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Abstract: As the backbone of modern society and industry, the need for a more efficient and sus-
tainable electrical grid is crucial for proper energy management. Governments have recognized
this need and have included energy management as a key component of their plans. Decentralized
Smart Grid Control (DSGC) is a new approach that aims to improve demand response without the
need for major infrastructure upgrades. This is achieved by linking the price of electricity to the
frequency of the grid. While DSGC solutions offer benefits, they also involve several simplifying
assumptions. In this proposed study, an enhanced analysis will be conducted to investigate how data
analytics can be used to remove these simplifications and provide a more detailed understanding of
the system. The proposed data-mining strategy will use detailed feature engineering and explainable
artificial intelligence-based models using a public dataset. The dataset will be analyzed using both
classification and regression techniques. The results of the study will differ from previous literature in
the ways in which the problem is handled and the performance of the proposed models. The findings
of the study are expected to provide valuable insights for energy management-based organizations, as
it will maintain a high level of symmetry between smart grid stability and demand-side management.
The proposed model will have the potential to enhance the overall performance and efficiency of the
energy management system.

Keywords: smart grid stability; explainable AI; gradient boosting machine; deep learning; feature
engineering

1. Introduction
1.1. Motivation

In terms of energy sustainability and resiliency, the smart grid (SG) has an important
role. The path to predictable and manageable energy policies comes across the digitalization
of the electrical grid itself. While SG infrastructures exist, it still has the potential to be
developed and enhanced with effective interfaces. There are still compelling topics in
the application of SG in the field. Renewable energy integration takes the lead for those
important issues [1]. Adapting renewable energy resources to the conventional grid may
cause problems. Contrary to the traditional system, those bi-directional ways of production
define new consumer models. While there were just a few power plants as a center of
production in the conventional grid, the SG structure with the integration of alternative
generation centers comes with a “prosumers” definition. As we can infer from the name,
those prosumers produce the energy like the power plants but also consume it too. This
symmetric flow builds the aforementioned bi-directional way of production [2]. Thinking
of those all together may lead to a complicated way of planning the generation, distribution,
and consumption of electrical energy. In such a plan, there is an important decision for
every player in the field: is it a feasible step to buy the energy or not buy it at a particular
price? At the present, the end-users of industrial fields and also residential areas have
their electricity generated locally by themselves, these distributed energy resources are
very common, too. Over and above that, the SG infrastructure itself has very complicated
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types of equipment for monitoring and self-healing applications [3]. Those collective
considerations and the necessity for the proper decision-making strategy have devotedly
underlined the smart grid stability analysis [4].

Electrical grid topology, with its symmetrical structure, should provide a balanced
power flow between the supply center and the consumer (demand) side to achieve stability.
The stability definition here should not be mixed up with frequency or voltage stability
in particular. The stability definition is more like the balance term, which is between the
generation center and demand side. In demand-side management and prosumers’ behavior
price allocation is an important issue. Price policies and changes in tariffs are strongly
dependent on electricity consumption and production link. In the literature, there are so
many approaches presented to describe the price determination and make the consumers
informed of it [5,6]. Traditional methods, such as local electricity auctions, may lead to cyber
security gaps and privacy issues [7]. Overcoming the mentioned issues, the decentralized
smart grid control (DSGC) has been recently announced to the academic audience by the
studies [8,9]. Connecting the frequency of SG directly to the price of electricity provides
fewer communication channels for sharing the price info between all the players in the
game, namely producers and consumers. Thanks to this unique feature, DSGC tends to
produce the pricing policy in a real-time manner, contrary to the auctions in which price
trading is handled with 15-min time intervals [5].

DSGC methodology takes advantage of the frequency info of the grid itself. The fre-
quency keeps a secret knowledge in its increase and decrease. When the generation of
electricity increases for the whole balanced system of participants of the SG, the electri-
cal frequency of the grid also increases, and vice versa, in an underproduction situation,
the electrical frequency of the grid decreases along with it. This leads to the conclusion
that all the necessary information for determining electricity prices can be obtained from
frequency measurements [8,10]. On that account, the frequency information of each par-
ticipant of the grid would be sufficient to obtain the necessary details to sign a balanced
power flow of the grid. For a network operation aiming the electricity price regulation,
and informing the consumers, those steps would be a very shortcut in the field [10].

For all those important points of the DSGC methodology, aiming to provide compre-
hensive data analytics with the help of artificial intelligence would be the very beginning of
this study. Within the framework of this comprehensive analysis, it is aimed to enlighten the
SG stability prediction with feature engineering and enhanced deep learning and machine
learning-based models. Moreover, the analysis in this study collects the results of similar
studies using the same datasets and interprets the big picture as a meta-analysis.

1.2. Problem

DSGC approach analyses the SG stability phenomenon using mathematical models
with differential equations. The studies [8,9] that presented the fundamental theory of the
DSGC considered the test-bed electrical grid as a four-node star topology involving an
energy source (generation node) and three nodes denoting the consumption. In the theory
of the DSGC, input features of the system are considered as listed: The summed power
balance of which the produced or consumed power values of each node; the time value
that related to responses of consumers/prosumers whether production or consumption is
feasible for current price values, i.e., reaction time, and the price elasticity of the produced
energy [5].

Thinking over the system parameters, it can be inferred that a complete and concise
mathematical model can be pictured for the prediction of SG stability. We can conduct the
SG stability analysis as a classification or regression problem. Nevertheless, some major
assumptions are addressed in the solution for this model. As brightly explained in [5],
mathematical models that involve differential equations can be solved in various ways.
In the process, there can be simulations operated with a collection of constant values for
a single variable set and assuming fixed distributions for the rest of the variable set. We
can name two negative situations on this matter, equality, and fixed inputs. In this study,
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the main problem on the desk is to provide a solution to those issues in the way of SG
stability prediction. This prospective study was designed to investigate the solution for the
problems that have been faced in the way of SG stability prediction. A holistic approach
is used, integrating feature engineering and modern artificial intelligence techniques to
establish a robust analysis of SG stability prediction in classification and regression manners.

As for the problem definition, the proposed study deals with the drawbacks of the
existing SG stability analysis in DSGC.

Decentralized smart grid control has several advantages over traditional centralized
grid control systems [8]:

1. Increased reliability: Decentralized systems can help to improve grid reliability by
distributing generation and storage resources across the grid, reducing the impact of
individual failures or outages.

2. Improved grid efficiency: Decentralized systems can help to optimize the use of
generation and storage resources, leading to more efficient use of energy and lower
costs for customers.

3. Greater integration of renewable energy: Decentralized systems can facilitate the
integration of renewable energy sources, such as solar and wind power, into the grid
by allowing for more precise and dynamic control of these resources.

4. Increased customer choice: Decentralized systems can give customers more control
over their energy consumption and costs, by allowing them to choose how and when
they use energy, and to participate in demand response programs.

5. Reduced transmission and distribution costs: Decentralized systems can reduce the
need for expensive transmission and distribution infrastructure by allowing energy to
be generated and consumed closer to where it is needed.

6. Increased security of the grid: Decentralized systems can increase the overall security
of the grid by making it more resilient to cyber-attacks.

Overall, decentralized smart grid control can help to improve the efficiency, reliability,
and security of the grid while also providing more choice and control to customers and
supporting the integration of renewable energy sources. Despite the abovementioned
advantages of DSGC, we still have some problems in the process.

One major challenge is maintaining power quality and stability on the grid, as the
distributed nature of distributed energy resources can make it difficult to predict and
control power flows. In addition, coordinating the operation of multiple distributed energy
resources in real-time can be complex and computationally intensive. The proposed study
gives a solution for stability prediction to this problem.

1.3. Related Works

Firstly, in 2015 and 2016, Schäfer et al. defined the DSGC in [8,9] by publishing the
studies one after another. They draw the big picture of DSGC, describing the pros and
cons of its methodology. Taking those studies to the basis, Arzamasov et al. discussed SG
stability in a conference by describing their concise models [5]. Along with the study [5],
Arzamasov et al. shared a comprehensive dataset to provide the researchers with conduct
the SG stability analysis overcoming the DSGC issues in a University of California Irvine
(UCI) machine learning data repository. In their study, they proposed a basic decision
tree model to predict SG stability with some analysis of DSGC methodology. In 2019,
Moldovan et al. discussed the instability factors using the dataset of Arzamasov’s team
(raw dataset) in the study [11]. In their study, they designed their methodology on classical
machine learning methodology by using a bunch of basic models. A year later in 2020,
Alazab et al. proposed a long-short-term memory (LSTM) based prediction model for SG
stability using the basic dataset [12]. They emphasized the subject of taking the cyber-
physical system definition into account. A bundle deep learning (DL) based model has
been designed for the stability prediction process. After that period, in the same year,
Paulo Breviglieri generated an augmented version of the dataset of Arzamasov’s team
and shared it in the Kaggle data repository. Following this, Breviglieri et al. published an
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article in 2021 covering the SG stability prediction by analyzing the augmented dataset [10].
Li proposed a set of machine learning models based on conventional algorithms using
the raw dataset to analyze the SG stability index [13]. Bashir et al. proposed a list of
machine-learning models for the SG stability prediction on the raw dataset. The study
also includes artificial neural networks (ANN) based classifiers [14]. The last study in the
literature using the raw dataset was proposed by Massaoudi et al. [15]. The authors use
LSTM-based models to predict the SG stability index considering it a regression problem.
To this point, study [15] is the only approach for handling the stability prediction as a
regression model. The author of the proposed (current ) study also conferred an abstract
presentation on smart grid stability prediction with the augmented dataset by using a
lightweight convolutional neural network (CNN) deep learning classifier [16]. The former
study just included a basic classifier without any data analysis or feature engineering.

Apart from the existing studies in the literature whose datasets are raw and augmented
datasets, the proposed study considers both raw and augmented datasets together in the way
of SG stability prediction. Thus, by the collection of both data packages, it is enlightened that
the augmentation process over the raw dataset whether effective or not. Using the advantage
of feature engineering and data analytics, this study takes the SG stability prediction a few
steps forward with the explainable artificial intelligence (XAI) [17,18]. The comprehensive
analysis also handles the SG prediction as both classification and regression problems with the
state-of-the-art machine learning model gradient boosting machine [19] and deep models.

1.4. Contribution

The remarkable contributions of the proposed study can be listed as:

1. Analyzed existing SG stability datasets using data analytics, detailed feature engineer-
ing, and XAI.

2. Interpretability of the proposed research sets our study apart from existing ones in
the literature.

3. To the best of the author’s knowledge, this is the first study that comprehensively
handles both raw and augmented SG stability datasets as both classification and
regression problems with a symmetrical approach.

4. Utilized state-of-the-art gradient boosting machine and deep learning models to
design AI-based SG stability prediction models with higher performance values
compared to existing studies in the literature.

1.5. Outline of the Article

Following the introduction section, Section 2 contains the materials and methods.
In its sub-sections, we can follow the dataset definition, feature engineering, and prediction
models. Section 3 deals with the results and discussion. Section 4 provides a brief conclusion
of the proposed study.

2. Materials and Methods

In this section, the handled SG stability datasets are described with their prominent
specifications. For the next step, the feature engineering and data analytic details are
given. Lastly, the machine learning and deep learning-based models are explained in a
brief manner.

2.1. Dataset Definition

In this study, the two benchmark datasets used in SG stability prediction have been
considered. The first one we can name is the raw dataset which was prepared by Arza-
masov et al. and their research team [5]. The latter one we can name is the augmented
dataset which was first used in the study of Breviglieri et al. [10]. Both datasets include
the same feature and target (response) columns. The difference is the data volume of
datasets. While the raw dataset contains 10K samples, the augmented dataset contains 60K
samples. The datasets are built with the realistic simulation results of smart grid stability
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operations where a four-node topology is considered. The “four” total nodes are the sum
of a generation center node and three consumer nodes. Both raw and augmented datasets
are involved twelve attributes (features) and two dependent labels. While one dependent
variable suits the classification problem, the other suits the regression problem. Using
these two dependent labels altogether is not logical when handling the problem from a
classification and regression perspective. For this reason, the proposed models consider
the two dependent labels of the datasets separately for the classification and regression
approaches. Table 1 gives the feature details of both datasets for generation nodes (GN)
and consumer nodes (CNs).

Table 1. Feature Details for raw and augmented datasets.

Symbol Description Name

P Nominal power values of GN and CNs p1 to p4
τ Reaction time values of GN and CNs tau1 to tau4
γ Gamma coefficient, price elasticity for GN and CNs g1 to g4

As dependent variables, we can list “stab” and “stabf”. The former is the root of
the differential equation (when this value is positive, then the grid is linearly unstable;
if it is negative, then the grid is stable), and the latter is a categorical value defining the
grid situation as stable and unstable which is a binary label. This depicts that those two
dependent variables are stuck to each other with a direct relationship. Because of this,
the numerical variables “stab” should be picked for the regression approach by dropping
the “stabf” response. The “stabf” response should be picked for the classification approach
by dropping the “stab” response. In this study, these two situations are handled separately
under the name of classification approach and regression approach. In both datasets,
there are no missing values. As our machine learning and deep models accept categorical
responses, so there is no need for a detailed data pre-processing stage. The datasets were
seamlessly generated. The next section gives the feature engineering results along with
feature visualizations and statistical relationships.

2.2. Data Analytics and Feature Engineering
2.2.1. Analytics of Raw (10K) Dataset

To put both datasets on the table on the way to provide comprehensive data analytics,
we will see a set of statistical demonstrations in this sub-section. Starting with a basic
statistical measure of the raw dataset, Table 2 shows important values. We can see the basic
statistics like the mean, standard deviation (std), minimum (min), and maximum (max)
values with the distribution portions of quartile percentages.

Table 2. Statistical details of raw dataset.

Features Count Mean Std Min 25% 50% 75% Max
tau1 10,000 5.25 2.742548 0.500793 2.874892 5.250004 7.62469 9.999469
tau2 10,000 5.250001 2.742549 0.500141 2.87514 5.249981 7.624893 9.999837
tau3 10,000 5.250004 2.742549 0.500788 2.875522 5.249979 7.624948 9.99945
tau4 10,000 5.249997 2.742556 0.500473 2.87495 5.249734 7.624838 9.999443
p1 10,000 3.75 0.75216 1.58259 3.2183 3.751025 4.28242 5.864418
p2 10,000 −1.25 0.433035 −1.999891 −1.624901 −1.249966 −0.874977 −0.500108
p3 10,000 −1.25 0.433035 −1.999945 −1.625025 −1.249974 −0.875043 −0.500072
p4 10,000 −1.25 0.433035 −1.999926 −1.62496 −1.250007 −0.875065 −0.500025
g1 10,000 0.525 0.274256 0.050009 0.287521 0.525009 0.762435 0.999937
g2 10,000 0.525 0.274255 0.050053 0.287552 0.525003 0.76249 0.999944
g3 10,000 0.525 0.274255 0.050054 0.287514 0.525015 0.76244 0.999982
g4 10,000 0.525 0.274255 0.050028 0.287494 0.525002 0.762433 0.99993

stab 10,000 0.015731 0.036919 −0.08076 −0.015557 0.017142 0.044878 0.109403
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As we can see in the mean and std columns, the groups of features have nearly the
same mean and std values except for the p1 feature. This is because the p1 feature addresses
the generation node and it is the sum of the other three consumer nodes. Again we witness
that there are no missing values in the whole dataset.

In Figure 1, we can see the correlation values of the features except for the “stabf”
because it is a categorical value. However, the “stab” response figures out how it may
behave in the distribution. To provide a clear understanding of Figure 1, we can investigate
Table 3 with sorted values of the correlation values. As the correlation values point outs,
the most relevant three features with the “stab” are g3, g2, and tau2. The ongoing feature
importance analyses will show these values proofs in the next sections.

Figure 1. Correlation matrix of the raw dataset.

Table 3. Sorted correlations of the raw dataset (ascending).

Feature Names Correlation Values of Each Feature

p4 −0.020786
p3 −0.003321
p2 0.006255
p1 0.010278

tau1 0.275761
tau4 0.278576
g4 0.279214

tau3 0.2807
g1 0.282774

tau2 0.290975
g2 0.293601
g3 0.308235

Figure 2 shows the partial scatter plots belonging to tau and p features. Here, we can
see the difference in p1 distribution clearly, and also the relation of tau features has a more
uniform distribution. Figure 3 demonstrates the overall scatter matrix of the raw dataset
with all the features and the “stab” response. In this 13× 13 matrix, we can figure out the
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difference of the p features’ distribution clearly. Moreover, the scatter matrix shows the
“stab” vs. g features scatter at the bottom line of it. Again we can realize here the most
correlated features by seeing the difference in scatters.

(a) (b)

Figure 2. Scatter plots of tau and p features of raw dataset depends to stab. (Please zoom in for a
detailed view). (a) stab vs tau1 to tau4 features. (b) stab vs p1 to p4 features.

Figure 3. Scatter matrix of the raw dataset.
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Figure 4 includes the probability plot and overall distribution of the “stab” response.
We can see here the response exhibits an almost linear distribution. Additionally, in Figure 5,
a distribution graph along with a normal distribution demonstration is also provided to
clear out how close the “stab” response is to normal distribution.

Figure 4. Overall distribution and probability plot of “stab” response of raw dataset.
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Figure 5. Distribution graph of “stab” response of raw dataset with normal distribution plot.

2.2.2. Analytics of Augmented (60K) Dataset

Now, starting the data analytics of the augmented (aug) dataset, Table 4 shows impor-
tant statistical measures. We can see the basic statistics like the mean, std, min, and max
values with the distribution portions of quartile percentages. As we can see in the mean and
std columns, the groups of features have nearly the same mean and std values except for the
p1 feature like in the raw dataset before. Here, the p1 feature addresses the generation node
and it is the sum of the other three consumer nodes. The aug dataset is also a clean dataset
with seamless data features without any need for a complex pre-processing operation.

In Figure 6, we can see the correlation values of the features. To provide a clear
understanding of Figure 6, we can investigate Table 5 with sorted values of the correlation
values of the augmented dataset. As the correlation values point outs the most relevant
four features with the “stab” are g3, g2, g4, and tau4. In the aug dataset, the effect of g
features is higher than in the raw dataset. The feature importance analysis in the next
sections are going to show proof of these values.

Table 4. Statistical details of augmented dataset.

Features Count Mean Std Min 25% 50% 75% Max

tau1 60,000 5.25 2.742434 0.500793 2.874892 5.250004 7.62469 9.999469
tau2 60,000 5.250001 2.742437 0.500141 2.875011 5.249981 7.624896 9.999837
tau3 60,000 5.250001 2.742437 0.500141 2.875011 5.249981 7.624896 9.999837
tau4 60,000 5.250001 2.742437 0.500141 2.875011 5.249981 7.624896 9.999837
p1 60,000 3.75 0.752129 1.58259 3.2183 3.751025 4.28242 5.864418
p2 60,000 −1.25 0.433017 −1.999945 −1.624997 −1.249996 −0.874993 −0.500025
p3 60,000 −1.25 0.433017 −1.999945 −1.624997 −1.249996 −0.874993 −0.500025
p4 60,000 −1.25 0.433017 −1.999945 −1.624997 −1.249996 −0.874993 −0.500025
g1 60,000 0.525 0.274244 0.050009 0.287521 0.525009 0.762435 0.999937
g2 60,000 0.525 0.274243 0.050028 0.287497 0.525007 0.76249 0.999982
g3 60,000 0.525 0.274243 0.050028 0.287497 0.525007 0.76249 0.999982
g4 60,000 0.525 0.274243 0.050028 0.287497 0.525007 0.76249 0.999982

stab 60,000 0.015731 0.036917 −0.08076 −0.015557 0.017142 0.044878 0.109403
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Figure 6. Correlation matrix of the augmented dataset.

Table 5. Sorted correlations of aug dataset (ascending).

Feature Names Correlation Values of the Each Feature

p4 −0.005951
p3 −0.005951
p2 −0.005951
p1 0.010278
tau1 0.275761
g1 0.282774
tau3 0.283417
tau2 0.283417
tau4 0.283417
g4 0.293684
g2 0.293684
g3 0.293684

Figure 7 shows the partial scatter plots belonging to tau and p features of the aug
dataset. Here, we can see the difference in p1 distribution more clearly, and also the relation
of tau features has a more uniform distribution in the augmented dataset. Figure 8 shows
the scatter plots of g features a reference to the “stab” response in particular. Here we can
see a more uniform distribution of g.

Figure 9 demonstrates the overall scatter matrix of the aug dataset with all the features
and the “stab” response. In this 13× 13 matrix again, we can figure out the difference of
the p–features’ distribution clearly. In the augmented dataset, again we can realize here the
most correlated features by seeing the difference in scatters. Regarding the resolution and
pixel values of the graphical presentations being very high, please feel free to zoom in to
have a better vision of the visualizations.



Symmetry 2023, 15, 289 11 of 27

(a) (b)

Figure 7. Scatter matrix of the augmented dataset. (a) stab vs tau1 to tau4 features. (b) stab vs p1 to
p4 features.

Figure 8. Scatter plots of g features of aug dataset depends to stab.
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Figure 9. Scatter matrix of the augmented dataset.

Figure 10 includes the probability plot and overall distribution of the “stab” response
of the augmented dataset. We can see here again the response exhibits an almost linear
distribution for the aug dataset. Additionally, in Figure 11, a distribution graph along
with a normal distribution demonstration is also provided to clear out how close the
“stab” response is to normal distribution. This time the response is closer to the normal
distribution than the raw dataset. The excessive sample size of 60,000 may lead to this
assumption. The gathered analysis reports from the data analytics and feature engineering
might open a door to a better understanding of the feature importance analysis, which will
be held in the next sections.
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Figure 10. Overall distribution and probability plot of “stab” response of aug dataset.

Figure 11. Distribution graph of “stab” response of aug dataset with normal distribution plot.
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2.3. Artificial Intelligence Models
2.3.1. Gradient Boosting Machine

Gradient Boosting Machine (GBM) is a decision tree-based ensemble method with
a forward learning methodology to implement its theory in regression and classification
problems. In modern machine learning (ML), algorithm development goes deeply through
fast and effective deployment processes, embedding the algorithm into devices in real life.
Thus, there is a need to increase the refined approximations to get more accurate prediction
results with heuristic guidance. GBM aims these with its effective structured design.
In the proposed model, the designed GBM strategy is supported with built regression
and classification trees on all the attributes of the preferred datasets in a fully distributed
way, i.e., all the trees are designed and built in the way of parallel logic. Although its
theoretical background is based on the study Freidman [20] and Hastie et al. [21] published
many years ago in 2001 and 2004, GBM is a modern ML algorithm that has been used with
increasing efficiency today.

In GBM, the trees are designed as base learners for regression or classification and
exist sequentially to increase the algorithm performance. Friedman extended the GBM
logic from classification to regression task [20,21]. In each iteration, GBM handles the error
of the previous ensemble tree, and during the prediction process of the next tree, it deals
with healing this error. Consequently, the rest of the tree ensembles are being faced with a
decreasing error constantly [22].

GBM algorithm is also based on the boosting concept in which combinations of a
number of models having low variance and high bias values for minimizing the high bias
whilst preserving the low variance. For a clearer explanation, this means that GBM consoli-
dates a number of shallow trees to increase the prediction or classification performance [22].
The main part that makes the difference over the boosting methods in the optimization
phenomenon in classical ML algorithms is holding the optimization in function space.
Because of this in GBM, f̂ (function estimate) is parameterized as an additional functional
form as in (1) [23]:

f̂ (x) = f̂ L(x) =
L

∑
i=0

f̂i(x) (1)

where, L is the iteration number, f̂0 states the initial assumption, and the “boosts” { f̂ }L
i=1

which we can also name it increments of function [23].
GBM method includes the “base-learner” functions which we can parameterize as

h(x, θ) to provide a separate definition away from function estimations of overall ensembles
f̂ (x). Then, the formulation of the “greedy stagewise” approach for the increment of the
functions can be given to base learners. To provide this formulation, the optimal step size
needed to be defined in every iteration. The optimization is ruled by the formula stated
in (2) and (3), to calculate the function estimations of iteration t for every N samples [23]:

f̂t ← f̂t−1 + ρth(x, θt) (2)

(ρt, θt) = argmin
ρ,θ

N

∑
i=1

Ψ(yi, f̂t−1) + ρh(xi, θ) (3)

In the practical application of the GBM, it is a challenging process to obtain the base-
learner function h(x, θ) properly. To deal with this obstacle, it was suggested to design the
new function as being correlative to the negative gradient definition {gt(xi)}N

i=1 using the
observed data:

gt(x) = Ey

[
∂Ψ(y, f (x))

∂ f (x)
|x
]

f (x)= f̂ t−1(x)

(4)

As an end game, the overall formulation of the GBM algorithm can be presented as a
complete form whose original definition is existed in Friedman’s article [20]. At the end of
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the day, the whole form of the ensured algorithm, of which all the related formulations, is
strongly tied to the designing of Ψ(y, f ) and h(x, θ). Algorithm 1 briefs the whole process of
GBM in pseudo-code lines. The reader can refer to studies [20,23] for a detailed explanation
of the GBM phenomenon.

Algorithm 1 Gradient Boosting Machine Algorithm—Friedman’s approach

Require:
1: inputs← (x, y)N

i=1
2: iteration number← L
3: loss-function← Ψ = (y, f )
4: the model of base learner← h(x, θ)

Ensure: f̂t
5: f̂0 ← initialization with a constant
6: for t = 1 to L do
7: calculation of the negative gradient gt(x)
8: fitting the new base-learner func. h(x, θt)
9: finding the step-size of best gradient descent ρt:

10: ρt = argmin
ρ

∑N
i=1 Ψ

[
yi, f̂t−1(xi) + ρh(xi, θt)

]
11: function estimate updating:
12: f̂t ← f̂t−1 + ρth(x, θt)
13: end for

2.3.2. Deep Learning Model

In the modern era of scientific studies, researchers in various fields have focused on
machine learning and DL interactions with their disciplines [24,25]. This trend occurs
because DL algorithms go so fast into the emerging areas avoiding the handcrafted feature
extraction, and easily dealing with the big data process of which classic ML algorithms
collapse [26,27]. In the studies which handle the electricity data to analyze forecasting the
electricity generation and consumption, there are various types of adapted ML models to
obtain better performances. Among all those bunches of ML models, DL-based intelligent
models have an important role in SG signal processing [28]. Since the main course of this
study is not based on a pure DL model, it is avoided the detailed explanations of basic DL
models to prevent any confusion in the readers’ minds. Figure 12 shows a basic DL model
with [12, 10, 10, 1] layer design. The architecture details of the DL model of this study will
be detailed in the experiments [10].

Figure 12. A general architecture of a deep model.
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Before jumping into the experiments and results, we can see the evaluation metrics for
the experiments of the proposed study below. Here, both the classification and regression
metrics are formulated.

2.3.3. Evaluation Metrics for Classification Approach

In this study, the well-known performance metrics that suit the aim of our study are
determined as accuracy (acc), precision (prec), recall or sensitivity (rec), F1-score, specificity
(spec), area under the ROC curve (AUC), and Gini coefficient (2×AUC−1). Those metrics
could draw a general picture in the readers’ minds on the way of assessment of the
proposed classification models. For the enhanced explanations and other details of the
preferred evaluation metrics, please refer to studies [10,29]. The Equations (5)–(9) give the
formulation of the classification metrics in terms of the confusion matrix elements true
positive (TP), true negative (TN), false positive (FP), and false-negative (FN):

acc =
TP + TN

TP + TN + FP + FN
(5)

prec =
TP

TP + FP
(6)

rec =
TP

TP + FN
(7)

F1-score = 2× prec× rec
prec + rec

=
2TP

2TP + FP + FN
(8)

spec =
TN

TN + FP
(9)

2.3.4. Evaluation Metrics for Regression Approach

When it comes to the assessment of a regression model, there are fewer metrics that
can fit the performance. Most of the evaluation metrics in a regression problem focus on
errors between the observations and the predicted values. Moreover, to reveal a clearer
understanding of how close the prediction values track the actual or observed values, there
is an effective correlation metric called r-squared (R2). In this study, root-mean-square errors
(RMSE), mean absolute error (MAE), and R2 have been taken into consideration. In the
following equations, the mathematical definitions of the selected metrics are stated [15]:

MAE =
1
n

n−1

∑
i=0
|yi − ŷi| (10)

RMSE =

√√√√ 1
n

(
n−1

∑
i=0

(yi − ŷi)2

)
(11)

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(ȳi − yi)2 , ȳ =

n

∑
i=1

yi (12)

where yi and ŷi state the actual and predicted values, respectively, and the total sample
numbers are denoted by n.

3. Results and Discussion

This section presents and discusses the obtained results for SG stability prediction in
two datasets of the study. In the code design, Canonical Ubuntu 20.04 operating system
(OS) installed on a workstation is used. Ubuntu OS uses the Linux kernel and is based on
Debian as an open-source platform. The workstation setup has an Intel Xeon CPU with
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E5-2620 v4 @2.10 GHz dual-core running with 32 GB of RAM and a GPU card of Nvidia
Quadro M4000 8GB.

In this study, the model design was coded on a modern AI platform of H2O [30] using
the development environment as Jupyter Lab [31]. The software programming is built on
the H2O Python packages [32] and also the necessary Python 3.8 packages.

H2O provides rapid and effective AI and ML systems for data scientists. It makes the
process cost-effective for the experiments, and with its seamless usage of the grid search
algorithm, the hyper-parameters of the proposed models could be optimized automatically.
Despite a training and testing split handled in the experiments, H2O uses k-fold cross-
validation in its models’ training step, then chooses the best model and conducts the testing
operation to finalize the validation performance metrics. Table 6 describes the manually
entered parameters of the GBM and DL models.

Table 6. Model parameters of classification and regression approaches.

Model Manually Entered Parameters

GBM number of trees: 250, depth: 6, others are optimized automatically
DL layers-classification:[12, 50(tanh), 50(tanh), 1(softmax)], epoch: 40

layers-regression:[12, 50(ReLu), 50(ReLu), 1(Linear)], epoch: 40

3.1. Results of the Classification Approach

Here, the train and test ratio is used at 80% and 20% for all datasets. The readers
should keep in mind that our training stage has 5-fold cross-validation, which means the
proposed model has also been tested while the training stage. To give a clear presentation,
the most important performance, which is the testing performance, is listed in the results
tables. However, the training process can be tracked with graphical results.

Figure 13 shows the training plot of the raw dataset with GBM and DL models. Along
with the training process, we can track the validation curves, too. In both models, we can
see a clear training process with fewer validation and training loss errors.

Figure 14 visualizes the training plot of the augmented dataset for the proposed
models of GBM and DL.

Considering the two datasets, the training process of aug dataset runs more smoothly
than the raw dataset. The validation and training loss errors in the DL model of the
augmented dataset are considerably less than in the raw dataset. If we focus on the GBM
model for the two datasets handled, we can see the differences in the training stages of
aug and raw ones. Again, we can interpret that the loss values of the aug dataset are less
than the raw datasets. The excessive sample number of the augmented dataset might be an
explanation for the loss of values.

(a) GBM training plot. (b) DL training plot.

Figure 13. Training plots of the raw dataset for GBM and DL models.
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(a) GBM training plot. (b) DL training plot.

Figure 14. Training plots of aug dataset for GBM and DL models.

In Table 7, we can investigate the testing results of both raw and aug datasets with
related performance values produced by GBM and DL models. Here, we can interpret
that the prec, spec, and rec values reached the perfect classification performance value.
The AUC and Gini metrics are also high values for a classifier dealing with such a complex
problem. In Table 7, we can see the acc metrics lay a bit behind according to the other
metrics set. However, if we consider our datasets to have an imbalanced structure, this
result is very acceptable. As it is very known, the accuracy metric does not have so many
important roles in such datasets. The other specific metrics as AUC, F1-score, prec, sec,
and rec metrics are more valuable compared to acc metric.

Table 7. Testing performances of classification approach for both models.

Evaluation Metrics Dataset–Raw Dataset–Aug

GBM Model

acc 0.950076 0.974814
prec 1.000000 1.000000
rec 1.000000 1.000000

F1-score 0.962279 0.980341
spec 1.000000 1.000000
AUC 0.988 0.999
Gini 0.976 0.995

DL model

Evaluation Metrics Dataset–Raw Dataset–Aug

acc 0.964850 0.985489
prec 1.000000 1.000000
rec 1.000000 1.000000

F1-score 0.973533 0.988692
spec 1.000000 1.000000
AUC 0.996 0.999
Gini 0.991 0.998

Table 8 includes the confusion matrix demonstrations of the proposed classifier models
in our study. Here, we can select the confusion matrix values as listed in table form.
By interpreting Table 8, it is clearly seen that the misclassification values of the models
are very acceptable. Here, we can see the clear difference in the error rates of the raw
dataset and aug dataset. While the aug dataset has an excessive number of samples, it has
lower error rates than the raw dataset. This points out that the augmentation process has a
positive effect on the SG stability prediction process. Moreover, it is clearly seen that the DL
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model has produced fewer error rates than the GBM model in both dataset performance
results. The confusion matrix demonstration, which is presented by Table 8, is a good sign
for the performance values of a classifier and the proposed models have valuable confusion
matrix performance values.

Table 8. Confusion matrix in table form.

GBM Model

Dataset–Raw Dataset–Aug
stable unstable Error Rate stable unstable Error Rate

stable 615 47 0.071 (47/662) 4159 137 0.0319 (137/4296)
unstable 51 1250 0.0392 (51/1301) 165 7530 0.0214 (165/7695)

Total 666 1297 0.0499 (98/1963) 4324 7667 0.0252 (302/11991)
DL model

Dataset–Raw Dataset–Aug
stable unstable Error Rate stable unstable Error Rate

stable 625 37 0.0559 (37/662) 4210 86 0.02 (86/4296)
unstable 32 1269 0.0246 (32/1301) 88 7607 0.0114 (88/7695)

Total 657 1306 0.0352 (69/1963) 4298 7693 0.0145 (174/11991)

3.2. Results of the Regression Approach

Figure 15 shows the training plot of the raw dataset with GBM and DL models for
the regression approach. Together with the training process, we can follow the validation
curves. In both models, we can see a clear training process with fewer validation and
training loss errors.

Figure 16 visualizes the training plot of the augmented dataset for the proposed
models of GBM and DL for the regression approach.

Considering the two datasets, the training process of aug dataset in the regression
runs more smoothly than the raw dataset. The validation and training loss errors in the DL
model of the augmented dataset are considerably less than in the raw dataset. If we look
into the GBM model curves for the two datasets considered, we can see the differences in
the training stages of aug and raw ones. Again, we can state that the loss values of the aug
dataset are less than the raw datasets’ in the regression approach. The excessive sample
number of the augmented dataset might be an explanation for the loss of values.

(a) GBM training plot. (b) DL training plot.

Figure 15. Training plots of the raw dataset for GBM and DL models–regression.
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(a) GBM training plot. (b) DL training plot.

Figure 16. Training plots of aug dataset for GBM and DL models–regression.

In Table 9, we can see the testing results of both raw and aug datasets with related
performance values produced by GBM and DL models in the regression approach. Here,
we can state that the MAE, RMSE, and R2 values reached high values. This means that the
proposed models for SG stability prediction can handle the problem effectively with the
regression approach, too. Similar to the classification approach, the valuable performance
metrics reached high values in regression, too. In the regression approach, the correlation-
related metric r-square is the most important metric when interpreting the regression
results. Here, we can see high values of the r-square in the proposed regression models.

Table 9. Testing performances of regression approach for both models.

Evaluation Metrics Dataset–Raw Dataset–Aug

GBM model

MAE 0.006 0.005
RMSE 0.008 0.007
R2 0.94 0.95

DL model

Evaluation Metrics Dataset–Raw Dataset–Aug

MAE 0.005 0.003
RMSE 0.006 0.005
R2 0.96 0.98

3.3. Explainable AI-Demonstration for Classification

As it is mentioned before, this study includes comprehensive analyses of the SG
stability datasets used in the literature. This part of the article, there given the results of the
classification and regression models. In this sub-section, it is time to present the explainable
AI (XAI) analysis results. In the following analyses of XAI, the graphical results of the
proposed classification model GBM are considered. Because the main course of this study
is based on the state-of-the-art GBM model for the SG stability prediction in a classification
manner. The XAI analyses are handled on some detailed feature analysis to make clear the
model understanding with proofs.

Firstly, the variable importance graphics are demonstrated. The variable importance
graphic states the relative importance of the most important variables in the models. As it
is mentioned before in the feature correlation matrices, we can see that the highly correlated
features with the response “stab” takes to the front here, too. Figures 17 and 18 show the
detailed bar graphs of variable importance values of the raw dataset and aug dataset for
the proposed GBM model, respectively.
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Figure 17. Variable importance graph of raw dataset–GBM Model.

Figure 18. Variable importance graph of aug dataset–GBM Model.

SHapley Additive exPlanations (SHAP) summary graphics visualize the contribution
of the features for each row of the dataset. The main purpose of SHAP is to describe the
prediction of a sample of the dataset by computing the contribution for each feature to
values of the prediction [30]. The SHAP plot can further state the positive or negative
relationships of the features with the response variables. Figures 19 and 20 show the
SHAP plots of the proposed GBM model for the raw and augmented datasets, respectively.
Here, our SHAP plots tell that the p–features contribute to the response less than other
features. Apparently, there would be conducted any additional analyses with dropping
the p–features from both datasets. These assumptions clearly sensed from the correlation
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matrices and variable importance plots, too. The dominance behavior of the g and tau
features are clearly seen with the SHAP plots.

As an additional comment, we can say that contribution of the p–features to the
classification response is very less in the augmented dataset. The power effect in the grid
should be examined in accordance with the whole behavior of the SG. As generally speaking
on the SHAP plots presented in Figures 19 and 20, both the augmented dataset and raw
dataset have the same features which are much confronting in the whole distribution.

Figure 19. SHAP graph of raw dataset–GBM Model.

Figure 20. SHAP graph of aug dataset–GBM Model.

Figures 21 and 22 demonstrate the partial dependence graphs of the proposed GBM
model for the raw and the aug datasets, respectively. These plots are presented only for the
tau4 in the raw dataset and tau1 in the augmented dataset. Because these features are at the
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top of the variable importance list for the raw and aug datasets. A partial dependence plot
(PDP) shows a graphical visualization of the marginal effect of a feature on the response.
The effect of a feature can be measured in variation in the mean values of the responses.
PDP states the independence between the feature for the one it is the PDP calculated and
the remains [30].

Figure 21. Partial dependence graph of tau1 in raw dataset–GBM Model.

Figure 22. Partial dependence graph of tau1 in aug dataset–GBM Model.

Here in PDP visualizations, we can interpret that the value of the most relevant features
directly affects the SG stability. However, both in the raw dataset and aug dataset, we can
say that after a specific value (at about the value of 6) of the tau features, the stability is not
affected anymore.
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3.4. The Overall Comparison of the Results with the Existing Studies in the Literature

The final part of the results and discussion section ends with a general comparison.
As mentioned before, we collected all the studies that used the same dataset in the related
literature on SG stability prediction. In Table 10, all the studies focusing on SG stability
prediction are integrated. As seen in Table 10, most of the studies handled the SG stability
problem as a classification approach and preferred the raw dataset. Only this study,
the preliminary study of this study’s author [16], and study [10] considered the augmented
dataset in the process. Moreover, a conference proceeding [15] attempted to handle the
problem as a regression approach.

Table 10. Studies in the literature using the same datasets of SG stability prediction.

Study Year Dataset Approach Model

This study 2021 Augmented and Raw Classification and Regression GBM
[10] 2021 Augmented Classification DL
[13] 2021 Raw Classification Decision Tree
[14] 2021 Raw Classification Decision Tree
[15] 2021 Raw Regression BiGRU
[16] 2021 Augmented Classification CNN
[12] 2020 Raw Classification LSTM
[11] 2019 Raw Classification ML
[5] 2018 Raw Classification Decision Tree

To picture an overall comparison, Table 11 is provided. Here the proper evaluation
metrics are integrated to shape a fair comparison scenario. Most of the studies take the acc
metric in the first place, even though it is not a satisfying metric in all situations. However,
in brief words, the proposed study has outperformed most of the studies existing in the
literature in terms of various evaluation metrics such as the spec, rec, prec, and F1-score.
When it comes to overall assessments of the existing studies, the proposed study stays
in a different place, including a comprehensive analysis of feature engineering and XAI.
Obtained results show that the proposed GBM method has an outstanding place in the
SG stability prediction in both classification and regression approaches. The preliminary
study of this article’s author, the presented abstract study [16], includes a basic CNN model
and does not handle the dataset in such a comprehensive way as exists in the proposed
study. In particular, when similar studies are examined in the literature which has the same
purpose and includes the same dataset, it is seen that the proposed study is the first holistic
study to handle the SG stability problem with classification and regression problem with
such an enhanced analysis.

Table 11. Performance comparisons.

Study Acc F1-Score R2

This Study 0.97 1.000 0.96
[10] 0.99 0.99 -
[13] 0.97 0.97 -
[14] 0.99 - -
[15] - - 0.97
[16] 0.99 0.98 -
[12] 0.99 - -
[11] 0.91 0.91 -
[5] - - -

4. Conclusions

The excessive spread of renewable energy has some challenges along with its ad-
vantages. The distributed structure of modern times electrical grid topology required a
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bidirectional and symmetrical power flow in SG. Integrating all the players of the electri-
cal grid along with the price policy determination is a process that needs to be operated
seamlessly. In such a complicated process, DSGC opens a door to the solution for system
management with its easy-to-access operation based on frequency. Even though DSGC can
unquestionably handle the grid stability operation, it still has drawbacks, including major
simplifications in its calculation nature.

In this paper, an enhanced model is proposed with the power of explainable AI and
feature engineering for the prediction of SG stability. The proposed study has important
points, such as taking the problem with both classification and regression manner as a
symmetrical approach. Moreover, this study has a role to draw a holistic picture of the
existing studies putting them on a table, and proposing a novel structure that outperforms
the drawbacks of the former methods. The proposed GBM model and designed DL model
have produced a prominent performance.

The GBM is a robust technique that can effectively predict complex non-linear function
dependencies. The decision tree-based model family has shown significant success in
various practical implementations. Furthermore, the GBMs are exceptionally resilient and
can easily be adapted to different practical demands. However, all these outputs and
advantages have a price. Although GBMs can be well-considered to be a methodological
concept than a specific method, they still have some drawbacks.

The most remarkable problem of the GBMs that appears in practical experience is their
memory consumption. Predictive model storage capacity depends on the size of boosting
iterations used in the learning. Despite that, this issue with memory consumption is
common to all the ensemble techniques and appears more considerably with the increased
number of models to be stored.

One other problem of GBM that is naturally sourced from the high memory consump-
tion is the evaluation speed. To operate the fitted GBM model for predictions, the user
has to evaluate all of the base learners in the structure of the ensemble. Considering the
simplicity of each of them, when the ensemble is noticeably large, gathering predictions at
a fast pace can be time-consuming. For this reason, preferring GBMs in excessive online
tasks would presumably require the user to credit a trade-off between the complexity of
the model and the desired function evaluations per time sampling. Nevertheless, when the
GBM is already learned, the user can draw full advantage of parallelization in obtaining
the predictions

The stated problems above are merely computational and accordingly, they can be
noted the cost of having a stronger model. As we have mentioned, GBMs are extremely
practicable, providing various beneficial properties to the field-operators.

Moreover, GBMs can be addressed as a scaffold for model design, in this way providing
the experts the opening not only to customize but also to plan particular novel GBM models
for specific tasks. This superior flexibility has led to improvement of a broad range of GBM
algorithm designs. Moreover, the proposed model in this study is empowered with deep
learning and XAI to provide a robust implementation.

The XAI analyses revealed important bottom lines to be considered. Moreover, the pro-
posed study handles both SG datasets that are being researched by the related experts to
date. After the results of the comprehensive analysis, future studies should be considered
to combine the data analytics touch with the smart grid deeply.
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