
Citation: Gupta, R.P. Constraining

Coupling Constants’ Variation with

Supernovae, Quasars, and GRBs.

Symmetry 2023, 15, 259. https://

doi.org/10.3390/sym15020259

Academic Editor: Kazuharu Bamba

Received: 23 November 2022

Revised: 29 December 2022

Accepted: 6 January 2023

Published: 17 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Constraining Coupling Constants’ Variation with Supernovae,
Quasars, and GRBs
Rajendra P. Gupta

Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; rgupta4@uottawa.ca

Abstract: Dirac, in 1937, proposed the potential variation of coupling constants derived from his
large numbers hypothesis. Efforts have continued since then to constrain their variation by various
methods, including astrophysical and cosmological observations. We briefly discuss several methods
used for the purpose while focusing primarily on the use of supernovae type 1a, quasars, and
gamma-ray bursts as cosmological probes for determining cosmological distances. Supernovae type
Ia (SNeIa) are considered the best standard candles since their intrinsic luminosity can be determined
precisely from their light curves. However, they have only been observed up to about redshift z = 2.3,
mostly at z ≤ 1.5. Quasars are the brightest non-transient cosmic sources in the Universe. They have
been observed up to z = 7.5. Certain types of quasars can be calibrated well enough for their use as
standard candles but with a higher degree of uncertainty in their intrinsic luminosity than SNeIa.
Gamma-ray bursts (GRBs) are even brighter than quasars, and they have been observed up to z = 9.4.
They are sources of highly transient radiation lasting from tens of milliseconds to several minutes and,
in rare cases, a few hours. However, they are even more challenging to calibrate as standard candles
than quasars. Both quasars and GRBs use SNeIa for distance calibration. What if the standard candles’
intrinsic luminosities are affected when the coupling constants become dynamic and depend on
measured distances? Assuming it to be constant at all cosmic distances leads to the wrong constraint
on the data-fitted model parameters. This paper uses our earlier finding that the speed of light c,
the gravitational constant G, the Planck constant h, and the Boltzmann constant k vary in such a
way that their variation is interrelated as G ∼ c3 ∼ h3 ∼ k3/2 with

.
G/G = 3

.
c/c = 3

.
h/h = 1.5

.
k/k

= 3.90(±0.04)× 10−10 yr−1 and corroborates it with SNeIa, quasars, and GRBs observational data.
Additionally, we show that this covarying coupling constant model may be better than the standard
ΛCDM model for using quasars and GRBs as standard candles and predict that the mass of the GRBs
scales with z as

(
(1 + z)1/3 − 1

)
. Noether’s symmetry on the coupling constants is now transferred

effectively to the constant in the function relating to their variation.

Keywords: cosmology theory; cosmological parameters; dark energy; galaxies; distances and redshifts;
supernovae; quasars; gamma-ray bursts; luminosity function; mass function; Dirac cosmology;
varying coupling constants

1. Introduction

Constancy of fundamental constants has been investigated since time immemorial
but attained prominence when Dirac in 1937 [1] developed his large numbers hypothesis,
and derived from it that the gravitational constant G and the fine structure constant α may
evolve with cosmological time. Teller [2] considered the solar luminosity dependence on G
based on the stellar scaling laws and constrained its possible variation by ensuring that
the Solar luminosity was always conducive for life to evolve on Earth over the time of its
existence. Most methods developed since then determined the possible variation of G well
below Dirac’s prediction The methods include the study of solar luminosity evolution [3],
occultation and eclipses of the Moon [4], evidence based on paleontological data [5], cooling
and pulsation of white dwarfs [6], evolution of the star clusters [7], masses and ages of
neutron stars [8], anisotropies observed in cosmic microwave background radiation [9],
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abundance of light elements from big-bang nucleosynthesis [10], asteroseismology data
analysis [11], lunar laser ranging observations [12], planetary orbits evolution over time [13],
binary pulsars observations [14], evolution of supernovae type-1a (SNeIa) luminosity [15],
and the observation of gravitational-wave from binary neutron stars [16].

Despite Einstein developing the radical theory of special relativity assuming the speed
of light c to be constant, he also consider it to be variational [17]. Qi et al. [18] reported a
negligible c variation (assuming a power law variation), and using the observational data for
very low and moderate redshift z values of baryon acoustic oscillations (BAO), supernovae
type Ia, cosmic microwave background, and Hubble parameter H(z). Another possibility
for measuring the c variation with cosmic time was suggested by Salzano et al. [19]. They
determined constraints on the variation of c using the relation between the maximum value
of the angular diameter distance DA(z) and H(z), and the BAO and simulated data. Using
the independent determination by Suzuki et al. [20] of H(z) and the luminosity distance
DL(z) from SNeIa observations, Cai et al. [21] tried to study the variation of c. The first
measurement of c value with respect to z=1.7 was reported by Cao et al. [22] and found
it essentially the same at z = 0, i.e., as measured on Earth. They used the measurement
available for radio quasars for angular diameter distance extending to high redshifts. Using
galactic-scale strong gravitational lensing systems with quasars/SNeIa as lensed sources,
Cao et al. [23] considered a direct measurement of the variation of the speed of light.
Lee [24] did a statistical analysis of a galaxy-scale strong gravitational lensing sample
that included stellar velocity dispersion measurement on 161 systems and determined
effectively no variation in the speed of light. Mendonca et al. [25] obtained negative results
in their attempt of determining the variation of c using mass fraction measurements in
galaxy cluster gas.

The Planck constant h and the Boltzmann constant k are other constants of interest in
our work. The effect of time-dependent stochastic fluctuations of the Planck constant was
studied by Mangano et al. [26]. de Gosson [27] applied the effect of the Planck constant’s
variation on mixed quantum states. The possibility of temporal and spatial variation of
the Planck constant was considered Dannenberg [28] by raising it to the status dynamical
field that couples to itself and other fields, the coupling being through the Lagrangian
density derivatives. He further studied the cosmological implications of such variations
and reviewed the literature on the subject. Doppler broadening of absorption lines in
thermal equilibrium [29,30] can be used for direct measurement of the Boltzmann constant.
The broadening affects the profile of rovibrational line (e.g., of ammonia) along a laser beam.
The profile is determined by the Maxwell-Boltzmann molecular velocity distribution which
is related to the kinetic energy of each molecule. A critical analysis of spectral line profiles
of distant objects, such as quasars and interstellar media, should therefore, in principle, be
able to constrain the variation of the Boltzmann constant.

Uzan [31,32] has comprehensively reviewed the variation of fundamental constants.
The validity of the variability of dimensioned vs. dimensionless constants has been of
concern to Uzan [31,32] and others [33].

All the experiments and observations known to us have attempted to determine
the variation of one constant with all others held invariant. Such an approach may be
considered flawed when several constants may be varying in the expressions used for
studying their data, especially when variation of one constant may be related to another
constant. We have attempted to permit concurrent variation of c, G, h, and k in our
studies—cosmological, astrophysical, and astrometric: G ∼ c3 ∼ h3 ∼ k3/2. As a result,
using our covarying coupling constants (CCC) approach (Note: We unorthodoxically call
the c, G, h, and k coupling constants as they determine the strength of different energies
involved in a system (mass energy, gravitational energy, photon energy, thermal energy,
etc.) which are all coupled to one another. In the context of this paper, and for economy of
words, these are the only constants we call coupling constants in the CCC model), we are
able to:
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Resolve the primordial lithium problem: The most widely accepted lambda cold dark
matter (ΛCDM) model yields a big bang abundance of lithium about four times higher than
observed. Our CCC model calculates it within the uncertainties of the observations [34].

Find a reasonable solution to the faint young Sun problem: Stellar evolution models have
determined that the luminosity of the Sun was 25% lower 4.6 billion years ago than today.
Thus, life could not have evolved, as water would have been frozen. The CCC model yields
the luminosity to be lower only by 6% [35].

Prove that gravitational lensing cannot determine the variation of c: A supernova Ia light
curve has a well defined peak. Since path travelled are different for different gravitationally
lensed images of the source, the time difference in the peaking of the luminosity between
two gravitationally lensed images of a SNIa should in principle determine if c was different
at the time light rays were bent by the lens compared to its value today. However, both
the geometrical time delay and the Shapiro time delay scale as G⁄cˆ3, this method is not
capable of determining the variation of c [36].

Establish that supernovae 1a SNeIa data are consistent with the CCC model: We have shown
that the luminosity of the best standard candles, SNeIa, used for determining large galactic
distances is not constant over a cosmic time scale. By applying the luminosity correction,
the CCC model fits the Pantheon SNeIa data as well as the ΛCDM model [37,38].

Verify that quasars can be used to extend the Hubble diagram to high redshifts, z > 7: The
‘extreme Population A (xA) quasars’ approach, and sometimes exceed, the Eddington
luminosity limit.These quasars have the potential to serve as standard candles to measure
distances at which supernovae type Ia are too dim to be observable. By establishing how
their luminosities vary when coupling constants vary over cosmic time and calibrating
them using SNeIa standard candles, we show that xA quasars can be used reliably for
measuring such distances [39].

Determine phenomenologically the covarying relation G ∼ c3 ∼ h3 ∼ k3/2: We determine
the scaling law by applying local energy conservation laws to a star—a core-collapsed
supernova—exploding due to runaway nuclear fusion. The fusion energy release converts
to the kinetic energy of the explosion after countering its gravitational binding energy. The
former partially converts to thermal energy and radiation. I show that, when the coupling
constants are allowed to vary, they must vary as G ∼ c3 ∼ h3 ∼ k3/2 [40].

Show from the first principle that G ∼ c3: We have considered a scalar–tensor theory of
gravity with the dynamical scalar field φ comprising G as well as c. Both G and c are allowed
to be functions of the spacetime coordinates against only G, as in Brans–Dicke theory.
When the system reaches the stable point, the dynamics of φ cease. Then the constraint
.

G/G = σ
( .
c/c
)

with σ = 3 has to be satisfied for the rest of the cosmic evolution [41].
Demonstrate that constraining one coupling constant leads to constraining the others: The

CCC framework is a modified gravity setup assuming Einstein field equations wherein the
quantities {G, c, Λ} are promoted to spacetime functions. We use the ansatz

.
G/G = σ

( .
c/c
)

with σ = constant to deduce the functional forms of c = c(z) and G = G(z). We then show
that this varying {G, c, Λ}model fits SNeIa data and H(z) data with σ = 3 [42].

Show that orbital timing observations do not constrain the variation of G: When c is permit-
ted to vary, and distance is measured using the speed of light, we show using the CCC
approach that the measured constraints are on the variation of G/c3 and not on G [43].

Conclude that Kibble balance can be used to measure the variation of the constants: A Kibble
balance measures the gravitational mass of a test mass with extreme precision by balancing
the gravitational pull on the test mass against the electromagnetic lift force, resulting in
equations leading to mass measurements involving the coupling constants [44].

The predicted variation of the coupling constants is shown in Figure 1.
We examine the basic physics of covarying coupling constants (CCC) in Section 2.

Section 3 is devoted to the application of CCC to Pantheon supernovae type 1a data [45].
In Section 4, we take the quasars’ Hubble diagram data from Marziani and Sulentic [46]
and mass evolution data from Vestergaard and Osler [47] and see how our model fits the
same cosmological parameters that fit the Pantheon data. Section 5 examines the Hubble
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diagram data of gamma-ray bursts from Escamilla-Rivera et al. [48,49], again using the
cosmological parameters determined by fitting the supernovae type 1a data. We discuss
our findings in Section 6 and summarize our conclusion in Section 7.
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2. Physics of Covarying Coupling Constants

Following Costa et al. [50], we could write the Einstein equations for homogeneous
and isotropic universe with coupling constants varying with respect to time t—the speed of
light c = c(t), the gravitational constant G = G(t), and the cosmological constant Λ = Λ(t),
as follows:

Gµν =

(
8πG(t)

c(t)4

)
Tµν −Λ(t)gµν (1)

Here, Gµν = Rµν − 1
2 gµνR is the Einstein tensor, Rµν is being the Ricci tensor and R is

the Ricci scalar, and Tµν is the energy momentum tensor. When we apply the contracted
Bianchi identities, local conservation laws, and torsion-free continuity are as follows:

∇µGµν = 0 and ∇µTµν = 0, (2)

and one obtains a general constraint equation for the variation of the coupling constants:[
1
G

∂µG− 4
c

∂µc
](

8πG
c4

)
Tµν −

(
∂µΛ

)
gµν = 0 (3)

Now, we may write the Friedmann–Lemaître–Robertson–Walker (FLRW) metric for
the geometry of the Universe as:

ds2 = −c2(t)dt2 + a2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

]
(4)

Here k = −1, 0,+1 (written in units of the inverse of the curvature of the Universe R2),
depends on the spatial geometry of the Universe: −k = −1 for a negatively curved universe,
k = 0 for a flat universe, and +k = +1 for a positively curved universe.

The energy-momemtum tensor (also called stress–energy tensor) may be written as:

Tµν =
1

c2(t)
(ε + p)UµUν + pgµν, (5)
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assuming that the universe contents can be treated as perfect fluid. Here, ε is the energy den-
sity, p is the pressure, Uµ is the four-velocity vector having constraint gµνUµUν = −c2(t)
(We will often drop showing t variation, e.g., c(t) is written as c).

Solving the Einstein equation yields CCC-compliant Friedmann equations:

H2 ≡
.
a2

a2 =
8πGε

3c2 +
Λc2

3
− kc2

a2 ,⇒ .
a2

= a2
(

8πGε

3c2 +
Λc2

3
− kc2

a2

)
, (6)

..
a
a
= −4πG

3c2 (ε + 3p) +
Λc2

3
+

.
c
c

.
a
a
= −4πG

3c2 (ε + 3p) +
Λc2

3
+

.
c
c

a
.
a

H2 (7)

Here, a is the cosmological expansion scale factor with its current value taken as 1. When
we take the time derivative of Equation (6), divide it by 2a

.
a, and equate it with Equation (7)

we get the general continuity equation:

.
ε + 3

.
a
a
(ε + p) = −

[( .
G
G
− 4

.
c
c

)
ε +

c4

8πG

.
Λ

]
(8)

Equation (3) for the FLRW metric and perfect fluid energy-momentum tensor becomes:[( .
G
G
− 4

.
c
c

)
8πG

c4 ε +
.

Λ

]
= 0 (9)

therefore,
.
ε + 3

.
a
a
(ε + p) = 0 (10)

Using the equation of state relation p = wε, the solution for this equation is ε = ε0a−3−3w,
with ε0 the current energy density of all the components of the universe. Here a = a0 = 1,
w = 0 for matter, and w = 1/3 for relativistic particles.

From the continuity equation (Equation (9)), wen Λ is constant,
.

G/G = 4
.
c/c. However,

when Λ is not constant, we are could write
.

G/G = σ
.
c/c with σ an unknown parameter.

Then, from Equation (9), by defining εΛ = c4Λ/(8πG), we may write

8πG
c4

.
c
c
(4− σ)ε =

.
Λ,⇒

.
c
c
=

c4Λ
8πG

( .
Λ
Λ

)(
1

(4− σ)ε

)
≡ εΛ

(4− σ)ε

.
Λ
Λ

,⇒ εΛ =

.
c
c

Λ
.

Λ
(4− σ)ε (11)

The unknown parameter σ may be determined from the physics and by fitting
the observational data. We have determined in the past [51] that σ = 3, analytically,
i.e.,

.
G/G = 3

.
c/c, and confirmed it by fitting the SNe1a data [37]. Thus, we must have

εΛ =
.
cΛε/

(
c

.
Λ
)

from Equation (11).
Most commonly, one represents the variation of the constant through the scale factor

power law e.g., c = c0aα, which results in
.
c/c = α

.
a/a = αH, where α is being an unknown

parameter. It results in very simple Friedmann equations. However, as a→ 0 , the varying
constant tends to zero or infinity depending on the sign of α. Thus, it yields reasonable
results only when a = 1/(1 + z) corresponding to relatively small redshift. This led us to
try another relation that resulted in:

c = c0 f (a); G = G0 f (a)3; and Λ = Λ0g(a), (12)

with
f (a) = exp(aα − 1) (13)

and g(a) determined by substituting Λ = Λ0g(a) in Equation (11) with σ = 3. The
limitation of this form is that c can decrease in the past at most by a factor of 1/e (= 1/2.7183),
and G can decrease by a factor of e−3 (for positive α within the region of their applicability).
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The first Friedmann equation, Equation (6), becomes:

H2 =
8πG
3c2

(
ε +

Λc4

8πG

)
− kc2

a2 =
8πG
3c2 (ε + εΛ)−

kc2

a2 (14)

Here, energy density ε = εm + εr = εm,0a−3 + εr,0a−4 with subscript m for matter and r for
radiation (relativistic particles, e.g., photons and neutrinos). Dividing by H2

0 , we obtain:

H2

H2
0
=

8πG
3c2H2

0

(
εm,0a−3 + εr,0a−4 + εΛ

)
− kc2

H2
0 a2

(15)

Therefore, for a = 1, i.e., at the current time:

1 =
8πG0

3c2
0H2

0
(εm,0 + εr,0 + εΛ,0)−

kc2
0

H2
0

≡ (Ωm,0 + Ωr,0 + ΩΛ,0)−
kc2

0
H2

0

(16)

Here, we define the current critical density as εc,0 = 3c2
0H2

0 /8πG0, Ωm,0 = εm,0/εc,0,

Ωr,0 =
εr,0

εc,0
, and ΩΛ,0 = εΛ,0/εc,0. Thus, by defining Ω0 = (Ωm,0 + Ωr,0 + ΩΛ,0), we may

write Equation (16):

Ωk,0 ≡ −
kc2

0
H2

0
= 1−Ω0 (17)

We must now express εΛ using Equation (11), subject to the general constraint
(Equation (9)). This is somewhat convoluted. Nevertheless, following Gupta ([38]—
Appendix A), we may write:

H2

H2
0
= exp(aα − 1)

[
Ωm,0a−3{1 + αF(α, a)}+ Ωr,0a−4 + ΩΛ,0 exp(aα − 1)

]
+

1−Ωm,0 −Ωr,0 −ΩΛ,0

a2 exp[2(aα − 1)] (18)

≡ E(a)2 → E(z)2 by substituting a = 1/(1 + z) (19)

Here,

F(α, a) = a3 exp(aα − 1)

[∫ a

1

a′(α−4)

exp(a′α − 1)
da′
]

(20)

It is easy to see that F(α, 1) = 0 = F(α, 0), and the equations reduce to the ΛCDM
form when α = 0, i.e., no variation of the constants:

H2

H2
0
=
(

Ωm,0a−3 + Ωr,0a−4 + ΩΛ,0

)
− 1−Ωm,0 −Ωr,0 −ΩΛ,0

a2 (21)

Let us now determine the proper distance dP between an observer and a source. We
may write the FLRW metric in spherical spatial coordinates (Equation (4)) as [52]:

ds2 = −c2dt2 + a(t)2
[
dr2 + Sk(r)2(dθ2 + sin2 θdφ2)

]
(22)

Here, Sk(r) = R sin(r/R) for k = +1 (closed universe), Sk(r) = r for k = 0 (flat
universe), and Sk(r) = Rsinh(r/R) for k = −1 (open universe), where R is the parameter
related to the curvature. The proper distance dP is determined at a fixed time by following
a spatial geodesic at constant θ and φ. Then,

ds = a(t)dr ⇒ dP(t) = a(t)
∫ r

0
dr = a(t)r (23)



Symmetry 2023, 15, 259 7 of 24

We determine r following a null geodesic from the time t a photon is emitted by the
source to the time t0 it is detected by the observer with ds = 0 in Equation (22) at constant
θ and φ:

c2dt2 = a(t)2dr2 ⇒ cdt
a(t)

= dr ⇒ r =
∫ r

0 dr =
∫ t0

t
cdt
a(t)

⇒ dP = a(t0)
∫ t0

t
cdt
a(t)

(24)

Now, dt = da.dt/da = da/
.
a = da/a

.
a/a = da/aH, and a = 1/(1 + z), and da =

−dz/(1 + z)2 = −a2dz. Therefore,

dt = − adz
H

= − adz
H0 H
H0

= − adz
H0E(a)

, (25)

and

dP =
1

H0

∫ z

0

cdz
E(z)

=
c0

H0

∫ z

0

exp
[(

(1 + z)−α − 1
)]

dz

E(z)
(26)

Here, E(z) is given by Equations (18) and (19).
Following Gupta [37], we may write that the photons emitted by a source at the time

te are spread over a sphere of radius Sk(dP) and area AP(t0) by the time photons reach the
observer at the time t0. The area of the sphere is:

AP(t0) = 4πSk(dP)
2 (27)

The photon energy flux is defined as luminosity L divided by the area in a stationary
universe. When the Universe is expanding, then the flux is reduced by a factor 1+ z

(
≡ a−1)

due to the energy reduction of the photons from the change in their wavelength:

λ0a = λe ⇒ λ0 = (1 + z)λe

The photon energy is thus altered by a factor of 1/(1 + z) due to the expanding Universe.
We also need to determine how the increase in the time interval of the emitted photons

affects the flux. The proper distance between two emitted photons separated by a time
interval δte is ceδte, whereas the proper distance between the same two photons when
detected by observation is (ceδte)(1 + z), and the time interval between the same two
photons is δt0 = (ceδte)(1 + z)/c0 = (1 + z) f δte (since ce = c0 f , see Equation (12)). Thus,
the time duration between the photons alters by a factor of δte/δt0 = 1/[(1 + z) f ], which
is time dilation, which we have to consider when estimating the flux and, therefore, when
calculating the source distance.

The above two effects alter the photon energy flux cumulatively by a factor
1/
[
(1 + z)2 f

]
. Thus, we may write the flux of photons energy F0 received by an observer as:

F0 =
Lsource

4πS2
k(dP)

(1 + z)−2 f−1 ≡ Lsource

4πd2
L

⇒ dL = Sk(dP)(1 + z)
√

f .
(28)

Here, dL is the luminosity distance of the source. The distance modulus µ, derived from
the measured absolute bolometric magnitude M of the source at the luminosity distance dL
and its apparent magnitude m if placed at a distance of 10 parsecs, is by definition related
to the luminosity distance dL [52]:

µ ≡ m−M = 5 log10

(
dL

1Mpc

)
+ 25

= 5 log10

(
Sk(dP)

1Mpc

)
+ 5 log10(1 + z) + 2.5 log10 f (z) + 25

(29)
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We also need to consider how the luminosity of source is itself altered due to the
varying coupling constants in order to correlate the proper distance dP with the luminosity
distance dL. Here, by definition, f (z) = exp

[
(1 + z)−α − 1

]
. We determine α = 1.8 [37,51].

Let us see how to calculate Sk(dP) once we know dP from Equation (26). Recall
Sk(r) = R sin(r/R) for k = +1 (closed universe), Sk(r) = r for k = 0 (flat universe), and
Sk(r) = Rsinh(r/R) for k = −1 (open universe), where R is the parameter related to the
curvature, and k is in the units of 1/R2. Therefore, using Equation (17), we can write
R = (c0/H0)/

√
|Ω0 − 1|, and, using Equation (26), we can calculate µ (Equation (29)).

Varying coupling constants and their interdependence: We only consider how the
variation of c, G, and Λ are related. Let us now see how c and G variations are related to
the variation of the Planck constant h and the Boltzmann constant k [40].

Let us assume that the coupling constants evolve with the expansion of the Universe
through scale factor a as follows: c = c0 fc(a); G = G0 fG(a); h = h0 fh(a); and kB = kB,0 fk(a).
Here, subscript 0 on a coupling constant refers to its current value, and the subscript on the
arbitrary function f (a) identifies the associated coupling constant.

Consider now an exploding star of mass M and radius r, such as a core-collapse
supernova, where a fraction η of the mass is converted through fusion ( η ∼ 0.7% for
hydrogen-to-helium conversion) into the nuclear energy, causing the explosion. Assume a
fraction β of the explosion energy is used up in countering the negative self-gravitational
energy of the mass to bring it to zero, and the balance shows up as kinetic energy of the
exploded particle (ignoring energy loss due to escaping neutrino and antineutrino particles).
A fraction γ of this kinetic energy thermalizes and is partially radiated away as photons.
When distances are measured using the speed of light [36,53], the evolution of the energies
may be written:

ηMc2 × β =
GM2

r
=

GM2

rc(c/c0)
⇒ ηβc3 =

GMc0

rc
(30)

where rc is the stellar radius independent of the speed of light (similar to the commoving
distance in cosmology) defined by r ≡ rc(c/c0). Thus,

ηβc3
0 fc(a)3 =

G0 fG(a)Mc0

rc
(31)

Local energy conservation over each slice of cosmic time, i.e., scale factor a, leads to
fG(a) = fc(a)3, i.e., G ∼ c3.

Now, consider the thermalized kinetic energy of N particles, comprising mass M at
temperature T. Then,

η(1− β)Mc2 × γ = NkBT (32)

This means that c2 ∼ kBT. Since T is an arbitrary measure of thermal energy, kB ∼ c2, i.e.,
fk(a) = fc(a)2.

Finally, consider that a fraction δ of the thermal energy generates Nλ number of
photons of wavelength λ. Then,

δNkBT =
Nλhc

λ
(33)

Since N and Nλ are conserved in an evolutionary (expanding) universe, and we know
λ ∼ a, we must have kB ∼ hc. However, kB ∼ c2, which leads to h ∼ c, i.e., fh(a) = fc(a).

In summary,

fc(a) = fh(a) = fk(a)1/2 = fG(a)1/3 ≡ f (a), or
c = c0 f (a), G(a) = G0 f (a)3, h(a) = h0 f (a), and kB = kB, 0 f (a)2 (34)

If η, β, γ, and δ are functions of the scale factor a, then they can be absorbed in
functions representing the variations of the constants without affecting our findings.

The above analysis has general applicability and is not confined to supernovae ex-
plosions. The supernova explosion was chosen as it involves all four types of energy
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conversions needed for the analysis. Furthermore, it is easy to see that including the energy
loss from escaping neutrinos and antineutrinos does not affect our study.

3. Supernovae Hubble Diagram

Our focus in this section is to explore how well the Pantheon supernovae type Ia
(SNeIa) data [45] fit the CCC model. SNeIa are the best standard candles for measuring cos-
mological distances, and, thus, this fit is essential for a model to qualify for further studies.

Luminosity evolution of SNeIa in the CCC model: The peak SNIa luminosity, LSN ,
is proportional to the mass of the nickel synthesized in the white dwarf explosion result-
ing in the SNIa, which is proportional to the Chandrasekhar mass MCh of the exploding
star [15,54,55]. The explosion energy is partially used up to counter the gravitational bind-
ing energy Egr of the star, and the balance is converted into kinetic energy Eke. A fraction of
this kinetic energy is radiated out and observed as the SNIa luminosity. Therefore,

ηMChc2 ≡ Ekin + Egr. (35)

Here, η represents the efficiency of mass-to-energy conversion. Now, the Chandrasekhar
mass and the radius rwd of a white dwarf are given by [56]:

Mch = 0.21
(

Z
A

)2
(

hc
Gm2

p

)3/2

mp, (36)

and

rwd ≈
h2

10mem5/3
p G

(
Z
A

)5/3
M−1/3

ch . (37)

Here, Z is the atomic number, A is the atomic mass number, mp is the proton mass, and me
is the electron mass. The gravitational binding energy is, e.g., [56]:

Egr ≈ −
GM2

ch
rwd

. (38)

We can now use Equation (34) to see how the above quantities vary with the expansion
of the Universe. It should be noted that the function f (a) truly represents the variation of
the dimensionless ratio of a constant with its currently measured value. Thus, we tacitly
refer to the variation of this dimensionless ratio when we say the variation of a constant.
It is worth noting that the quantity hc/Gm2

p in Equation (36) defining the Chandrasekhar
mass is dimensionless but scales as f−1 (assuming mp is either constant or varies at a rate
negligible compared to the variation of c, h, and G). It plays an essential role in this study.

We may now write the following scaling relations for the white dwarf of Chan-
drasekhar mass MCh:

MChc2 ∼ f 1/2 (39)

rwd ∼ f−1/2, and (40)

Egr ∼
GM2

ch
rwd

∼ f 1/2. (41)

Now that MChc2 and Egr are both scaling as f 1/2 in the equation, we may write the scaling
of the energy ESN contributing to the SNIa luminosity as:

ESN ∝ Ekin =
(

ηMChc2 − Egr

)
∼ f 1/2. (42)

We also need to consider how the energy levels of electrons involved in the emission of
radiation, which affects the luminosity, scale when the coupling constants vary. The energy
levels are proportional to the Rydberg unit of energy: Ry = hcR∞, where R∞ = mee4/8ε2

0h3c
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is the Rydberg constant. Here, e is the electron charge, and ε0 is the permittivity of space
given by c = 1/

√
µ0ε0, with µ0 = 4π × 10−7 H m−1 being the permeability of free space.

All masses, electric charges, and permeability are constant in the CCC model. This means,

R∞ ∼ c4/
(

h3c
)
∼ f 0, and (43)

Ry ∼ f 2 × f 0 ∼ f 2. (44)

Therefore, the number of photons N released in the SNIa explosion is:

N ∝ ESN/Ry ∼ f−3/2 ⇒ N = N0 f−3/2 ⇒ N0 = N f 3/2. (45)

Let us now consider the evolution of the photon energy itself. It is given by ch/λ,
where λ is the photon wavelength. The lower energy of a photon at the time of emission by
a factor f 2 due to the lower values of c and h is offset by the increase in the photon energy
at the time of its detection due to the higher value of c and h by a factor f−2 for a given
photon wavelength λ. However, the photon wavelength does expand due to the expansion
of the Universe as the scale factor a, and this must be taken into account in calculating the
detected photon energy and luminosity.

It is now apparent that we must modify Equations (28) and (29) to take into account
Equation (45).

F0 =
Lsource

4πS2
k(dP)

(1 + z)−2 f−1 f 3/2 ≡ Lsource

4πd2
L
⇒ dL = Sk(dP)(1 + z) f−1/4; (46)

µ = 5 log10

(
Sk(dP)

1Mpc

)
+ 5 log10(1 + z) + 25− 1.25 log10 f (z). (47)

Other factors can also affect the SNeIa luminosity as a standard candle. One such
factor is the dependence of SNeIa luminosities on the metallicities of their host galaxies,
e.g., [57]. They showed that the SNeIa in high-metallicity hosts are 0.14± 0.10 magnitude
brighter than those in the low-metallicity hosts. If we consider that the metallicities
of the galaxies increase with their age, i.e., they increase with increasing scale factor
a, and that the calibration of the SNIa standard candle luminosity is performed from
observations in galaxies with a ≈ 1, we may write the magnitude decrease with a as
0.14(1− a). This corresponds to the magnitude decreasing with increasing redshift z as
0.14z/(1 + z). Equation (48) should, therefore, be modified as follows:

µ = 5 log10

(
Sk(dP)

1Mpc

)
+ 5 log10(1 + z) + 25

−1.25 log10[exp{(1 + z)−α − 1}]− 0.14
(

z
1 + z

) (48)

We express the form of function f (z) = exp
{
(1 + z)−α − 1

}
explicitly in Equation (48).

The first three terms are the same as in the ΛCDM model. In a flat universe, Sk(dP) = dP.
The α parameter may be considered as representing the strength of the variation of the
constants. We find α = 1.8 analytically [52] and confirm it from the analysis of various
observations [34–39,43]. We show graphically the dependence of key cosmological pa-
rameters H0, Ωm,0, ΩΛ,0, and Ωk,0 on α in Figure 1 of reference [38]. It may be noted that,
irrespective of the value of α, f (z)→ 1/e as z→ ∞ , such as for the surface of the last
scattering for cosmic microwave background and for big bang nucleosynthesis.

Results: We use Pantheon SNeIa data (Scolnic et al., 2018 [45]) for determining param-
eters for the CCC and the ΛCDM models. The redshift range of the Pantheon sample is
0.01 < z < 2.3. The data have observation in terms of the apparent magnitude, and we
add 19.35 to obtain normal distance modulus numbers, as suggested by Scolnic (private
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communication). We use the MATLAB curve fitting tool to fit the data by minimizing χ2.
Here, χ2 is the weighted summed square of residual µ:

χ2 = ∑N
i=1 wi[µ(zi; H0, p1, p2 . . .)− µobs,i]

2

where N is the number of data points, wi is the weight of the ith data point µobs,i determined
from the measurement error σµObs,i in the observed distance modulus µobs,i using the relation
wi = 1/σ2

µObs,i
, and µ(zi; H0, p1, p2..) is the model-calculated distance modulus dependent

on parameters H0 and all other model-dependent parameters p1, p2, etc. For the most
general case, p1 ≡ Ωm,0, p2 ≡ ΩΛ,0, and p3 ≡ α (since for the matter-dominated epoch Ωr,0
can be ignored). Thus, we have four free parameters to consider in fitting the data: three
when fitting a ΛCDM model and four when fitting the CCC model. The extra parameter
for the CCC case determines the strength of the variation of the evolving constants. In fact,
the ΛCDM model can be considered a special case of the CCC model when α = 0.

We first attempt to keep all four parameters free and determine the value of α that
yields the minimum χ2. We expect α to come out as zero if the ΛCDM model is the best
model to fit the Pantheon sample. However, it does not. This outcome prompts us to
explore the sensitivity of χ2 against the variation of α. In fact, χ2 is stable against α variation
within certain limits. This means the SNeIa data cannot determine a unique value of
α, which must be determined from other observations, as was performed in an earlier
paper [38], wherein we concluded α = 1.8. We, therefore, use α = 1.8 everywhere in
this paper.

We fit the Pantheon data for the CCC model using Equation (48) and determine the
cosmological parameters: the Hubble constant H0 = 70.83 (±0.66) km s−1 Mpc−1, the mat-
ter density Ωm,0 = 0.2708 (±0.0626), and the dark energy density ΩΛ,0 = 0.1754 (±0.1727).
The numbers in parenthesis indicate 95% confidence level. The last two numbers indicate
that the Universe is negatively curved. For fitting the data to the benchmark ΛCDM model,
we drop the last two terms in Equation (48), assume Sk(dP) = dP for a flat universe, and
substitute Ωm,0 = 0.3 and ΩΛ,0 = 0.7. As expected, the fit results in Hubble constant
H0 = 69.96 (±0.26) km s−1 Mpc−1. We immediately notice that the matter energy density
Ωm,0, determined using the CCC model, is the same as for the benchmark model within the
95% confidence level, whereas the dark energy density ΩΛ,0 is vastly different, meaning
that the latter trades with curvature energy density. The two fits are presented in Figure 2.
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As is evident, the fitted data curves for the two models are graphically indistinguish-
able. Even the χ2 per degree of freedom values (0.9904 for the ΛCDM model and 0.9876
for the CCC model) are not significantly different. Thus, one may conclude that the two
cosmological models are equally good. The CCC model must be tested against other
cosmological observables. One additional conclusion would be that the coupling constants’
variability function f (z) = exp

{
(1 + z)−1.8 − 1

}
used for fitting the data can be employed

for constraining the coupling constants.

4. Quasars’ Hubble Diagram

The ‘extreme Population A (xA) quasars’ approaching, and sometimes exceeding,
the Eddington limit are a class of quasars that can serve as standard candles to measure
distances larger than those at which supernovae type Ia are observable, e.g., [46,58–64].

Three conditions need to be satisfied for the possible use of xA quasars as standard
candles [64]:

1. Eddington ratio L/LE ≡ λE is constant, where L is the luminosity of the quasar, and
LE is its Eddington luminosity;

2. The black hole mass can be expressed with the virial relation M = rδv2/G. Here, r
is the radius of the broad-line region (BLR) of the emitted radiation, δv is the virial
velocity in the region;

3. They should have spectral invariance, i.e., the ionization parameter U = Q(H)/(
4πr2nHc

)
should be constant. Here, Q(H) is the number of hydrogen ionizing

photons, nH is the hydrogen number density, and c is the speed of light.

We study whether the above conditions are affected under the covarying coupling
constants scenario.

The luminosity L of a quasar with a black hole of mass M that is accreting mass at
a rate

.
M from a disk of inner diameter rin and outer diameter rout with r = rin � rout is

given by [56]:

L =
1
2

(
GM

.
M

rin

)
, (49)

whereas the Eddington luminosity LE is:

LE =
4πcGMmp

σT
. (50)

Here, mp is the proton mass, and σT is the Thomson scattering cross-section representing the
scattering of photons by electrons. Since LE is the limiting luminosity, L ≤ LE. Therefore,
from Equations (49) and (50):

.
M ≤ 8πrcmp/σT . (51)

Let us now see how the above three expressions scale when the coupling constants vary, as
in Equation (34), i.e.,

G ∼ c3 ∼ h3 ∼ k3/2 ∼ f 3, and

.
G
G

= 3
.
c
c
= 3

.
h
h
=

3
2

.
k
k

. (52)

These relations are independent of the form of f (a), i.e., f (z). However, the form we
successfully use for the SNeIa data fit above is:

f = exp(aα − 1) ≡ exp
[
(1 + z)−α − 1

]
. (53)

Here, α is the parameter representing the strength of the variation of the constants. We find
α = 1.8 analytically [52] and confirm it from the analysis of various observations [34–39,43].
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We may now write the scaling of the expressions, Equations (49)–(51), realizing that
any distance is measured using the speed of light, i.e., r ∼ c ∼ f . However, we should
first see how the Thomson scattering cross-section σT scales. It is given by:

σT =
8π

3

(
q2

4πε0mc2

)2

. (54)

Here, q is the elementary charge, and m is the mass of the particle. As discussed above, ε0
is the permittivity of space that is related to the speed of light through c = 1/

√
ε0µ0, where

µ0 = 4π × 107 H m−1 is the permeability of space. Thus, ε0 ∝ 1/c2. Since charge and mass
are considered invariant when coupling constants vary, we obtain σT ∼ f 0. Therefore,

.
M ≤ 8πrcmp/σT ∼ f 2, (55)

L =
1
2

(
GM

.
M

rin

)
∼ f 3

.
M
f
∼ f 4, and (56)

LE =
4πcGMmp

σT
∼ f 4. (57)

Thus, the Eddington ratio, L/LE ∼ f 0, is unaffected by the variation of the coupling
constants; one cannot use it for constraining the variation of the constants.

Let us now consider the black hole mass determination. Again, we may write:

M = rδv2/G. (58)

Since r ∼ f , and velocity is the time derivative of length measured with the speed of light
c, it also scales as f . Therefore, the mass of the black hole, M ∼ f f 2/ f 3 ∼ g0, is unaffected
by the constants’ variation; we cannot consider it for constraining the constants.

Next, we should examine the spectral invariance, which may be rewritten as:

U =
Q(H)

4πr2nHc
. (59)

The hydrogen number density is inversely proportional to volume, i.e.,
nH ∝ 1/length3 ∼ f−3. Therefore, ∼ Q(H)/

(
f 2 f−3 f

)
∼ Q(H)g0. However, Q(H) repre-

sents the number of hydrogen ionizing photons, which does not change with z under the
CCC scenario. While the ionizing photon energy evolves with z, it is exactly offset by the
evolution of the energy required to ionize hydrogen atoms [38] and is discussed above in
the paragraph under Equation (45). Thus, U ∼ f 0, i.e., U, does not vary on account of the
varying coupling constants and, therefore, cannot be used for constraining them.

Luminosity evolution of xA quasars in the CCC model: We use the same CCC ap-
proach to fit the quasar data that we used to fit the SNeIa data above (see also [38]).
However, the approach is modified, since, among other things, quasar luminosities depend
strongly on their black hole masses, which are known to increase with the redshift, e.g., [47].

From Equation (56), we may write the source luminosity Lsource in the CCC universe in
terms of the standard luminosity Ls as Lsource = Ls f (z)4, i.e., Ls = Lsource f (z)−4. Therefore,
Equation (28) is modified to:

F0 =
Lsource

4πS2
k(dP)

(1 + z)−2 f−5 ≡ Lsource

4πd2
L

⇒ dL = Sk(dP)(1 + z) f 5/2.
(60)

Since the mass of a quasar increases with z, e.g., [47], its luminosity (Equation (49))
also increases with z. Typically, such increases are expressed using power law. However,
any suitable function can be used. Let it be g(z): Mz = Mz,0g(z)q. Since the luminosity
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is directly proportional to M, the net effect is to correct the flux by an additional factor of
g(z)−q. This mass dependence of quasars’ luminosity is already included in determining the
luminosity using the standard model background, e.g., [46,47,64]. This mass dependence
must, therefore, be taken into consideration for the CCC model as well. We may, therefore,
write the luminosity distance dL as:

dL = Sk(dP)(1 + z) f (z)5/2g(z)q/2, (61)

and the distance modulus µ as:

µ ≡ 5 log
(

dL
1Mpc

)
+ 5 log(1 + z) + 25 = 5 log

(
Sk(dP)

1Mpc

)
+ 25 + 12.5 log f (z) + 2.5q log g(z). (62)

Results: Let us consider the Hubble diagram of the xA quasars, as studied by Mariziani
and collaborators (e.g., Mariziani and Sultenic, 2014, Dultzin et al., 2020 [64], Figure 3).
With dP from Equation (26) substituted in Equation (62), we can fit the quasar data [64],
which have 253 data points, using the CCC cosmological parameter determined with SNeIa
data fit. However, the parameters in the last term in Equation (62) have to be determined
by fitting the data. These parameters can then be checked against the same parameters
obtained by fitting the quasar mass vs. redshift data (e.g., Vestergaard and Osmer, 2009 [47]).
The z− µ fit can then be compared with the fit with the ΛCDM model (α = 0, q = 0).

The most convenient form of the g function is the same as for the f function. Never-
theless, we try other functions as well, i.e., the power law and g with the same form as for
f , i.e., g = exp

[
(1 + z)−β − 1

]
, but do not constrain β = 1.8 as we normally do for f . We

find the latter to be the best among those we try, as discussed later in this paper, and that is
what we use in Equation (62) to fit the 253 xA quasar data points.

The fit results for the ΛCDM model with H0 = 70 km s−1 Mpc−1, Ωm,0 = 0.3, and
ΩΛ,0 = 0.7, and for the CCC model with H0 = 70.83 km s−1 Mpc−1, Ωm,0 = 0.2708, and
ΩΛ,0 = 0.1754, are shown in Figure 3. The fit to the 253 data points for the ΛCDM model
yields χ2 = 456.0, whereas, for the CCC model, the fit gives χ2 = 421.1. The χ2 per degree
of freedom values are 1.802 for the ΛCDM model and 1.678 for the CCC model. Thus,
the CCC model appears to yield a significantly better fit, but it is partly due to the two
unconstrained parameters q and β in the CCC model. The fit determines these parameters
as q = −7.462−6.038

−8.885 and β = 1.0461.3730
0.7196, which are about the same as determined below,

considering their 95% confidence bounds as shown by superscripts and subscripts of the
values of respective parameters.

Quasar mass evolution: We take the data of the large bright quasar survey (LBQS)
included in the Vestergaard and Osmer paper [47] to derive parameters of a power law
function and two f -type functions for the g function. The LBQS data are for 978 quasars,
with their redshift ranging from z = 0.202 to 3.364 and mass ranging from MQ = 107.17M�
to 1010.53M� provided on a log MQ scale. They cover the range of data we use for the
Hubble diagram from Dultzin et al. [64]. The results are presented in Table 1. Figure 3
shows the data fit corresponding to the best fit function among the three in Table 1. The
relevant parameters in the table are q and β as they relate to the g function; MQ,0 is irrelevant
for scaling purposes as it is implicitly included in the first term of Equation (16).

Comparing the q and β values corresponding to the minimum χ2 (= 112.9, i.e., the
middle g function row) in the table with those determined from the z− µ fit above, we
see that they are close and well within the 95% confidence bounds of their respective
values. This match establishes that the CCC cosmology is a viable alternative to the ΛCDM
cosmology in the context of the present work.

The evolution of a quasar’s mass should, thus, be included in calibrating its observed
luminosity for using it as a standard candle.
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Table 1. The mass function parameters determined by fitting data with a power law and alternative
g(z) functions. The values in subscripts and superscripts represent 95% confidence bounds.

Function MQ=MQ,0gq logMQ,0 q β χ2 R2

g = z, i.e.,
log MQ = log MQ,0 + q log z 9.1629.183

9.140 0.68630.7188
0.6539 NA 114.7 0.638

g = exp
[
(1 + z)−β − 1

]
, i.e.,

log MQ = log MQ,0 +
q

2.3026

[
(1 + z)−β − 1

] 7.7357.890
7.580 −7.33−6.149

−8.510 0.84241.149
0.5361 112.9 0.6439

g = exp
[
(1 + z)−β − 1

]
with β = 1.8 7.2617.356

7.167 −6.289−5.986
−6.591 1.8 fixed 117.3 0.63

5. Gamma-Ray Bursts Hubble Diagram

Gamma-ray bursts are the most energetic explosions in the Universe and, thus, can
be observed in the galaxies formed at the earliest epochs. The gamma radiation from the
bursts lasts for a very short duration (a fraction of a second to a few minutes) followed
by a longer-lasting after-glow observable at X-ray and radio wavelengths, the latter over
several weeks. The energy released in a typical gamma-ray burst is of the order of the
energy radiated by the Sun over its lifetime. GRBs’ extremely high luminosity makes them
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observable at redshifts up to z ∼ 10 [65], corresponding to the time when the Universe
was only about half a billion years in age. They occur at the rate of about one a day in the
observable universe.

Unlike SNeIa, the light curves of GRBs are highly varied, and it is difficult to deter-
mine their luminosity from their observed data. Many schemes have been developed to
categorize GRBs and estimate their luminosities in order to use them as standard candles.
Several empirical correlations using parameters of the light curves and spectra have been
proposed to standardize the GRBs’ luminosity. They include correlations between: (i) the
GRB spectrum lag time τlag and isotropic peak luminosity L (τlag–L relation) [66]; (ii) the
peak energy Ep of the νFν spectrum and the isotropic equivalent energy Eiso (Ep–Eiso rela-
tion) [67]; (iii) the time variability V and isotropic peak luminosity (V–L relation) [68]; (iv)
the peak energy of the νFν spectrum and the isotropic peak luminosity (Ep–L relation) [69];
(v) the minimum rise time τRT of the light curve and isotropic peak luminosity (τRT–L rela-
tion) [70]; (vi) the peak energy and collimation-corrected energy Eγ (Ep–Eγ relation) [71,72];
(vii) the peak luminosity, the time at the end of the plateau emission phase τa, and the
luminosity at the end of the plateau phase La (L–τa–La relation—Dainotti 3D fundamental
plane) [73–75]; and others, e.g., [76–83].

A cosmological model is typically used to standardize GRB correlations, which leads
to the circularity problem (i.e., using a model to calibrate data and using the data to test the
model). Several methods to avoid this problem were discussed by Liu et al. [84]. They used
the Amati correlation, which connects the spectral peak energy EP and isotropic equivalent
radiated energy Eiso [85], and improved it by employing the Gaussian copula statistical
tool on Amati correlation. They, thus, obtained a model-independent Hubble diagram
of A220 GRB samples [86] using Pantheon SNeIa data [45] to calibrate the correlation.
The calibrated GRB data can be used to constrain a cosmological model. It has 220 µ− z
data points.

Escamilla-Rivera et al. [48,49] developed a new model-independent method to cali-
brate GRBs using SNeIa data [45] and cosmography. They used machine learning architec-
ture by combining a recurrent neural network and a Bayesian neural network. The machine
learning comprised a deep learning architecture capable of producing a trained homo-
geneous sample of GRBs’ luminosity distance. This approach, combined with the GRBs’
observed redshift, yielded their Hubble diagram, i.e., µ− z data (141 points).

Luminosity evolution of GRBs in the CCC model: Let us consider Equation (60) for
xA quasars. It includes the scaling of the quasars’ luminosity by f−4 (Equation (56)) due to
accreting mass on black holes. This is not relevant for GRBs. Thus, for the flux received,
Equation (60) becomes:

F0 =
Lsource

4πS2
k(dP)

(1 + z)−2 f−1 ≡ Lsource

4πd2
L

⇒ dL = Sk(dP)(1 + z) f 1/2.
(63)

Just as in the cases of supernovae and quasars, we expect an evolution of GRBs’ mass
with cosmic time, i.e., with the redshift z. Let us write it as Mz = Mz,0g(z)q, with g(z) being
the function representing the GRBs’ mass evolution. Assuming the luminosity of a GRB
is directly proportional to its mass M, the net effect is to correct the flux by an additional
factor of g(z)−q. This mass dependence must, therefore, be taken into consideration for the
CCC model applied to GRBs. We may, therefore, write the luminosity distance dL as:

dL = Sk(dP)(1 + z) f (z)1/2g(z)q/2, (64)

and the distance modulus µ as:

µ ≡ 5 log
(

dL
1Mpc

)
+ 5 log(1 + z) + 25 = 5 log

(
Sk(dP)

1Mpc

)
+ 5 log(1 + z) + 25 + 2.5 log f (z) + 2.5q log g(z). (65)
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Results: Let us consider the Hubble diagram of the GRBs’ quasars as calibrated by
Escamilla-Rivera et al. [49]. We follow the same procedure we developed for fitting the
quasars’ Hubble diagram. The fit results for the ΛCDM model with H0 = 70 km s−1 Mpc−1,
Ωm,0 = 0.3, and ΩΛ,0 = 0.7, and for the CCC model with H0 = 70.83 km s−1 Mpc−1,
Ωm,0 = 0.2708, and ΩΛ,0 = 0.1754, are shown in Figure 4. The fit using the CCC model
requires determination of q and β (recall g = exp[(1 + z)−β − 1]). We find a strong degen-
eracy between q and β and, therefore, decided to eliminate q by setting it to unity. The data
fit then yields β = 0.3315 (±0.0865) without compromising the goodness of fit.

Symmetry 2023, 15, 259 18 of 25 
 

 

Results: Let us consider the Hubble diagram of the GRBs’ quasars as calibrated by 

Escamilla-Rivera et al. [49]. We follow the same procedure we developed for fitting the 

quasars’ Hubble diagram. The fit results for the Λ CDM model with 𝐻0 =

70 km s−1 Mpc−1 , Ω𝑚,0 = 0.3 , and ΩΛ,0 = 0.7 , and for the CCC model with 𝐻0 =

70.83 km s−1 Mpc−1, Ω𝑚,0 = 0.2708, and ΩΛ,0 = 0.1754, are shown in Figure 4. The fit 

using the CCC model requires determination of 𝑞 and 𝛽 (recall 𝑔 = exp[(1 + 𝑧)−𝛽 −

1]). We find a strong degeneracy between 𝑞 and 𝛽 and, therefore, decided to elimi-

nate 𝑞 by setting it to unity. The data fit then yields 𝛽 = 0.3315 (±0.0865) without 

compromising the goodness of fit. 

The fit to the 141 data points for the ΛCDM model yields the goodness-of-fit pa-

rameters for 141 degrees of freedom (DOF) as 𝜒2 = 203.9, i.e., 𝜒2 DOF⁄ = 1.4461. The 

CCC model data fit with DOF = 140  gives 𝜒2 = 131.5,  i.e., 𝜒2 DOF⁄ =  0.9393. Alt-

hough the CCC model appears to yield a significantly better fit, it requires a mass func-

tion that affects the GRBs luminosity, i.e., 𝑔(𝑧) = exp[(1 + 𝑧)−𝛽 − 1)] in Equation (65). 

Nevertheless, we believe that the CCC model provides a significantly better fit over the 

full range of the redshift than the ΛCDM model. Is CCC a better model for using GRBs 

as standard candles? 

Figure 4 also includes a variation of the standard ΛCDM model wherein we retain 

the last term in Equation (65) with 𝑞 = 1 and determine 𝛽 = 1.252 (±0.600). We dub 

this model ΛCDM*. This yields 𝜒2 = 136.3 and 𝜒2 DOF⁄ = 0.9736, much better than for 

the standard ΛCDM model. However, fits for both the models are unsatisfactory: 

ΛCDM at low redshifts (evident from the residuals plot) and ΛCDM* at high redshifts 

(𝑧 > 6). 

 

Figure 4. Gamma-ray burst data fit using the CCC model and the benchmark ΛCDM model. Top 

left: the CCC model data fit and the residuals plot. Top right: the ΛCDM model data fit and the re-

siduals plot. Bottom left: the ΛCDM* model data fit and the residuals plot. Bottom right: compari-

son of the three models fitted to the data of Escamilla-Rivera et al. [49]. 

Figure 4. Gamma-ray burst data fit using the CCC model and the benchmark ΛCDM model. Top left:
the CCC model data fit and the residuals plot. Top right: the ΛCDM model data fit and the residuals
plot. Bottom left: the ΛCDM* model data fit and the residuals plot. Bottom right: comparison of the
three models fitted to the data of Escamilla-Rivera et al. [49].

The fit to the 141 data points for the ΛCDM model yields the goodness-of-fit param-
eters for 141 degrees of freedom (DOF) as χ2 = 203.9, i.e., χ2/DOF = 1.4461. The CCC
model data fit with DOF = 140 gives χ2 = 131.5, i.e., χ2/DOF = 0.9393. Although the CCC
model appears to yield a significantly better fit, it requires a mass function that affects the
GRBs luminosity, i.e., g(z) = exp[(1 + z)−β − 1] in Equation (65). Nevertheless, we believe
that the CCC model provides a significantly better fit over the full range of the redshift
than the ΛCDM model. Is CCC a better model for using GRBs as standard candles?

Figure 4 also includes a variation of the standard ΛCDM model wherein we retain
the last term in Equation (65) with q = 1 and determine β = 1.252 (±0.600). We dub this
model ΛCDM*. This yields χ2 = 136.3 and χ2/DOF = 0.9736, much better than for the
standard ΛCDM model. However, fits for both the models are unsatisfactory: ΛCDM at
low redshifts (evident from the residuals plot) and ΛCDM* at high redshifts (z > 6).
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With q = 1 and β approximated as 1/3, the CCC model fit can, thus, be considered to
make a prediction that the mass of GRBs evolves as:

log10

(
Mgrb

Mgrb,0

)
= log10(exp[(1 + z)−β − 1])

=
(
(1 + z)1/3 − 1

)
/ ln(10),

(66)

or simply as:
ln
(

Mgrb/Mgrb,0

)
=
(
(1 + z)1/3 − 1

)
. (67)

We plot the mass evolution of GRBs against their redshift in Figure 5, along with the
same for quasars and SNeIa. It is evident that the GRB mass increases steadily with z,
almost linearly, whereas the other two increase rapidly at low z but tend to flatten out at
higher z. We suggest that such mass variation and related luminosity evolution should be
taken into consideration when calibrating GRB data.
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6. Discussion

The advantage of considering quasars and gamma-ray bursts for measuring cosmo-
logical distances and testing cosmological models as compared to the supernovae type Ia is
that they greatly extend the cosmological time scale from the cosmic time corresponding to
z ∼ 1.5 for supernovae to z up to 10 for quasars and GRBs. The differences in the redshift
coverage mean that, while supernovae cover the epoch of Λ dominance, quasars and GRBs
include the epoch when ΩM ruled the expansion of the Universe. However, currently, the
statistical errors and scatter in the quasar and GRB data are too large compared to those
in the supernovae data to consider them reliable standard candles for distance measure-
ment. Therefore, one uses the cosmological parameters determined from SNeIa data to
calibrate quasars and GRB data and sees how well the calibrated data fit the quasar and
GRB observations statistically.

In their recent paper, Lusso et al. [87] wrote, ‘We confirm that, while the Hubble
diagram of quasars is well reproduced by a standard flat ΛCDM model (with ΩM = 0.3)
up to z ∼ 1.5, . . . , a statistically significant deviation emerges at higher redshifts’, in
agreement with our previous works, e.g., [88–90], and other works on the same topic,
e.g., [91]’. They then tried to fit the quasar Hubble diagram with a flat w0waCDM model,
which is a commonly used extension of the standard ΛCDM model where the parameter w
of the equation of state of the dark energy is considered to vary with redshift z according to
the parametrization w(z) = w0 + wa × (1− a), with a = (1 + z)−1 being the scale factor.
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It essentially introduces two extra parameters, w0 and wa, for fitting the Hubble diagram
data without cross-checking for their correctness or validity.

In the CCC approach, we basically have two parameters (q and β) representing the
mass evolution of the emitters other than the cosmological parameters (H0, Ωm,0, and ΩΛ,0)
to fit the quasar and GRB data. However, for quasars, we try to validate these parameters
from the observed variation of the quasar black hole masses with redshift. We see that
the parameters q = −7.462−6.038

−8.885 and β = 1.0461.3730
0.7196, determined from fitting their Hubble

diagram, and q = −7.33−6.149
−8.510 and β = 0.84241.149

0.5361, determined from fitting the quasar
mass data, match within their 95% confidence bounds. For GRBs, we do not have any
measured data on their mass evolution with redshift to compare the values we obtain
by fitting the Hubble data. The strong degeneracy between q and β values by fitting the
data, and a relatively flat minimum of χ2 values near q = 1, leads us to fix the q value to
unity and then determine β = 0.3315 (±0.0865). It means we are essentially predicting that
the GRB mass evolves with redshift as ln

(
Mgrb/Mgrb,0

)
=
(
(1 + z)1/3 − 1

)
. Such mass

variation should be considered for calibrating GRBs as standard candles.
As discussed under Results of Section 5 in the context of GRBs, we believe that the

CCC model provides a significantly better fit over the full range of the redshift than the
ΛCDM model. Thus, the CCC model may be better when using GRBs as standard candles.

As we have consistently good data fit using the CCC model, the function
f = exp

[
(1 + z)−1.8 − 1

]
= exp

(
a1.8 − 1

)
can be considered to reasonably represent the

coupling constants’ variation (Equation (34)). This variation then leads to
.

G/G = 5.4a1.8 .
a/a

= 5.4a1.8H. At the current time (i.e., z = 0 or a = 1), (
.

G/G)0 = 5.4H0, and, since
H0 = 70.83(±0.66) km s−1 Mpc−1 = 7.23 (±0.07) ×10−11 yr−1, we obtain (

.
G/G)0 =

3.90(±0.04) ×10−10 yr−1. The confidence bound for this value is the same as for H0, i.e.,
95%. This constraint on (

.
G/G)0 is shown in Table 2, along with some others determined

by various methods. One immediately notices that the constraint determined by the CCC
approach is among the most relaxed. It is primarily due to the concurrent variation of
several coupling constants treated in the CCC approach. All other methods ignore the
potential variation of constants other than the gravitational constant. In the cases where the
evolution of stellar objects is involved on cosmological time scales, e.g., [2,6–8,11], there is
an additional concern related to energy conservation. It is because energy is not conserved
in cosmological evolution and general relativity [35,92–96].

Since variations of c, G, h, and k are interrelated as G ∼ c3 ∼ h3 ∼ k3/2, the constraint
we determine for G also applies to c, h, and k through

.
c/c =

.
h/h = 1/2

.
k/k = 1/3

.
G/G.

One should, therefore, determine the constraint on the variation of the dimensionless
function f (z) rather than on the variation of any of the constants.

From the point of view of Noether’s theorem, one may see temporal violation of the
symmetry associated with the coupling constants. However, a new constant α = 1.8 now
appears through Equation (53), which can be considered a fundamental constant of nature.

However, our method of constraining the coupling constants variation is indirect,
i.e., derived rather than measured. A Kibble balance measures the gravitational mass
of a test mass with extreme precision [97] by balancing the gravitational pull on the
test mass against the electromagnetic lift force, resulting in equations leading to mass
measurements involving the coupling constants. We are collaborating with NIST (the
National Institute of Standards and Technology, USA) to study the possibility of using the
Kibble balance measurement of a test mass over several years to see if it can confirm or
falsify our predictions of the coupling constants’ variation.
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Table 2. Constraints on (
.

G/G)0 determined by various methods. CL means ‘confidence limit’, and
NA means ‘not available’.

Look Back Time
Method (

.
G/G)0×1012

CL Reference
in Years High Limit Low Limit

~40 Helioseismology <0.2 95% Bonanno and Fröhlich [98]
~45 Lunar Laser Ranging 0.147 −0.005 NA Hofmann and Müller [12]
~45 Planetary Ephemeris 0.078 −0.07 95% Pitjeva and Pitjev [99]
~60 White Dwarf Pulsations 40 −250 95% Benvenuto et al. [100]

~3000 Pulsar Timing 9 −27 68% Kaspi et al. [101]
~100 Million Pulsar Mass 3.6 −4.8 95% Thorsett [8]
~200 Million Gravitational Waves 20,000 −4000 90% Vijaykumar et al. [16]

~4 Billion Young Sun Luminosity −4 NA Sahini and Shtanov [3]
~5 Billion Supernovae Type Ia 10 NA NA Gaztanaga et al. [55]
~5 Billion White Dwarf Cooling <−50 NA Althaus et al. [6]

~10 Billion Stellar Astroseismology ≤5.6 95% Bellinger and
Christensen-Dalsgaard [11]

~10 Billion Age of Globular Clusters 7 −35 NA Degl’Innocenti [7]
~13 Billion CCC—SNeIa, Quasars, GRBs 394 386 95% This paper
~13 Billion Cosmic Microwave Background 1.05 −1.75 95% Wu and Chen [102]
~14 Billion Big Bang Nucleosynthesis 4.5 −3.6 95% Alvey et al. [10]

7. Conclusions

Astrophysicists have been concerned about the inability of the ΛCDM model to
adequately calibrate the observation of quasars and gamma-ray bursts for their use
as high redshift standard candles. We have shown that the Hubble diagrams of xA
quasars and certain types of GRBs calibrated using supernovae type Ia data can test
cosmological models up to z ∼ 10. Our covarying coupling constants approach fits
the Hubble diagrams’ data admirably well over the full range of observations using the
same cosmological parameters that fit the Hubble diagram of SNeIa from the Pantheon
data. We, therefore, believe that the CCC model may be better than the ΛCDM model
when using quasars and GRBs as standard candles. Since the variation of coupling con-
stants is interrelated in the CCC model as G ∼ c3 ∼ h3 ∼ k3/2 through the function
f (a) = exp

(
a1.8 − 1

)
, we can express the general constraint in terms of the Hubble constant

H0 as (
.

G/G)0 = 3
( .
c/c
)

0 = 3(
.
h/h)0 = 1.5(

.
k/k)0 = 5.4H0 = 3.90 (±0.04)× 10−10 yr−1.

The CCC model applied to SNeIa predicts their luminosity to increase with the redshift due
to an increase in the Chandrasekhar mass of white dwarfs. The model also predicts and
verifies the increase in quasar mass and, concomitantly, their luminosity with the redshift.
Finally, the model predicts the mass (and luminosity) of gamma-ray bursts to increase with
redshift as ln

(
Mgrb/Mgrb,0

)
=
(
(1 + z)1/3 − 1

)
.

Funding: This research is partially supported by an unconditional research grant from Macronix
Research Corporation.

Data Availability Statement: All the data used in this research are available from the cited references.

Acknowledgments: The author is grateful to Puxun Wu, Celia Escamilla-Rivera, Paola Marziani,
Guido Risaliti, and Susanna Bisogni for providing the data used in this work. He is also thankful
to Maria Dainotti for her correspondence and sharing data files related to her 3D fundamental
plane for calibrating GRB data. He acknowledges an unconditional grant from Macronix Research
Corporation in support of the research. Special thanks are due to the anonymous reviewers of the
paper manuscript for their constructive critical comments for improving the quality and clarity of
the paper.

Conflicts of Interest: This work was performed without any conflict of interest.



Symmetry 2023, 15, 259 21 of 24

References
1. Dirac, P.A.M. The Cosmological Constants. Nature 1937, 139, 323. [CrossRef]
2. Teller, E. On the Change of Physical Constants. Phys. Rev. 1948, 73, 801–802. [CrossRef]
3. Sahini, V.; Shtanov, Y. Can a variable gravitational constant resolve the faint young Sun paradox? Int. J. Mod. Phys. D

2014, 23, 1442018. [CrossRef]
4. Morrison, L.V. Rotation of the Earth from AD 1663–1972 and the Constancy of G. Nature 1973, 241, 519–520. [CrossRef]
5. Sisterna, P.D.; Vucetich, H. Cosmology, oscillating physics, and oscillating biology. Phys. Rev. Lett. 1994, 72, 454–457.

[CrossRef]
6. Córsico, A.H.; Althaus, L.G.; García-Berro, E.; Romero, A. An independent constraint on the secular rate of variation of the

gravitational constant from pulsating white dwarfs. J. Cosmol. Astropart. Phys. 2013, 2013, 032. [CrossRef]
7. Degl’Innocenti, S.; Fiorentini, G.; Raffelt, G.G.; Ricci, B.; Weiss, A. Time-Variation of Newton’s Constant and the Age of Globular

Clusters. arXiv 1995, arXiv:astro-ph/9509090.
8. Thorsett, S.E. The Gravitational Constant, the Chandrasekhar Limit, and Neutron Star Masses. Phys. Rev. Lett. 1996, 77, 1432.

[CrossRef]
9. Ooba, J.; Ichiki, K.; Chiba, T.; Sugiyama, N. Cosmological constraints on scalar–tensor gravity and the variation of the gravitational

constant. Prog. Theor. Exp. Phys. 2017, 2017, 043E03. [CrossRef]
10. Alvey, J.; Sabti, N.; Escudero, M.; Fairbairn, M. Improved BBN constraints on the variation of the gravitational constant. Eur. Phys.

J. C 2020, 80, 148. [CrossRef]
11. Bellinger, E.P.; Christensen-Dalsgaard, J. Asteroseismic Constraints on the Cosmic-time Variation of the Gravitational Constant

from an Ancient Main-sequence Star. Astrophys. J. 2019, 887, L1. [CrossRef]
12. Hofmann, F.; Müller, J. Relativistic tests with lunar laser ranging. Class. Quantum Gravity 2017, 35, 035015. [CrossRef]
13. Genova, A.; Mazarico, E.; Goossens, S.; Lemoine, F.G.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Solar system expansion and

strong equivalence principle as seen by the NASA MESSENGER mission. Nat. Commun. 2018, 9, 289. [CrossRef]
14. Zhu, W.W.; Desvignes, G.; Wex, N.; Caballero, R.N.; Champion, D.J.; Demorest, P.B.; Ellis, J.A.; Janssen, G.H.; Kramer, M.;

Krieger, A.; et al. Tests of gravitational symmetries with pulsar binary J1713+0747. Mon. Not. R. Astron. Soc. 2018, 482, 3249–3260.
[CrossRef]

15. Wright, B.S.; Li, B. Type Ia supernovae, standardizable candles, and gravity. Phys. Rev. D 2018, 97, 083505. [CrossRef]
16. Vijaykumar, A.; Kapadia, S.J.; Ajith, P. Constraints on the Time Variation of the Gravitational Constant Using Gravitational Wave

Observations of Binary Neutron Stars. Phys. Rev. Lett. 2021, 126, 141104. [CrossRef]
17. Einstein, A. Über das Relati- vitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und

Elektronik 1907, 4, 411–462.
18. Qi, J.-Z.; Zhang, M.-J.; Liu, W.-B. Observational constraint on the varying speed of light theory. Phys. Rev. D 2014, 90, 063526.

[CrossRef]
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