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Abstract: In this paper, we will present a new, more flexible class of distributions with a domain
in the interval (0,1), which presents heavier tails than other distributions in the same domain, such
as the Beta, Kumaraswamy, and Weibull Unitary distributions. This new distribution is obtained
as a transformation of two independent random variables with a Weibull distribution, which we
will call the Generalized Unitary Weibull distribution. Considering a particular case, we will obtain
an alternative to the Beta, Kumaraswamy, and Weibull Unitary distributions. We will call this new
distribution of two parameters the type 2 unitary Weibull distribution. The probability density
function, cumulative probability distribution, survival function, hazard rate, and some important
properties that will allow us to infer are provided. We will carry out a simulation study using the
maximum likelihood method and we will analyze the behavior of the parameter estimates. By way
of illustration, real data will be used to show the flexibility of the new distribution by comparing it
with other distributions that are known in the literature. Finally, we will show a quantile regression
application, where it is shown how the proposed distribution fits better than other competing
distributions for this type of application.

Keywords: Generalized Unitary Weibull distribution; Beta distribution; moments; maximum
likelihood estimates

1. Introduction

There are various probability distributions with support on (0,1). One of the most used
is the Beta distribution, which is a family of continuous probability distributions defined in
the interval (0,1) with two shape parameters, both positive, normally denoted by α and β.

In Bayesian inference, the Beta distribution is generally used as the conjugate prior
to probability distribution for the Bernoulli, binomial, negative binomial, and geometric
distributions. For example, the Beta distribution can be used in Bayesian analysis to
describe any initial knowledge about the probability of success. In addition, it is a density
that is usually used to model the data associated with percentages and proportions.

The usual formulation of the Beta distribution is also known as the type I Beta distri-
bution, whose density function is provided by:

fX(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (1)

where α, β > 0 are shape parameters, with 0 < x < 1. We denote this by writing
X ∼ Beta(α, β).

A distribution similar to Beta is the Kumaraswamy distribution [1], but it is simpler in
the sense that simulations can be obtained from the inverse of the cumulative distribution,
since it has a closed expression, alike the quantiles. Its density is defined by:

fX(x) = αβxα−1(1− xα)β−1, (2)
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where α, β > 0 are the shape parameters, with 0 < x < 1. We denote this by writing
X ∼ KW(α, β).

Mazucheli et al. [2] show the Unitary Weibull distribution where they present some
inferential procedures. Mazucheli et al. [3] present a unitary version of the Weibull
distribution as an alternative to the KW distribution to model quantiles conditional on
covariates. The stochastic representation of a Unitary Weibull distribution is provided by
V = e−X , with X ∼Weibull(α, β), denoted by V ∼ UW(α, β), which has a density function
provided by:

fV(v) =
1
v

αβ[−log(v)]β−1exp
{
−α[−log(v)]β

}
, 0 < v < 1. (3)

In this paper, the Generalized Unitary Weibull distribution of a random variable Y is pre-
sented based on a transformation of two independent random variables with distributions
Weibull(θ1, α) and Weibull(θ2, β), denoted by Y ∼ GUW(θ1, θ2, α, β). In particular, we will
study the case for θ1 = θ2 = θ and α = 1 that we will call Weibull Unitary distribution
type 2, denoted by UW2(θ, β) , where θ, β > 0.

The article is organized in the following manner. In Section 2, we provide the stochastic
representation, the pdf of a random variable with GUW distribution, and present some
properties and the distribution UW2 as a particular case. The cumulative distribution func-
tion (cdf), quantiles, reliability functions, and hazard rate, moments, skewness coefficients,
and kurtosis are also provided. Some statistical properties are provided. The Canonical
Unitary Weibull distribution and its properties are presented. In Section 3, an inference is
made through a simulation study of the parameter estimates using the maximum likelihood
method. In addition, the Beta, KW, UW, and UW2 distributions are fitted to real data sets
in Section 4. In Section 5, a discussion and the main conclusions are presented.

2. The Generalized Unitary Weibull Family of Distribution

A random variable Y has a Generalized Unitary Weibull distribution, of parameters
θ1, θ2, α, and β > 0, denoted by Y ∼ GUW(θ1, θ2, α, β), if its stochastic representation is
provided by:

Y =
X1

X1 + X2
, (4)

where X1 ∼Weibull(θ1, α) and X2 ∼Weibull(θ2, β), X1, and X2 are independent random
variables. Its density function is presented below.

2.1. Density Function
Proposition 1. Let Y ∼ GUW(θ1, θ2, α, β) then the density function of Y is:

fY(y) =
θ1θ2yθ1−1

βθ2 αθ1 (1− y)θ1+1

∫ ∞

0
wθ1+θ2−1exp

{
−
[(

yw
α(1− y)

)θ1

+

(
w
β

)θ2
]}

dw (5)

where 0 < y < 1, θ1, θ2, α, and β > 0.

Proof. Using the stochastic representation provided in (4), we have that:

X1 ∼Weibull(θ1, α) ⇒ fX1(x) =
θ1

α

( x
α

)θ1−1
exp
{
−
( x

α

)θ1
}

, x > 0, (6)

X2 ∼Weibull(θ2, β) ⇒ fX2(x) =
θ2

β

(
x
β

)θ2−1
exp

{
−
(

x
β

)θ2
}

, x > 0, (7)

are independent random variables and, using the Jacobian of the transformation, it fol-
lows that:



Symmetry 2023, 15, 267 3 of 21

y = x1
x1+x2

w = x2

}
⇒

x1 = yw
1−y

x2 = w

}
⇒ J =

∣∣∣∣∣
∂x1
∂y

∂x1
∂w

∂x2
∂y

∂x2
∂w

∣∣∣∣∣ =
∣∣∣∣∣ w

(1−y)2
y

1−y

0 1

∣∣∣∣∣ = w
(1− y)2 . (8)

Hence,

fY,W(y, w) = |J| fX1,X2

(
yw

1− y
, w
)

=
w

(1− y)2 fX1

(
yw

1− y

)
fX2 (w)

=
θ1θ2yθ1−1wθ1+θ2−1

βθ2 αθ1 (1− y)θ1+1 exp

{
−
[(

yw
α(1− y)

)θ1

+

(
w
β

)θ2
]}

, 0 < y < 1 , w > 0. (9)

Therefore,

fY(y) =
θ1θ2yθ1−1

βθ2 αθ1 (1− y)θ1+1

∫ ∞

0
wθ1+θ2−1exp

{
−
[(

yw
α(1− y)

)θ1

+

(
w
β

)θ2
]}

dw, (10)

where 0 < y < 1.

Now, we provide some elementary properties.

Proposition 2. Let Y ∼ GUW(θ1, θ2, α, β) then:

1. If θ1 = θ2 = α = β = 1 then Y ∼ U(0, 1), where U denotes the uniform distribution in
(0,1).

2. If θ1 = θ2 = θ, and α = β = 1 then fY is symmetric.
3. If θ1 = θ2 = α = 1 then fY(y) =

β

[1+(β−1)y]2 .

Proof. Let Y ∼ GUW(θ1, θ2, α, β), whose density is represented in proposition 1.

1. The result is obtained by replacing θ1 = θ2 = α = β = 1 in the distribution of Y then
Y ∼ U(0, 1).

2. If θ1 = θ2 = θ and α = β = 1 then:

fY(y) =
θyθ−1(1− y)θ−1

[yθ + (1− y)θ ]2
, 0 < y < 1. (11)

Then fY(y) = fY(1− y).
3. The result follows from plugging θ1 = θ2 = α = 1 into the distribution of Y.

2.2. Density Function of the Unitary Weibull Distribution Type 2

Definition 1. Setting θ1 = θ2 = θ and α = 1 in (5), the density function of Y is provided for:

fY(y) =
θβθyθ−1(1− y)θ−1

[(βy)θ + [(1− y)θ ]2
, 0 < y < 1, (12)

which we will call Weibull Unitary distribution type 2, denoted by Y ∼ UW2(θ, β).

Figure 1 below show each pdf of the UW2 distribution compared to the Beta distribu-
tion. It shows that, for certain values of the parameters, respectively, the distributions are
very similar and in others there is quite a difference.
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Figure 1. UW2 pdf for θ = 2 and different values of β.

Figure 2 shows the pdfs of the UW2 distribution for β = 2 and different values of θ.
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Figure 2. UW2 pdf for β = 2 and different values of θ.

Proposition 3. Let Y ∼ UW2(θ, β). Then, the cdf of Y is provided by:

FY(t) =

[
1 +

(
1− t

βt

)θ
]−1

, 0 < t < 1. (13)
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Proof.

FY(t) =
∫ t

0
fY(y)dy

=
∫ t

0

θβθyθ−1(1− y)θ−1

[(βy)θ + (1− y)θ ]2
dy

= θβ
∫ t

0

(βy)θ−1(1− y)θ−1

(βy)2θ

[
1 +

(
1−y
βy

)θ
]2 dy

= θβ
∫ t

0

(
1−y
βy

)θ−1

(βy)2
[

1 +
(

1−y
βy

)θ
]2 dy.

Performing the change of variable u = 1−y
βy y expanding the integral, we obtain the

result.

Corollary 1. Let Y ∼ UW2(θ, β), then the quantile function of Y is provided by:

t =

[
1 + β

(
1
p
− 1
) 1

θ

]−1

, 0 < p < 1. (14)

Proof. Solving t from p = FY(t) provides the result.

In Figure 3, we graphically illustrate the behavior of the Cumulative distribution
function of the UW2 distribution for different values of θ and β = 2.
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Figure 3. Cdf of UW2 for different values θ and β = 2.

2.3. The Reliability, Hazard Rate Functions and Increasing Failure Rate

Two important measures of reliability are the reliability function and hazard (failure)
rate function. The reliability function of a random variable Y is defined by SY(t) = 1− FY(t),
where FY denotes the cdf of Y. The risk rate function is defined by hY(t) = fY(t)/(1− FY(t)).
For the distribution UW2, as a direct consequence of Proposition 3, both reliability measures
can be expressed in closed form. The corresponding expression is obtained in the following
Proposition simple form.

In Table 1, it can be seen that the UW2 distribution better captures the values’ outliers
compared to the UW, KW, and β distributions, since the reliability is higher.
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Table 1. Reliability function comparisond for distributions of UW2, UW, KW, and β.

SY(t) = P(Y > t)

t UW2(1, 5) UW(1, 5) KW(1, 5) Beta(1, 5)

0.70 0.0789474 0.0057559 0.0024300 0.0024300
0.75 0.0625000 0.0019685 0.0009766 0.0009766
0.80 0.0476191 0.0005531 0.0003200 0.0003200
0.85 0.0340909 0.0001134 0.0000759 0.0000759
0.90 0.0217391 0.0000130 0.0000100 0.0000100
0.95 0.0104167 0.0000004 0.0000003 0.0000003

Proposition 4. Let Y ∼ UW2(θ, β). Then, the hazard rate funtion of Y is provided by:

h(t) =
θβθtθ−1

(1− t)[(βt)θ + (1− t)θ ]
. (15)

Proof.

hY(t) = fY(t)/(1− FY(t)). (16)

Replacing fY(t) and FY(t) provides the result.

Figure 4 shows the hazard rate function of the UW2 distribution for different values
of θ and β = 2. Looking at the graphical representation, it is clear that it presents a wide
variety of forms. Therefore, the new family of distributions is flexible enough to model real
data sets.

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

t

H
az

ar
d

UW2(1,2)
UW2(2,2)
UW2(3,2)

Figure 4. The hazard rate functions for the UW2 distribution.

Next, we present the Increasing Failure Rate, which is defined as the derivative of the
failure rate function provided in (15).

Proposition 5. Let Y have distribution UW2(θ, β). Then for any θ and β > 0 the random variable
Y has Increasing Failure Rate (IFR).

Proof. The first derivative of h provided in (15) can be written as follows

h′(t) =
βθθtθ−2

(
θ(1− t)θ + 2t(1− t)θ − (βt)θ + 2t(βt)θ − (1− t)θ

)
(
(βt)θ + (1− t)θ

)2
(1− t)2

. (17)
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It is clear that h′(t; θ, β) > 0 since t > 0, β > 0 and θ > 0, which implies the result.

2.4. Moments

The following statement shows the moments for the UW2 distribution. Essentially,
these moments are expressed as a numerical integral (the problem of obtaining a closed
analytic expression remains open).

Definition 2. Let Y ∼ UW2(θ, β). Hence, for r = 1, 2, 3, . . . we define:

µr(θ, β) = E(Yr; θ, β) = θβθ
∫ 1

0

yr+θ−1(1− y)θ−1

[(βy)θ + (1− y)θ ]2
dy. (18)

Proposition 6. Let Y ∼ UW2(θ, β) then:

E(Yr; θ, β) = E
(
(1−Y)r; θ,

1
β

)
. (19)

Proof.

E(Yr; θ, β) = θβθ
∫ 1

0

yθ+r−1(1− y)θ−1

[(βy)θ + (1− y)θ ]2
dy

= θ

(
1
β

)θ ∫ 1

0

(1− y)θ+r−1yθ−1

[yθ + ( (1−y)
β )θ ]2

dy

= E
(
(1−Y)r; θ,

1
β

)

In particular, for r = 1 we have:

µ1(θ, β) = 1− µ1

(
θ,

1
β

)
. (20)

Remark 1. This Proposition allows us to reaffirm that, for β = 1 and any value of the parameter θ,
the density UW2 is symmetric (case r = 1).

Remark 2. From definition 2, the skewness and kurtosis coefficients can be obtained through:

β1 =
µ3 − 3µ2µ1 + 2µ3

1[
(µ2 − µ2

1)
]3/2 (21)

and

β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2
, (22)

respectively, which do not present a closed expression, so they must be obtained using numerical
methods.

Corollary 2. Let Y ∼ UW2(θ, β), then:

β1(θ, β) = −β1

(
θ,

1
β

)
(23)

β2(θ, β) = β2

(
θ,

1
β

)
. (24)
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Proof. Using Proposition 6 for r = 1, 2, 3, 4 and substituting in (21) and (22), respectively,
the required result is obtained.

Figure 5 and Table 2 graphically and numerically show the behavior of the asym-
metry and kurtosis coefficients of the UW2 distribution and are consistent with what is
represented in corollary 2. That is, the value of the asymmetry coefficient, given a value
of the parameter θ, is the same for β as for 1/β, but with the opposite sign. For example:
β1(5, 1/2) = −0.4592 and β1(5, 2) = 0.4592. Similarly, the value of the kurtosis coeffi-
cient, given a value of the parameter θ, is the same for β as it is for 1/β. For example:
β2(5, 1/2) = β2(5, 2) = 4.6954.
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Figure 5. Plots of the skewness (left) and kurtosis of the UW2 distribution (right).

Table 2. Skewness and kurtosis values of the UW2 model with different values of θ and β.

Skewness Kurtosis

θ β = 1/2 β = 1/3 β = 1 β = 2 β = 3 β = 1/2 β = 1/3 β = 1 β = 2 β = 3

1 −0.4861 −0.7849 0 0.4861 0.7849 2.0928 2.5644 1.8000 2.0928 2.5644
2 −0.5980 −0.9739 0 0.5980 0.9739 3.0459 3.9578 2.5013 3.0459 3.9578
3 −0.5744 −0.9279 0 0.5744 0.9279 3.5809 4.5497 2.9939 3.5809 4.5497
4 −0.5176 −0.8255 0 0.5176 0.8255 3.8564 4.7050 3.3240 3.8564 4.7050
5 −0.4592 −0.7237 0 0.4592 0.7237 3.9995 4.6954 3.5460 3.9994 4.6954
6 −0.4077 −0.6363 0 0.4077 0.6363 4.0765 4.6377 3.6984 4.0765 4.6377
7 −0.3642 −0.5641 0 0.3642 0.5641 4.1201 4.5736 3.8058 4.1201 4.5736
8 −0.3278 −0.5048 0 0.3278 0.5048 4.1460 4.5161 3.8836 4.1460 4.5161
9 −0.2972 −0.4557 0 0.2972 0.4557 4.1620 4.4678 3.9412 4.1620 4.4678

10 −0.2715 −0.4148 0 0.2715 0.4148 4.1723 4.4281 3.9848 4.1723 4.4281
11 −0.2496 −0.3802 0 0.2496 0.3802 4.1793 4.3957 4.0186 4.1793 4.3957
12 −0.2307 −0.3508 0 0.2307 0.3508 4.1840 4.3692 4.0472 4.1840 4.3693
13 −0.2144 −0.3254 0 0.2144 0.3254 4.1874 4.3475 4.0665 4.1874 4.3475
14 −0.2002 −0.3033 0 0.2002 0.3033 4.1899 4.3295 4.0765 4.1899 4.3295
15 −0.1877 −0.2840 0 0.1877 0.2840 4.1917 4.3144 4.0979 4.1917 4.3145
16 −0.1766 −0.2670 0 0.1766 0.2670 4.1932 4.3018 4.1096 4.1931 4.3018
17 −0.1667 −0.2518 0 0.1667 0.2518 4.1942 4.2911 4.1194 4.1942 4.2908
18 −0.1578 −0.2393 0 0.1578 0.2382 4.1951 4.4034 4.1278 4.1951 4.2837
19 −0.1498 −0.2261 0 0.1498 0.2263 4.1958 4.2741 4.1350 4.1958 4.2692
20 −0.1426 −0.2405 0 0.1426 0.2149 4.1963 5.7680 4.1411 4.1963 4.2746



Symmetry 2023, 15, 267 9 of 21

2.5. Some Statistical Properties
2.5.1. Entropy of UW2

The entropy H(Θ) can be obtained using the density function of Y; specifically, the
following form expression is obtained:

H(Θ) = −
∫ 1

0
fY(y, Θ)ln( fY(y, Θ))dy. (25)

If Y be a random variable with UW2(Y; θ, β) distribution. So, the entropy of Y is provided
by:

H(θ, β) = −
∫ 1

0

θβθyθ(1− y)θ−1(
(βy)θ + (1− y)θ

)2 ln

 θβθyθ(1− y)θ−1(
(βy)θ + (1− y)θ

)2

dy. (26)

Table 3 shows the entropy values of the UW2 distribution for different values of the
parameters θ and β.

Table 3. Entropy values for the distribution UW2(θ, β) for different values of θ and β.

θ β = 1/3 β = 1/2 β = 1 β = 2 β = 3

1 −0.1976 −0.0798 0.0000 −0.0781 −0.1939
2 −0.5145 −0.3657 −0.2640 −0.3657 −0.5146
3 −0.8398 −0.6808 −0.5714 −0.6808 −0.8398
4 −1.0984 −0.9350 −0.8223 −0.9350 −1.0984
5 −1.3079 −1.1423 −1.0279 −1.1423 −1.3079
6 −1.4828 −1.3159 −1.2006 −1.3159 −1.4828
7 −1.6324 −1.4648 −1.3488 −1.4648 −1.6324
8 −1.7630 −1.5949 −1.4785 −1.5949 −1.7630
9 −1.8788 −1.7103 −1.5936 −1.7103 −1.8788

10 −1.9827 −1.8139 −1.6971 −1.8139 −1.9827
11 −2.0770 −1.9080 −1.7910 −1.9080 −2.0770
12 −2.1632 −1.9940 −1.8769 −1.9940 −2.1632
13 −2.2426 −2.0733 −1.9561 −2.0733 −2.2426
14 −2.3162 −2.1469 −2.0295 −2.1469 −2.3162
15 −2.3848 −2.2154 −2.0980 −2.2154 −2.3848
16 −2.4490 −2.2795 −2.1621 −2.2795 −2.4490
17 −2.5093 −2.3398 −2.2223 −2.3398 −2.5093
18 −2.5663 −2.3967 −2.2792 −2.3967 −2.5663
19 −2.6201 −2.4505 −2.3330 −2.4505 −2.6201
20 −2.6713 −2.5016 −2.3841 −2.5016 −2.6713

2.5.2. Mean Residual Life

An important reliability quantity for positive random variables is the mean residual
life, which is defined as µ(t; θ, β) = 1

1−FY(t)

∫ ∞
t (1− FY(y))dy, t > 0.

For the case that Y ∼ UW2(θ, β), then the mean residual life of Y is obtained by
replacing:

FY(t) =

(
1 +

(
1− y

βy

)θ
)−1

, t > 0. (27)
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2.5.3. Incomplete Moments

The r-th incomplete moment of Y ∼ f (y; Θ) is defined as:

mr(y; Θ) =
∫ y

0
tr f (t; Θ)dt. (28)

If Y ∼ UW2(θ, β), then the r-th incomplete moment of Y is provided by:

mr(y; θ, β) =
∫ y

0

tθ+r−1(1− t)θ−1

[(βt)θ + (1− t)θ ]2
dt, 0 < y < 1. (29)

An interesting application of the first incomplete moment is that the mean deviation
about the mean µ of Y can be directly obtained, specifically by means of the relation (see [4]):

E(|Y− µ|) = 2µF(µ; θ, β)− 2m1(µ; θ, β), (30)

where µ = E[Y].

2.5.4. Lorenz Curve and the Gini Index

The Lorentz curve and Gini coefficient are tools used in the field of economics to
measure income inequality in a society.

The Lorenz curve (see [5]), L(x; Θ), can also be obtained from the quantile function of
Y; specifically, the following closed-form expression is obtained:

L(p, Θ) =
1

µ1

∫ p

0
F−1(y)dy, 0 < p < 1, (31)

where µ1 = E(Y).
If Y ∼ UW2(θ, β). Next, the Lorenz curve is provided by:

L(p, θ, β) =
1

µ1

∫ p

0

[
1 + β

(
1
y
− 1
) 1

θ

]−1

dy, 0 < p < 1, (32)

where µ1 =
∫ 1

0
θβθ yθ(1−y)θ−1(
(βy)θ+(1−y)θ

)2 dy.

The Gini index (see [5]) is the measure of inequality associated with the Lorenz curve.
For the random variable X, the Gini index is defined by:

G(α, θ) = 1− 1
µ

∫ ∞

0
(1− F(y; α, θ))2dy. (33)

In the next result, an analytical expression is provided for G(α, θ).

Proposition 7. Let Y ∼ UW2(θ, β), then the Gini index of Y is provided by:

G(α, θ) = 1− 1
µ

∫ ∞

0

1−
(

1 +
(

1− y
αy

)θ
)−1

dy. (34)

Figure 6 shows the Lorenz curve using the UW2 distribution for different values of
the parameters θ and β.
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Figure 6. UW2 Lorenz Curve for different values of θ and β.

It can be observed that, as θ increases, inequality with the Gini index decreases, and,
as β increases, inequality with the Gini index increases.

2.6. Canonical Type 2 Unitary Weibull Distribution

Let Y ∼ UW2(θ, β) causing θ = 1; then, the distribution of Y is called the canonical
type 2 Weibull distribution and we will denote it by Y ∼ UW2(1, β) and its density function
has the following expression:

fY(y) =
β

(1− (1− β)y)2 , 0 < y < 1. (35)

Its most important properties are:

1. The cd f of Y is provided by:

FY(t) =
βt

1 + (β− 1)t
, 0 < t < 1. (36)

2. Quantile function of Y is:

t =
p(1− β) + β

p
. (37)

3. The r-th moment of Y has the following expression:

µr = E[Yr] = 1− rβ 2F1(1, r + 1; r + 2;−(β− 1))Γ(r + 1), , r = 1, 2, . . . (38)

where 2F1(a, b; c;−z) = 1
B(b,c−b)

∫ 1
0

xb−1(1−x)c−b−1

(1+zx)a dx.

In particular, for r = 1, 2, 3, 4 we have:

µ1 =
β ln(β) + 1− β

(β− 1)2 ; β 6= 1 (39)

µ2 =
β2 − 2β ln(β)− 1

(β− 1)3 ; β 6= 1 (40)

µ3 =
β3 − 6β2 + 3β + 6β ln(β) + 2

2(β− 1)4 ; β 6= 1 (41)

µ4 =
β4 − 6β3 + 18β2 − 10β− 12β ln(β)− 3

3(β− 1)5 ; β 6= 1, (42)
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4. Kurtosis coefficient is provided by following expression.

β2 =
6(β− 1)3(β4 − 6β3 + 18β2 − 10β− 12β ln(β)− 3

)
− 4(β− 1)2(β ln(β) + 1− β)

(
β3 − 6β2 + 3β + 6β ln(β) + 2

)(
(β− 1)5(β2 − 2β ln(β)− 1)− (β ln(β) + 1− β)2

)2

+
6(β− 1)(β ln(β) + 1− β)2(β2 − 2β ln(β)− 1

)
− 3(β ln(β) + 1− β)4(

(β− 1)5(β2 − 2β ln(β)− 1)− (β ln(β) + 1− β)2
)2 (43)

Figure 7 shows the graphic behavior of the kurtosis for the canonical distribution
UW2 for different values of β.
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Figure 7. UW2 canonical kurtosis for different values of β.

5. The Lorenz curve of Y is:

L(p, 1, β) =
p− pβ− β(ln(|(p− 1)β− p|) + β ln(|−β|)

β ln β− β + 1
. (44)

6. The expression for the Gini index of Y is provided by:

G(1, β) =
β[(1 + β) ln(β)− 2(β− 1)]
(β− 1)[1− β(1− ln(β))]

. (45)

Figure 8 shows the Lorenz curve and the Gini index of the canonical UW2 distribution
for different values of β in which the parameter β is directly proportional to the Gini
index.
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Figure 8. Lorenz curve and Gini index of the canonical UW2 distribution for different values of β.
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7. Entropy of Y:

H(1, β) = 2− β + 1
β− 1

ln(β). (46)

Figure 9 shows the graph of the entropy of the canonical UW2 distribution for different
values of β.
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Figure 9. Graph of the entropy of the canonical UW2 distribution for different values of β.

3. Inference

In this section, we discuss the statistical inference of the estimators for the model
Y ∼ UW2(θ, β).

3.1. Maximum Likelihood Estimate

We now discuss the maximum likelihood estimate. Given a random sample Y1, . . . , Yn
of the distribution UW2(θ, β), the logarithm of the likelihood function can be written as:

l(θ, β) = n ln θ + nθ ln β + (θ − 1)
n

∑
i=1

ln yi + (θ − 1)
n

∑
i=1

ln(1− yi)− 2
n

∑
i=1

ln[(βyi)
θ + (1− yi)

θ ]. (47)

Therefore, the maximum likelihood equations are provided by:

n

∑
i=1

yθ−1
i

(βyi)θ + (1− yi)θ
=

n
2βθ+1 (48)

2
n

∑
i=1

(βyi)
θ ln(βyi) + (1− yi)

θ ln(1− yi)

(βyi)θ + (1− yi)θ
− ln yi(1− yi)

2
=

n
θ
+ n ln β. (49)

The solutions to the equations can be obtained using numerical procedures such as
the Newton–Raphson procedure.

3.2. Simulation Study

We use the Monte Carlo method to generate random numbers from the distribution
UW2(θ, β).

Table 4 presents a simulation study of 1000 samples of size n = 50, 100, and 200
for different values of the parameters θ and β. These random values are obtained from

ui ∼ U(0, 1), i = 1, 2, . . . , n, and substituting in the quantile yi =

[
1 + β

(
1
ui
− 1
) 1

θ

]
for

given θ and β, we obtain the random values of the distribution UW2(θ, β). On the other
hand, the table shows that when the sample size increases, the parameter estimates con-
verge asymptotically to the parameters. However, the standard deviations and the average
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length of the confidence intervals decrease as the sample size increases. This allows us to
verify the consistency of the parameter estimates. Finally, the values obtained from the
empirical coverage are as expected, since it is close to a 95% confidence

Table 4. Simulation of 1000 iterations of the model UW2(θ, β).

n β θ β̂ sd(β̂) c(β̂) θ̂ sd(θ̂) c(θ̂)

50 2 0.5 2.2512 1.1014 90.6 0.5105 0.0603 94.6
100 2 0.5 2.1292 0.7380 94.3 0.5043 0.0422 94.0
200 2 0.5 2.0346 0.4975 94.2 0.5022 0.0297 94.5

50 2 1 2.0559 0.5021 92.8 1.0209 0.1207 94.6
100 2 1 2.0340 0.3523 95.1 1.0086 0.0844 94.0
200 2 1 2.0029 0.2450 95.0 1.0043 0.0594 94.5

50 2 2 2.0118 0.2455 94.3 2.0419 0.2413 94.6
100 2 2 2.0097 0.1740 95.4 2.0172 0.1687 94.0
200 2 2 1.9979 0.1222 95.2 2.0087 0.1188 94.4

50 2 4 2.0020 0.1221 94.1 4.0837 0.4826 94.6
100 2 4 2.0031 0.0867 95.8 4.0344 0.3374 94.0
200 2 4 1.9981 0.0611 95.3 4.0173 0.2376 94.5

50 0.5 4 0.5005 0.0305 94.2 4.0837 0.4826 94.6
100 0.5 4 0.5008 0.0217 95.8 4.0344 0.3374 94.0
200 0.5 4 0.4995 0.0153 95.3 4.0173 0.2376 94.5

50 0.5 2 0.5030 0.0614 94.2 2.0419 0.2413 94.6
100 0.5 2 0.5024 0.0435 95.4 2.0172 0.1687 94.0
200 0.5 2 0.4995 0.0306 95.2 2.0086 0.1188 94.5

50 1 2 1.0059 0.1228 94.3 2.0419 0.2413 94.6
100 1 2 1.0049 0.0870 95.4 2.0172 0.1687 94.0
200 1 2 0.9989 0.0611 95.2 2.0087 0.1188 94.5

β̂ is the EMV of β, sd corresponds to the standard deviation, and c the empirical coverage based on a confidence
interval of 95% of the respective EMV of the parameters.

4. Analysis of Real Data
4.1. Example 1: Application to Medical Data

In this example, we compute the MLEs of (β, α, θ) to fit the KW, Beta, UW, and UW2
models to a real data set. The data can be found in the book on Biostatistics (see [6] Daniel,
Pag. 475) and correspond to a study carried out by Slemenda et al. [7], in which he
investigates the effects of lateral bone mineral density (LBMD) on spinal osteoarthritis
in 66 women aged 34–87 years. Some descriptive statistics are shown in Table 5. Table 6
shows the MLEs for the models: KW, Beta, UW, and UW2. Using the Akaike criterion
(AIC) [8], criterion Bayesian (BIC) [9], the Kolmogorov–Smirnov (KS) test, and Chen’s
approximate goodness-of-fit test [10] (W*), (A*), we see that model UW2 best fits the
data. The advantage of the UW2 model is more evident for the data with more extreme
observations, see Figure 10 (side right). Figures 11 and 12 show that the UW2 distribution
fits the data better than the UW, Beta, and KW distributions.

Table 5. Summary statistics for ant data set of the LBMD.

n w sd b1 b2

66 0.5864 0.1339 0.04085 3.5395
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Table 6. Parameters estimates for KW, Beta, UW, and UW2 distributions.

Parameter Estimates KW(sd) Beta(sd) UW(sd) UW2(sd)

α̂ 5.0241 (1.0507) 4.4717 (0.7554) 2.3068 (0.2055) -
β̂ 3.8972 (0.4386) 6.4115 (1.1016) 2.8807 (0.3867) 0.6992 (0.0513)
θ̂ - - - 2.9370 (0.3041)

Log-likelihood 33.9586 35.5639 36.333 38.0463
AIC −61.712 −67.1278 −68.666 −72.0926
BIC −59.333 −62.748 −64.281 −67.713

KS Statistic 0.1212 0.1515 0.1212 0.0909

W* 0.1380 0.1029 0.08197 0.06354
A* 0.9276 0.7149 0.6091 0.4204

Observing Table 6, we see that the values of AIC and BIC are lower than those of their
competitors, thus the statistic KS, A*, and W* indicating the best fit of the distribution UW2
in comparison with the distributions KW, Beta, and UW.
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Figure 10. Histogram for LBMD data with Densities UW2 (solid line), UW (dashed line), Beta (dotted
line), and KW (dashed dotted line) (left) and tails (right).
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Figure 11. QQ plots for the LBMD data set: KW (a), Beta (b), UW (c), and UW2 (d).
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Figure 12. Comparison of cumulative distributions for the LBMD data set for UW2 (blue line), UW
(red line), Beta (green line), and KW (orange line).

4.2. Example 2: An Application to Environment Data

In this section, we compute the MLEs of (α, β, θ) to fit the Beta, KW, UW, and UW2
models to a real environment data set. The data can be found at https://dga.mop.gob.cl/
servicioshidrometeorologicos/Paginas/default.aspx (1 December 2022) servicioshidrome-
teorologicos/Paginas/default.aspx and they correspond to the fluviometric and meteoro-
logical data recorded in monitoring stations from Arica to Tierra del Fuego. In addition,
you will have access to various official statistical reports on hydrometeorological variables
and water quality, obtained from our National Hydrometric Network; the analyzed data
are the percentage of dissolved oxygen in a lake. Some descriptive statistics are shown
in Table 7. Table 8 shows the MLEs for the models: Beta, KW, UW, and UW2. From the
Akaike criteria (AIC), (BIC), we see that the UW2 model best fits the data. Figure 13 shows
that the UW2 model fits the data better than UW, Beta, and KW models.

Table 7. Summary statistics for environment data set of the percentage of dissolved oxygen.

n w sd b1 b2

210 0.8294 0.1283 −2.3702 11.3423

Table 8. Parameter estimates for the distributions Beta, KW, UW, and UW2.

Parameter Estimates Beta(sd) KW(sd) UW(sd) UW2(sd)

α̂ 7.3538 (0.7436) 6.9905 (0.5687) 5.4931 (0.4721) -
β̂ 1.6043 (0.1435) 1.8721 (0.0.2003) 1.1210 (0.0504) 0.1616 (0.0089)
θ̂ - - - 2.1259 (0.1740)

AIC −344.234 −352.005 −326.509 −394.225

BIC −337.540 −345.311 −319.814 −387.530

https://dga.mop.gob.cl/servicioshidrometeorologicos/Paginas/default.aspx
https://dga.mop.gob.cl/servicioshidrometeorologicos/Paginas/default.aspx
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Figure 13. Histogram for percent dissolved oxygen data (left) with densities of UW2 (solid line), UW
(dashed line), Beta (dotted line), and KW (dashed line) and tails (right).

The QQ plots of the data with the UW2 distribution compared to the Beta, KW, and
UW2 distributions adjusted with the maximum likelihood estimators of their parameters
are shown in Figure 14.
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Figure 14. QQ plots for the data set: Beta (a), KW (b), UW (c), and UW2 (d).

4.3. Example 3: An Application to Quantile Regression
4.3.1. One-Dimensional Quantile Regression

Translating this concept of quantile to the regression line, we obtain the linear quantile
regression (see [11]). If we assume that:

Yi = α0,τ + α1,τXi + εi,τ , ∀iε(1, . . . , n), (50)
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with τε(0, 1) and that the conditional expected value is not necessarily zero, but the τ-th
quantile of the error with respect to the return variable is zero (Qτ(εi,τ |X) = 0), so the τ-th
quantile of Yi with respect to X can be written as:

Qτ(Yi|X) = α0,τ + α1,τXi. (51)

The estimators of α0,τ and α1,τ are obtained by:

α̂τ = arg min
ατε<2

(
∑

Yi≥A
τ|Yi − α0,τ − α1,τXi|+ ∑

Yi<A
(1− τ)|Yi − α0,τ − α1,τXi|

)
, (52)

being ατ = (α0,τ , α1,τ) and A = α0,τ + α1,τXi. To estimate the parameters, the function
described in the formula must be minimized.

4.3.2. Quantile Regression Unitary Weibull Type 2

In this case, in the regression equation:

Yi = α0,τ + α1,τXi + εi,τ , ∀iε(1, . . . , n), (53)

where the response variable Y ∼ UW2(θ, β), it is possible to reparameterize it in the
distribution. So, one way to obtain the quantile of the function of Y is the following:

Let µτ =

[
1 + β

(
1
τ − 1

) 1
θ

]−1

, then β =

(
1− µτ

µτ

)(
τ

1− τ

)1/θ

and substituting into

the density function of Y, we obtain:

fY(y) =
θ

(
1− µτ

µτ

)θ( τ

1− τ

)
yθ−1(1− y)θ−1

[(
1− µτ

µτ

)θ( τ

1− τ

)
yθ + (1− y)θ

]2 , 0 < y < 1, (54)

then the cdf of Y is:

FY(y) =

1 +

(
1−τ

τ

)θ+1

1−µτ
µτ


−1

. (55)

then Y ∼ UW2(µτ , θ), where 0 < µτ < 1 is the quantile parameter. Considering τ known,
µτ and θ are estimated by the maximum likelihood.

4.3.3. An Application of Quantile Regression to Praters Gas Mileage Data

To illustrate this, we consider Simas et al. [12] investigating Praters gas mileage data
based on the same mean equation as above, but now with temperature. Table 9 shows the
statistics of these data. Table 10 shows the maximum likelihood estimators as predictor
variables of (α0, α1) and their standard errors for the UW2, UW, and Beta distributions.

Table 9. Summary statistics for data set of the temperature and yield.

Data n w sd b1 b2

Yield 52 332.0938 69.7559 −0.2657 1.3058

Temp 52 0.1965 0.1070 0.3687 2.1997
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Table 10. Parameters estimates and standard error for the quantile regression coefficients UW2, UW,
and Beta models for the dataset and the quantile of 0.5.

UW2 UW Beta

Coe f . Est. sd t-Value p-Value Est. sd t-Value p-Value Est. sd t-Value p-Value

α0 −0.1702 0.0800 −2.1256 0.0418 −0.1733 0.0963 −1.7992 0.0820 −0.1339 0.0528 −2.5333 0.0167
α1 0.0011 0.0002 4.1976 0.0002 0.0012 0.0003 3.6745 0.0009 0.0009 0.0001 5.1823 0.0000

Looking at Table 11 and Figures 15 and 16, we see that the UW2 distribution compared
to the Beta and UW distributions fits better using quantile regression when the variable
response has high kurtosis.

Table 11. AIC and BIC values for the models UW2, UW, and Beta of the Temperature and Yield.

Model AIC BIC

UW2 −58.07373 −53.67652

UW −53.75805 −49.36084

Beta −43.69310 −39.29589
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Figure 15. Quantile regression for Yield and Temperature data with UW2 density (left) and Beta
density (right).
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Figure 16. Quantile regression for Yield and Temperature data with UW2 density (left) and UW
density (right).

5. Discussion

In this work, we have introduced a new family of distributions with a domain in
the interval (0,1) and with heavier tails than some similar distributions seen in the litera-
ture. The new family is based on a transformation of two independent random variables
with a two-parameter Weibull distribution. We define the new family by its stochastic
representation. We provide its density function and reliability function and also provide
some statistical properties of interest. In the inferential part, we estimate the parameters
of the new model using the maximum likelihood method and the information criteria
are used to select the best model and evaluate the goodness of fit of the new distribution
compared to other similar distributions. A Monte Carlo simulation study was carried out
to empirically evaluate the statistical performance of the estimators, using the maximum
likelihood method for the parameters of the new model. In addition, we show the coverage
probabilities and the mean length of the confidence intervals obtained for the correspond-
ing parameters using the asymptotic normality of these estimators. The simulation study
reported consistent performance of these estimators. Finally, three illustrations with real
data were created, with two related to medical information and the environment. A third
application was related to quantile regression. These analyses provided sufficient infor-
mation to conclude that the proposed model presents better behavior when compared to
others from the competition.
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