ψ. Thus, I(ξ) : D(ξ) → D(ξ) is continuous. Through compact
Schauder’s theorem, we obtain that I(ξ) has a fixed point U(ξ) in D(ξ). Since
∩ξ∈ψD(ξ) 6= ∅, and a measurable selector of

∫
D exists, then via Lemma 4, I has a

stochastic fixed point U∗(ξ), which is a random mild solution of (1).

4. Results for State-Dependent Delay Case Controllability

Definition 10. A stochastic process U : (−∞, κ]× ψ → Ψ is a random mild solution of Prob-
lem (2) if U(χ, ξ) = $(χ, ξ); χ ∈ (−∞, 0], U′(0, ξ) = v2(ξ), and the restriction of U(., ξ) to the
interval Θ is continuous and verifies the following equation:

U(χ, ξ) = Hq(χ)($1(χ, ξ)−m(U)) + Kq(χ)$2(χ) +
∫ χ

0
(χ− ρ)Pq(χ− s)B1U(χ, ξ)dρ +

∫ χ

0
(χ− ρ)

Pq(χ− ρ)[ϕ(χ, U2(., ξ), ξ)]dρ +
∫ χ

0

(
(χ− ρ)Pq(χ− ρ)

∫ ν

0
B2 f (χ, ξ)dCv + BU(ρ)CU(ρ)

)
dρ

Set
Q(θ−1) = {θ(ρ, $2) : (ρ, $2) ∈ Θ× D, θ(ρ, $2) ≤ 0}.

Suppose that θ : Θ → (−∞, κ] is continuous. (H$1) the function χ → $1χ is continuous from
Q(θ−1) into D, and there exists a continuous and bounded function β$1 : Q(θ−)→ (0, ∞) where
β$1(χ)||$1||D for every χ ∈ Q(θ−).

Remark 2 ([28]). Hypothesis H$1 is satisfied through continuous and bounded functions.

Lemma 4 ([34]). If U : (−∞, κ]→ Ψ is a function, such that U0 = $1, then

‖U$‖D ≤ (ωκ + β$1)‖$1‖D + ζκ sup{|U(i)|; I ∈ [0, max{0, ρ}]}, $ ∈ Q(θ−)
⋃

Θ.

where β$1 = supχ∈Q(θ−1) β$1(χ).

The hypotheses

(H′1) Hq(χ) is compact for χ > 0 in Ψ.
(H′2) The function ϕ : Θ× D× ψ→ Ψ is random Caratheodory.
(H′3) There ∃ a function η : Θ× ψ→ Rm

+ and p : Θ× → Rm
+ , such that ξ ∈ ψ, U(., ξ) is a

continuous nondecreasing function and p(., ξ) integrable with:

|φ(χ,P , ∆)| ≤ p(χ, ∆)η(||P||D, ∆) f or a.e. χ ∈ Θ and each P ∈ D,

(H′4) There ∃ a random function α : Θ× ψ→ Rm
+ with α(., χ) ∈ L1(Θ, Rm

+ ) for each ξ ∈ ψ
such that for any bounded B ⊆ Ψ.

µ(ϕ(χ, B, χ)) ≤ α(χ, ξ)µ(B).

(H′5) There ∃ a random function Q : ψ→ Rm
+ {0} where:

ω(1 + κωλ)

(
‖$1‖D + η(ωκ + β$1)‖$1‖D + ζκQ(χ), χ)

∫ κ

0
p(ρ, χ)dρ

)
+ κωλ‖U1(χ)‖+ ω′(1 + κωλ)|$2| ≤ Q(ξ).
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(H′6) The linear LO i : L2(Θ, Ω)→ Ψ defined by:

iU =
∫ κ

0
Hq(κ − ρ)B2U(ρ, ξ)dρ

has an inverse operator i−1 that takes values in L2(Θ, Ω)/keri, and there ∃ a
positive constant λ, such that ‖B2i−1‖ ≤ λ.

(H′7) For each ∆ ∈ ψ, $(., ∆) is continuous and, for each χ, $1(χ, .), is measurable, and, for
each ∆ ∈ ψ, $2(∆), is measurable.

Theorem 2. Suppose that (H′1)–(H′7) and (H$1) hold. If

ω(1 + ωλκ)
∫ κ

0
α(ρ)ξ(ρ)dρ < 1. (4)

Therefore, Theta can be used to control Random Problem (2).

Proof. Using (H6), the control is

U(χ, ξ) = i−1(U1(ξ)− Hq(κ)$1(0, ξ)− Kq(κ)$2(ξ)−
∫ κ

0
Hq(κ − ρ)B2U(χ, ξ)dρ−

∫ κ

0
Hq(κ − ρ)ϕ(ρ, Uθ(ρ,Uρ)(., ξ), ξ)dρ

)
.

The operator I : ψ× Ξ→ Ξ given by: (I(ξ)U)(χ) = $1(χ, ξ), if χ ∈ (−∞, 0], and for χ ∈ Θ:

U(χ, ξ) = Hq(χ)($1(χ, ξ)−m(U)) + Kq(χ)$2(χ) +
∫ χ

0
(χ− ρ)Pq(χ− s)B1U(χ, ξ)dρ +

∫ χ

0
(χ− ρ)Pq(χ− ρ)

[ϕ(χ, U2(., ξ), ξ)]dρ +
∫ χ

0

(
(χ− ρ)Pq(χ− ρ)B−1

i

(
p1(Θ)− Hq(χ)($1(χ, ξ)−m(U)) (5)

−Kq(χ)$2(χ)−
∫ χ

0
(χ− ρ)Pq(χ− s)[ϕ(χ, U2(., ξ), ξ)]dCρ

)
+ BU(ρ)CU(ρ)

)
dρ

This proves that I has a fixed point U(χ, ξ), and that (2) is controllable. Moreover, we
demonstrate that I is a random operator by showing that, for any U ∈ Ξ, I(.)(U) : ψ→ Ξ
is a random variable. We also show that I(.)(U) : ψ → Ξ is measurable, as a mapping
ϕ(χ, U, .), χ ∈ Θ, U ∈ Ξ is measurable through assumptions (H′2) and (H′6). Assume that
D : ψ→ 2Ξ is given by:

D(ξ) = {U ∈ Ξ : ‖U‖Ξ ≤ Q(ξ)}.

D(χ) is bounded, convex, closed and solid for all ξ ∈ ψ. Then, D is measurable. Let ξ ∈ ψ
be fixed; if p ∈ D(ξ), then

‖U$(χ,Uχ)‖D = (ωκ + L$1)‖$1‖D + ζκQ(ξ),

For each U ∈ D(ξ), (H′3), and (H′4), for each χ ∈ Θ, we have
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|(I(ξ)U)(χ)| ≤ ω‖$1‖D + ω′|$2|+ ω
∫ χ

0
|ϕ(ρ, U$(χ,Uχ), ξ)|dρ + ωζ

∫ χ

0
|U1(ξ)|+ ω‖$1‖D

+ω′|$2|dρωζ
∫ χ

0

∫ κ

0
‖Hq(ε− ρ)‖|ϕ(ε, U$(χ,Uχ)(., ξ), ξ)|dεdρ

≤ ω‖$1‖D + ω′|$2|+ ω
∫ κ

0
p($, ξ)η(‖Uχ‖D, ξ)dρ + κωζ|U1(ξ)|+ κω2ζ‖$1‖D + κωω′ζ|$2|

+κω2ζ
∫ κ

0
p(ε, ξ)η(‖pε‖D, ω)dε

≤ ω(1 + κωλ)‖$1|D + κωλ|U1(ξ)|+ ω′(1 + κωλ)|$2|+ ω(1 + κωλ)
∫ κ

0
p(ρ, ξ)η(‖U$(χ,Uχ)‖D, ξ)dρ

≤ ω(1 + κωλ)×
(
‖$1‖D + η(ωκ + β$1)‖$1‖D + ζκQ(ξ), ξ)

∫ κ

0
p(ρ, ξ)dρ

)
κωλ‖U1(ξ)‖

+ω′(1 + κωλ)|$2|.

Thus, with stochastic domain D, I is a random operator and I(ξ) : D(ξ)→ D(ξ) for each
ξ ∈ ψ.

Claim 1: I is continuous.
Suppose that Un is a sequence where Un → U in Ξ. Then,

|(I(ξ)Un)(χ)− (I(ξ)U(χ)| ≤ ω
∫ χ

0
|ϕ(ρ, Uϑ(χ, Un

χ)
n, ξ)− ϕ(ρ, Uϑ(χ,Uχ), ξ)|dεdρ

+ζω
∫ χ

0

∫ κ

0
‖Hq(κ − ε)‖|ϕ(ε, pn

ε (., ξ)− ϕ(ε, pε, ξ))|dεdρ

≤ ω
∫ χ

0
|ϕ(ρ, Uϑ(χ, Un

χ), ξ)n)− ϕ(ρ, Uϑ(χ, Uχ), ξ))|dεdρ

κω2ζ
∫ κ

0
|ϕ(ε, Uϑ(χ, Un

χ)
n(., ξ))− ϕ(εUϑ(χ, Uχ), ξ)|dε

≤ ω(1 + κωζ)
∫ κ

0
|ϕ(ε, Un

ϑ(χ,Un
χ)
(., ξ)− ϕ(εUϑ(χ, Uχ), ξ)|dε

As ϕ(χ, ., ξ) is continuous, we have

‖ϕ(., Un, ξ)− ϕ(., U, ξ)‖Ξ → 0 as n→ +∞.

I is continuous.
Claim 2: We show that ξ ∈ ψ, {U ∈ D(ξ) : I(ξ)U = U} 6= ∅. We apply Mönch fixed

point theorem [35,36].

(a) In D(ξ), I transforms bounded sets into equicontinuous sets.
Let ε1, ε2 ∈ [0, κ] with ε2 > ε1, D(ξ) be a bounded set as in Claim 2, and U ∈ D(ξ).
Then,

|(I(ξ)U)(ε2)− (I(ξ)U)(ε1)| ≤ ‖Hq(ε2)− Hq(ε1)‖D(Ψ)‖$1‖D + ‖Kq(ε2)− Kq(ε1)‖D(Ψ)|$

+
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(Ψ)|ϕ(ρ, Uϑ(χ,Uχ), ξ)|dρ

+
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)|ϕ(χ, Uϑ(χ,Uχ), ξ)|dρ + ζ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(Ψ)

×[|p1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖$1‖D + ‖Kq(κ)‖D(Ψ)|$2|]dρ

+ζ
∫ ε1

0
‖Hq(ε2 − ρ)− S1(ε1 − ρ)‖D(Ψ)

∫ κ

0
‖Hq(κ − ε)‖D(Ψ)|ϕ(ε, Uϑ(χ,Uχ), ξ)|dεdρ

+ζ
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)[|U1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖$1‖D + ‖Hq(κ)‖D(Ψ)|$2|]dρ

+ζ
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)

∫ κ

0
‖Hq(κ − ε)‖D(Ψ)|ϕ(ε, Uϑ(χ,Uχ), ξ)|dεdρ
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Thus,

|(I(ξ)U)(ε2)− (I(ξ)U)(ε1)| ≤ |Hq(ε2)− Hq(ε1)|‖$1‖D + ‖Kq(ε2)− Kq(ε1)‖D(ψ)|$2|

+
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)ϕ(ρ, Uϑ(χ,Uχ), ξ)dρ +

∫ ε2

ε1

‖Hq(ε2 − ρ)‖D(ψ)ϕ(ρ, Uϑ(χ,Uχ), ξ)dρ

+λ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)[‖p1(ξ)‖+ ‖Hq(κ)‖D(ψ)|$1(0, ξ)|]dρ

+λ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)η((ωκ + β$1 )‖$1‖D + ζκ Q(ξ))×

∫ κ

0
p(ε, ξ)dεdρ +

λω
∫ ε2

ε1

‖U1‖+ ‖Hq(κ)‖D(ψ)|$1(0, ξ)|+ ωη((ωκ + β$1 )‖$1‖D + ζκ Q(ξ))×
∫ κ

0
p(ε, ξ)dεdρ

Hence,

|(I(ξ)U)(ε2)− (I(ξ)U)(ε1)| ≤ |Hq(ε2)− Hq(ε1)|D(ψ)‖$1‖D + ‖Kq(ε2)− Kq(ε1)‖D(ψ)
|$2|

+η(ωκ + β$1‖$1‖D + ζκQ(v))
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)

p(χ, ξ)dρ

+η((ωκ + β$1‖$1‖D + ζκQ(v), v)
∫ ε2

ε1

p(χ, ξ)dρ

+λ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)[‖U1(ξ)‖+ ‖Hq(κ)‖D(ψ)|$1(0, ξ)|]dρ

+λ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)η((ωκ + β$1)‖$1‖D + ζκQ(ξ))

×
∫ κ

0
p(ε, ξ)dεdρ + λω

∫ ε2

ε1

‖U1(v)‖+ ‖Hq(κ)‖D(ψ)|$1(0, ξ)|+

ωη((ωκ + β$1)‖$1‖D + ζκQ(ξ))×
∫ κ

0
p(ε, ξ)dεdρ

In the previous inequality, the right-hand side went to zero as ε2− ε1 → 0, Hq(χ), Kq(χ)
are a strongly continuous operator, and Hq(χ) and Kq(χ) for χ > 0 are compact, which
implies that uniform operator topology is continuous. Suppose that ξ ∈ ψ is fixed.

(b) Suppose that Λ is a subset of D(ξ) where Λ ⊂ conv(I(Λ)
⋃{0}). Λ is bounded

and equicontinuous, and function χ → v(χ) = ς(Λ(χ)) is continuous on (−∞, κ].
Via (H2), and by considering the characteristics of the measure Λ, we have χ ∈
(−∞, κ]:
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v ≤ ς(I(Λ))(χ)
⋃
{0})

≤ ς(I(Λ)(χ))

≤ ς(Hq(χ)$1(0, ξ)) + ς(Kq(χ)$2(ξ)) + ς

( ∫ χ

0
Hq(χ− ρ)ϕ(ε, Uϑ(χ,Uχ)(., ξ)dρ

)
+ ωλ

∫ χ

0
ς(U1(ξ)

−Hq(κ)$1(0, ξ)− Kq(κ)$2(ξ)) + ς

( ∫ κ

0
Hq(κ − ε)ϕ(ε, Uϑ(χ,Uχ)(., ξ), ξ

)
dρ

≤ ω
∫ χ

0
ς(ϕ(ρ, Uϑ(χ,Uχ)(., ξ), ξ))dρωλ

∫ χ

0

∫ κ

0
ς(Hq(κ − ε)ϕ(ε, Uϑ(χ,Uχ)(., ξ), ξ)dεdρ

≤ ω
∫ χ

0
α(ρ)ς({Uϑ(χ,pχ) : p ∈ Λ})dρωλ

∫ χ

0

∫ κ

0
ς(Hq(κ − ε)ϕ(ε, Uϑ(χ,Uχ)(., ξ), ξ)dεdρ

≤ ω
∫ χ

0
γ(ρ)ζ(ρ) sup

0≤ε≤ρ

ς(Λ(ε))ρ + ω2λ
∫ χ

0

∫ κ

0
ς(ϕ(ε, Uϑ(χ,Uχ), ξ)dεdρ

≤ ω
∫ χ

0
γ(ρ)ζ(ρ)ς(Λ(ρ))dρ + ω2λκ

∫ κ

0
α(ε)ς(ϕ({Uϑ(χ,Uχ) : U ∈ Λ)dε

≤ ω
∫ χ

0
v(ρ)α(ρ)ζ(ρ)dρ + ω2λκ

∫ κ

0
α(ε)ζ(ε)ς(Λ(ε))dε

= ω
∫ χ

0
α(ρ)ζ(ρ)v(ρ)dρ + ω2λκ

∫ κ

0
α(ε)ζ(ε)v(ε))dε

≤ ω
∫ χ

0
α(ρ)ζ(ρ)v(ρ)dρ + ω2λκ

∫ κ

0
α(ε)ζ(ε)v(ε))dε

≤ ω(1 + ωλκ)
∫ κ

0
α(ρ)ζ(ρ)v(ρ))dρ

≤ ω(1 + ωλκ)
∫ κ

0
α(ρ)ζ(ρ) sup

0≤ε≤ρ

v(ε))dρ

≤ ω(1 + ωλκ)‖v‖∞

∫ κ

0
α(ρ)ζ(ρ)dρ.

Thus,

‖v‖∞ ≤ ω(1 + ωλκ)‖v‖∞

∫ κ

0
α(ρ)ζ(ρ)dρ

Then,

‖v‖∞

(
1−ω(1 + ωλκ)

∫ κ

0
α(ρ)ζ(ρ)dρ

)
≤ 0.

Hereby, ‖v‖∞ = 0; thus, v(χ) = 0 for each χ ∈ Θ, this implies Λ(χ) is relatively
compact in Ψ. Through the result of Ascoli-Arzel à theorem, Λ is relatively compact in
D(ξ). Via Mönch fixed-point theorem, we show that I has a fixed point U(ξ) ∈ D(ξ).
As

⋂
ξ∈ϕ D(ξ) 6= ∅; moreover, a measurable selector of

∫
D exists. Lemma implies

that I has a stochastic fixed point U∗(ξ), which is a mild solution of (2).

5. Applications

The qualitative theory of FDEs, fractional integrodifferential equations, and fractional-
order operators can be applied to a wide range of scientific fields, including fluid mechanics,
viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing, and
entropy theory. Due to this, academics from all over the world have become interested
in the applications of the theory of fractional calculus and the qualitative theory of the
aforementioned equations, and many researchers have included them into their most
recent research.

For a very long time, DEs driven by a Brownian motion (or Wiener process) have been
the focus of study on the qualitative characteristics of stochastic DEs and their applications.
Furthermore, applications from a variety of domains, including storage, queueing, eco-
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nomic, and neurophysiological systems, can be found frequently in stochastic DEs driven
by a Poisson process. Additionally, stochastic DEs with Poisson jumps have gained much
traction in modelling phenomena from a variety of disciplines, especially economics, where
jump processes are frequently used to describe asset and commodity price dynamics. These
factors are sufficient for the existence and uniqueness of non-Lipschitz stochastic neutral
delay DEEs driven by Poisson jumps.

Levy procedures are becoming increasingly significant in the world of banking. While
Levy processes are often employed in newer models to accommodate jumps (which can be
regarded as external shocks) and achieve a better fit to empirical data, Brownian motion
is still frequently used in older models as a source of randomness. As a result, Levy
process applications in finance are simple to locate. There have been numerous applications
of the theory of impulsive DEs of an integer order in accurate mathematical modelling.
It has recently become a crucial subject of research due to the large range of practical
problems. This is because many evolutionary systems’ states are frequently exposed to
rapid disturbances and undergo abrupt shifts from time to time. These changes have a
very brief and insignificant length when compared to the lifespan of the process under
consideration, and can be viewed as impulses. Due to the lack of effective methods, the
control analysis of problems, including the impulse effect, fractional calculus, and white
noise, is challenging.

6. Example

Consider

c
0Dq

νU(χ, ξ, ς) = ϕ(χ, U(χ, ξ, ς), ς) +
∫ ν

0 B2 f (χ, ς)dCv, ξ ∈ Θ := [0, κ], ν ∈ [0, T]
U(χ, π, ς) + m(U) = U1(χ, 2π, ς); ξ ∈ [0, κ],
U′(χ, ξ, ς) = U2(ξ),

(6)

where Φ : Θ × R × ζ → Rm is a given function. If Ξ = L2[π, 2π], and B1 : Ξ → Ξ
given by B1U = U′ with domain D(B1) = {U ∈ Φ; U, U′ are absolutely continuous, U′ ∈
Ξ, U(π) = U(2π) = 0}. Let the strongly continuous cosine function (Hq(χ))χ∈Rm on Φ be
infinitesimally generated by the operator B1. Furthermore, B1 has a discrete spectrum, and
the eigenvalues are −n2, n ∈ IN with corresponding normalized eigenvectors

Un(ε) :=
(

2
2π

) 1
2

cos(nε),

and

(i) {Un : n ∈ IN} is an orthonormal basis of Φ,
(ii) If x ∈ Φ, then B1x = −∑∞

n=1 n2〈x, Un〉Un,
(iii) For x ∈ Φ, Hq(ϑ)x = ∑∞

n=1 sin(nt)〈x, Un〉Un, and the associated cosine family is

Kq(ϑ)x =
∞

∑
n=1

cos(nt)
n
〈x, Un〉Un.

Consequently, Kq(χ) is compact for all χ > 0 and

‖Hq(ϑ)‖ = ‖Kq(χ)‖ ≤ 1, ∀χ ≥ 0.

(iv) Let the group of translation be denoted by Φ:

ψ(χ)x(U, ς) = x̃(U + χ, ς),

where x̃ is the extension of x with period 4π. Then,

Hq(χ) =
1
2
(ψ + ψ(−χ)); U1 = D,
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where D is the infinitesimal generator of the group on

X = {x(., ς) ∈ H1(π, 2π) : x(π, ς) = x(2π, ς) = 0}.

Suppose that B2 is a bounded LO from Ω into Ξ and the linear operator K : L2(Θ, Ω)→
Ξ given by:

K f =
∫ k

0
Hq(k− $)B2 f ($, ς)dρ,

has an inverse operator K−1 in L2(Θ, Ω)/ ker K. We deduce that Equation (1) is an
abstract formulation of Equation (6) if H1 to H6 are met. Via Theorem 1, we conclude
that Equation (6) is controllable.

7. Conclusions

Existence and controllability results were presented for a couple of classes of second-
order fractional functional differential equations. A stochastic random fixed-point theorem
established the basis for our claims. Then, we demonstrated that our problems were
controllable. Some of the findings in this area form the basis of our future research plans.
New results can be obtained by either changing or generalising the conditions and the
functional spaces, or even by involving some fractional differential problems.
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