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Abstract: Several types of spatial symmetry in vortex structures within rotating stratified fluids are
examined by looking at self-propagating configurations in the quasigeostrophic model. The role of
symmetry breaking in the dynamics of geophysical waves, vortices and instabilities is highlighted. In
particular, the energy exchange of the large-scale vertical shear with monopolar and dipolar vortices
is analyzed. Various coupled vortex-wave structures are described in terms of wavy and evanescent
modes. The Rossby wave radiation is shown to induce a zonal asymmetry, which is needed for
the energy support and self-amplification of vortices in large-scale flow. The consequences for the
evolution of the most long-lived vortices in the subtropical westward flows are discussed.
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1. Introduction

Symmetry plays a fundamental role in the understanding of physical processes and
mathematical models. Generally, breaking symmetry and subsequent transitions can be
related to internal instabilities as well as external forces. Rich flow patterns in rotating
and stratified fluids stimulate the exploration of vortex dynamics and symmetries for a
long time. Some of the results have been summarized in books and reviews, e.g., Khain
and Sutyrin [1], McWilliams [2], Flierl [3], Korotaev [4], Carton [5] and Sokolovskii and
Verron [6]. Here, we examine the role of rotational and mirror symmetries in the context of
geophysical vortices such as monopoles and dipoles, which are abundant in atmospheric
and oceanic flows (Chelton et al. [7] and Ni et al. [8]).

Baroclinic vortices (also called eddies) with nearly vertical axes dominate in the kinetic
energy of mesoscale variability, transporting masses of water in their cores for thousands
of kilometers (Dong et al. [9]). They often persist for many rotational periods, challenging
parameterization schemes of mesoscale eddies in the global numerical models of climate
variability (e.g., Thompson and Young [10], Gallet and Ferrari, [11], Ryzhov and Berloff, [12]
and Sutyrin et al. [13]).

For several decades, it has remained puzzling how long-lived vortices survive in
strongly variable environments with significant background gradients of potential vorticity
(PV) supportive to the Rossby wave radiation. A number of zonally propagating nonlinear,
non-radiating solutions to the equations of motion of rotating fluids were constructed at
the beta plane without any background flow. The first examples of modon-like dipoles,
introduced by Stern [14] and Larichev and Reznik [15], originated from a self-propelling
classical Lamb–Chaplygin dipole (Lamb [16] and Meleshko and van Heijst [17]). Generally,
quasigeostrophic (QG) modons avoid radiating Rossby waves by choosing the zonal drift
of an active dipole for evanescent modes with a speed that is outside the range of wavy
linear modes (see Kizner et al. [18]).

The dipolar component was found to be unnecessary for non-radiating zonally drifting
monopolar anticyclones (Mikhailova and Shapiro [19], Petviashviliy [20] and Sutyrin [21]).
This sparked a great interest in the dynamic differences between cyclones and anticyclones
larger than the radius of deformation in more general intermediate geostrophic models
(Nezlin and Sutyrin [22] and Sutyrin and Yushina [23]). The self-intensification of ed-
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dies in homogeneous environments owing to the non-adiabatic redistribution of angular
momentum was described for both vortex polarities (Sutyrin [24]).

Satellite data on real oceanic vortices also indicate a significant meridional drift, which
is particularly important for meridional heat transport [7,9]. Idealized models of radiating
vortices in the ocean at rest demonstrated the relation of the meridional drift to the Rossby
wave generation (Flierl [25], Korotaev [26] and Nycander [27]). The gradual decay of such
nonlinear radiating vortices is slower than the decay of the linear Rossby wave packet. This
is related to the Lagrangian invariance of PV inside the vortex core, with closed PV isolines
supported by the processes of axisymmetrization in fast rotating vortices (Sutyrin [28] and
Reznik and Kravtsov [29]).

In reality, eddies interact with large-scale currents, having an enormous reservoir
of available potential energy (APE) in the main thermocline, storing roughly 1000 times
more APE than the kinetic energy (KE) associated with its thermal-wind current shear
(Gill et al. [30]). The majority of large-scale ocean currents have changing sign of back-
ground PV gradients affected by sloping isopycnals and mesoscale variability, which can be
related to baroclinic instability (Vallis [31]). The spatial scales of linear baroclinic instability
are in approximate agreement with observations, so that the eddy KE is believed to be
supported by the mean APE in vertically sheared unstable flows (Ferrari and Wunsch [32]).
Similar conclusions are also provided by eddy-resolving numerical models, where the
barotropic and the first baroclinic modes dominate in the eddy field (Venaille et al. [33]).
Therefore, two-layer models with bottom friction still play an important quantitative
role in the numerical exploration of the typical scales and nonlinear saturation of eddies
(e.g., Gallet and Ferrari [11], Radko et al. [34] and Sutyrin and Radko [35]).

The capacity of the vertical shear to support nonlinear steady radiating vortices was
found recently for marginally stable zonal flows (Sutyrin et al. [36]). The baroclinic vortices
were shown to be coupled with the lee Rossby waves, resulting in their meridional drift
and heat flux, while their energy loss to the Rossby waves is compensated by the APE
in the mean flow. Such meridional drift leads to eddy self-intensification, as confirmed
numerically in baroclinically unstable flows with bottom friction (Sutyrin et al. [37]).

Here, we consider the symmetry properties of steady propagating states in the pres-
ence of vertical shear affecting the background PV gradient. We also show the importance
of zonal asymmetry related to lee Rossby waves for effective meridional transport by
long-lived eddies. This paper is organized as follows: the two-layer QG model is described
in Section 2; the relations between different spatial symmetries are considered in Section 3;
non-radiating as well as radiating steady propagating states are explored in Section 4; and
the results, as well as how they can be interpreted from the perspective of previous studies
and the working hypotheses, are discussed in Section 5, where several unresolved problems
that deserve further investigation are mentioned.

2. Quasigeostrophic Model and Integral Invariants

We start with the commonly used two-layer model with the depths of the upper and
lower layer (H1, H2). The basic flow is represented by laterally uniform zonal velocity
(U1, U2) in local Cartesian coordinates, (X, Y), with positive X representing eastward and
positive Y representing poleward on the beta plane (the Phillips model). The inviscid
evolution of flow perturbations is described by the material conservation of the Lagrangian
potential vorticity, qj + β jy (Pedlosky [38]):

Dt
(
qj + β jy

)
= 0, Dt ≡ ∂t + (uj + uj)∂x + vj∂y (1)

Here, we use nondimensional variables introducing the velocity scale, U, and the
spatial scale, L. In the QG approximation, the perturbation velocity, (uj, vj), and the
potential vorticity, qj, are expressed by the geopotential, pj:

uj = −∂y pj, vj = ∂x pj, qj =
(

∂2
x + ∂2

y

)
pj +

(−1)j

hj
(p1 − p2), (2)
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β j = β − (−1)j

hj
(u1 − u2) (3)

where hj = g′H j/ f 2
0 L2, g′ is the reduced gravity and f0 is the Coriolis parameter.

β = β0L2/U, β0 is the gradient of the Coriolis parameter and uj = Uj/U.
In order to understand the dynamics of geophysical vortices and their interaction with

Rossby waves, it is important to consider the integral invariants. The first inviscid invariant
is the pseudomomentum, M = M1 + M2, consisting of quadratic integrals:

Mj = −1
2

∫
hj

q2
j

β j
dxdy, j = 1, 2. (4)

This is obtained by multiplying the equations in Equation (1) for each layer by
hjqj
β j

,
adding the results and integrating over the xy-plane (see [36]). It follows from Equation (4)
that if β1 and β2 are both positive, M is negative definite; therefore, perturbations cannot
grow, and such flow is stable. On the other hand, if β1 < 0 or β2 < 0, such flow is
baroclinically unstable (Phillips [39]). If M = 0 initially, it is conserved, and a growing
mode involves momentum transfer between the layers.

Another inviscid integral invariant, the pseudoenergy E, is obtained by multiplying
the equations in Equation (1) for each layer by hj pj, adding the results and integrating them
over the xy-plane:

E = E1 + E2 + Ep + u1M1 + u2M2 (5)

Here, the perturbation kinetic energy in the two layers and the perturbation available
potential energy are as follows:

Ej =
hj

2

∫
(∇pj)

2dxdy, Ep =
1
2

∫
(p1 − p2)

2dxdy, (6)

The last two terms in Equation (5) reflect an energy exchange between the perturbation
and the background state. The rate of change in this interaction energy is defined by the
meridional PV flux (PVF) in the upper layer:

PVF ≡ h1

∫
q1v1dxdy =

dM1

dt
= −h1 + h2

h1h2
Fh (7)

which is proportional to the heat flux

Fh =
∫
(p1 − p2)

∂

∂x
(h1 p1 + h2 p2)dxdy, (8)

according to the Taylor–Bretherton relationship.
Considering that E is the inviscid invariant, the energy of perturbations can grow

d
dt

(
E1 + E2 + Ep

)
= (u2−u1)

dM1

dt
(9)

when either β1 < 0 in the westward background (WB) flow (u1< u2) or β2 < 0 in the east-
ward background (EB) flow (u1> u2), indicating that such background flows are unstable,
in agreement with Equation (4). Thus, the energy can be released from the background
state by equatorward heat flux in the WB flow and poleward heat flux in the EB flow.
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3. Spatial Symmetries

Here, we consider the circular, meridional and zonal symmetry properties of geophys-
ical vortices, starting with different types of meridional symmetry relative to the zonal axis.
According to Reznik [40], the flow can be uniquely decomposed into two components,

pj(x, y, t) = pA
j (x, y, t) + pS

j (x, y, t) (10)

pA
j =

pj(x, y, t) + pj(x,−y, t)
2

, pS
j =

pj(x, y, t)− pj(x,−y, t)
2

(11)

representing even and odd parts of the streamfunction, and producing antisymmetric
uA

j and symmetric uS
j zonal velocity, respectively. Here, the notations for the A- and S-

components follow those described by Brion et al. [41] and Davies et al. [42,43], which
are opposite relative to those described by Reznik [40]. For example, the A-component
represents a circular symmetric vortex (Figure 1a) and a meridionally propagating A-
dipole (Figure 1b), while a zonally propagating S-dipole is described by the S-component
(Figure 1c).
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Following the procedure suggested by Reznik [40], from Equations (1)–(3), we obtain
the following for each component:

DS
t qA

j + β j∂x pA
j = −(uA

j ∂x + vA
j ∂y)qs

j ≡ J(qs
j , pA

j ) (12)

DS
t qS

j + β j∂x pS
j = −(uA

j ∂x + vA
j ∂y)qA

j ≡ J(qA
j , pA

j ) (13)
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DS
t ≡ ∂t + (uS

j + uj)∂x + vS
j ∂y (14)

For a single layer without any basic flow, it was noted by Reznik [40] that the S-
component looks sufficient to describe the evolution when the A-component is zero initially,
as in various types of modon solutions, e.g., Larichev–Reznik dipole (LRD) [15]. However,
an instability of the trajectory of westward propagating LRD, described by Nycander and
Isichenko [44], is associated with spontaneous tilting resulting in the appearance of the
A-component, a so-called T-mode (Figure 1 in [43]). Another type of spontaneous symmetry
breaking was found in [42] for the eastward propagating LRD due to the development of
a growing unstable A-mode (Figure 2 in [43]), confirming the long-standing difficulty of
rigorously proving its stability (Nycander [45]).
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WB flow: BC (red) and BEQT (blue) modes according to (23) (a); the effects of the vertical shear on
the branches originating from BC and BT modes (b); the reconnection of branches near the marginal
stability (c); and weakly unstable flow (d).

On the other hand, as seen in Equation (13), a non-zero A-component generates an
S-component even if it was zero initially, unless J

(
pA

j , qA
j

)
remains zero, as in the circular

symmetric monopolar vortex. However, breaking the circular symmetry of monopolar
vortices owing to barotropic and/or baroclinic instability results in nonzero J

(
pA

j , qA
j

)
,

even without the beta effect (e.g., Sutyrin [46] and references therein).
To emphasize the importance of zonal asymmetry at the beta plane, we suggest the

further decomposition of A- and S-components

pA,S
j (x, y, t) = pA,S

j,E (x, y, t) + pA,S
j,O (x, y, t) (15)
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pA,S
j,E =

pA,S
j (x, y, t) + pA,S

j (−x, y, t)

2
, pA,S

j,O =
pA,S

j (x, y, t)− pA,S
j (−x, y, t)

2
(16)

representing zonally even and odd parts of A- and S-components, producing zonally
antisymmetric vA,S

j,E and symmetric vA,S
j,O meridional velocity, respectively. Even without a

vertical shear, the circular symmetric vortex represented by pA
j,E (Figure 1a) first generates

a dipole propagating meridionally described by pA
j,O (Figure 1b), which results in the

development of a dipole propagating zonally (pS
j,E, Figure 1c) (Sutyrin [47,48]). Note that

the vertical shear strongly affects the vortex evolution (Vandermeirsh et al. [49]).
In the presence of vertical shear, the energy exchange Equation (9) is proportional to

the following:

PVF ≡ h1
∫ (

qA
1 + qS

1
)(

vA
1 + vS

1
)
dxdy = h1

∫ (
qA

1 vA
1 + qS

1 vS
1
)
dxdy =

= h1
∫ (

qA
1,EvA

1,O + qA
1,OvA

1,E + qS
1,EvS

1,O + qS
1,OvS

1,E

)
dxdy

(17)

Thus, while A- and S-components contribute to PVF separately, both zonally symmet-
ric and antisymmetric parts are needed for the energy exchange with the large-scale flow.
Further, we consider the symmetry properties of steady propagating vortex structures.

4. Steady Propagating Structures
4.1. Evanescent and Wavy Modes

For a steady state in translating coordinates (x− ct, y), Equation (1) becomes the following:

J(ψj, qj + β jy) = 0 (18)

Generally, this means that the potential vorticity in each layer qj + βjy follows streamlines
of ψj = pj +(−uj + c)y in moving coordinates. The functional dependence qj + βjy = Fj

(
ψj
)

is uniquely defined only in the exterior region with open streamlines:

(c−uj)qj = β j pj (19)

In the exterior region, the solution for two layers is described by decoupled modes
ϕk = p1 + αk p2, where αk are roots of the quadratic equation:

α2

h2
− α

h1
− αβ1

c−u1
=

1
h1

− α

h2
− αβ2

c−u2
(20)

α = d ∓

√
d2 +

h2

h1
, d =

1
2

(
h2

h1
− 1 +

h2β1

c−u1
− h2β2

c−u2

)
(21)

Thus, there are always two real values of χk for the decoupled system:(
∂2

x + ∂2
y + χk

)
ϕk = 0 χk =

αk
h2

− 1
h1

− β1

c−u1
(22)

where the type of the solution depends on the sign of χk: wavy mode (if χk > 0) and
evanescent mode (if χk < 0).

Without basic flow over a flat bottom, α1 = −1 and α2 = h2
h1

correspond to baroclinic
(BC) and barotropic (BT) vertical modes:

χ1 = χBC = − 1
h1

− 1
h2

− β

c
, χ2 = χBT = − β

c
(23)
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The zonal phase speed of planar Rossby waves for χk = l2 + m2 > 0, assuming
ϕk ∼ exp (ilx + imy), is well known to be negative

− 1
γ2 <

cBC
β

= − 1
l2 + m2 + γ2 < 0

cBT
β

= − 1
l2 + m2 < 0 (24)

where γ2 = 1
h1

+ 1
h2

denotes the reciprocal squared radius of deformation. Examples of BC
and BT branches at the plane (χ, c) are shown in Figure 2a, where h1 = h2 = 2 is chosen,
so that γ = 1. We see that both branches of the eastward propagating BC and BT modes
are evanescent (if c > 0, χ1 < 0 and χ2 < 0, in the upper part of Figure 2a).

4.2. Nonradiating Vortex Structures

Generally, in the polar coordinates (r, θ), the far field of localized states with both
evanescent modes (when χ1 < 0 and χ2 < 0), the solution to Equation (22) is described by
modified Bessel functions:

ϕk =
∞

∑
0

Kn
(
r
√
−χk

)
(ancos nθ + bnsin nθ) (25)

Without the vertical shear over the flat bottom, a fast propagating westward BC
evanescent mode (when c

β < − 1
γ2 ) coexists with the BT wavy mode (when χ1 < 0 and

χ2 > 0, see the lower part of Figure 2a). In this case, the far field of radiating states may
include the weakly decaying wavy mode described by Bessel functions, Jn:

ϕ2 =
∞

∑
0

Jn(r
√

χ2)(ancos nθ + bnsin nθ) (26)

In the presence of the basic flow, it is also possible to construct localized solutions
for the zonal propagation speed, satisfying both χ1 < 0 and χ2 < 0 (regular modons),
or when the wavy mode is zero in the exterior, even if χ1 < 0 and χ2 > 0 (anomalous
modons), according to Flierl et al. [50]. Denoting the position (xc(t), yc(t)) of the centre of
the structure, the flow field is described by the following streamfunction:

ψj = pj + (−uj + c)rsin(θ),
.
xc = c

.
yc = 0 (27)

In the case of steady propagation, isolines of ψj describe the particles’ trajectories both
outside and inside the separatrix, where

qj + β jrsinθ = Fj
(
ψj
)

(28)

Commonly, the linear functions Fj
(
ψj
)
= −κ2

j ψj are used inside a circular separatrix
where r < a either in one or both layers. The matching conditions are applied at r = a to
relate κ2

j with the drift speed c. Therefore, the simplest possible solutions include only a

dipolar component, pS
j,E, proportional to rsinθ, which is zonally symmetric, so that PVF = 0

in Equation (17). The general analysis of possible localized states can be performed in the
same way as for the beta plane with topography but without large-scale flow (Kizner [18]).
A circular symmetric rider, pA

j,E, can be added, however, resulting in PVF = 0 in Equation (17)
for non-radiating solutions due to zonal mirror symmetry relative to the y-axis in moving
coordinates. Thus, there is no energy exchange between non-radiating structures and the
large-scale flow.

4.3. Radiating Vortex Structures

Without shear, the radiating states are nonstationary and decay gradually, losing
their energy to the Rossby wave radiation; westward propagating dipoles shrink (Haines
Flierl [51], Crowe and Johnson [52]), while the vortices with dominant monopolar parts
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drift both westward and meridionally (cyclones—poleward, anticyclones—equatorward)
toward their latitude of rest inversely proportional to β (Korotaev [4] and Sutyrin [48]).
Generally, the radiating states include a zonal dipole, pS

j,E, in the interior together with the
corresponding wavy mode in the exterior (Nycander [27]).

The vertical shear modifies the evanescent and wavy modes (see Figure 2), and
provides an opportunity for monopolar vortices to drift both zonally and meridionally
without decay, while radiating Rossby waves are supported by the energy flux Equation
(9) with nonzero PVF. In particular, this was demonstrated for marginally stable zonal
flows when either |β1| = 0 or | β2|= 0 in [36]. In the vicinity of marginally stable WB
flow, choosing c ≈ u1 allows us to satisfy Equation (19) for an arbitrary PV anomaly in the
upper layer, while the evanescent and wavy modes correspond to the crossing of branches
illustrated in Figure 2c,d:

−χ1 = χ2 = γ/
√

h1 ≡ κ2

Then, a given circular PV anomaly in the upper layer, qA
1,E(r), induces both the localized

evanescent mode, which is also circular and zonally symmetric,

ϕ1 = K0(κr)
∫ r

0
r′dr′ I0

(
κr′

)
qA

1,E
(
r′
)
+ I0(κr)

∫ ∞

r
r′dr′K0

(
κr′

)
qA

1,E
(
r′
)
, (29)

and the wavy mode, which includes zonally symmetric as well as antisymmetric parts
owing to the inviscid solution being restricted by the condition that the far field vanishes to
the west, resulting in lee Rossby waves to the east:

ϕ2 =
π

2
Y0(κr)

∫ r

0
r′dr′ J0

(
κr′

)
qA

1,E
(
r′
)
+

π

2
J0(κr)

∫ ∞

r
r′dr′Y0

(
κr′

)
qA

1,E
(
r′
)
+ W, (30)

W = 2Z
∞

∑
n=1

cos(2n − 1)θ
2n − 1

J2n−1(κr), Z =
∫ ∞

0
r′dr′ J0

(
κr′

)
qA

1,E
(
r′
)

(31)

The flow in each layer is a combination of the evanescent and wavy modes given by

p1 =
(1 + δ)ϕ1 + (1 − δ)ϕ2

2h1
and p2 = δ

ϕ2 − ϕ1

2h2
, δ =

1
κ2h1

(32)

This results in nonzero PVF in Equation (17)

PVF = h1

∫
qA

1,EvA
1,Odxdy (33)

owing to the zonally symmetric component of meridional velocity vA
1,O ∼ (1 − δ)∂xW,

where W is related to the lee Rossby waves in Equation (31). Figure 3 shows an example of
such solution for

qA
1,E(r) = J0(r), r < r0 and qA

1,E(r) = 0, r > r0 (34)

where h1 = h2 = 2 is chosen to scale and r0 ≈ 2.4 is the first root of J0. In Figure 3d, one
can see that the central part of pA

1,O is dominated by the A-dipole, similar to the one in
Figure 1b.

Thus, we conclude that the zonal asymmetry related to the lee Rossby waves associated
with the monopolar vortex is a major necessary component of long-lived eddies supported
by the APE in the large-scale shear. Moreover, the meridional drift induced by the lee
Rossby waves provides the self-amplification of the vortex in unstable flows (β1 < 0) [37].
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5. Discussion

We considered several types of spatial symmetry in self-propagating vortex configu-
rations, focusing on their energy exchange with the large-scale vertical shear. The major
focus is on the zonal asymmetry related to the basic west–east asymmetry of the system on
the beta plane. The Rossby wave radiation is shown to be necessary to provide nonzero
heat flux consistent with numerical simulations of baroclinic turbulence (e.g., Thomson
and Young [10]). A general way to construct coupled vortex–wave structures is described
in terms of wavy and evanescent modes. Non-radiating vortex structures are shown to
have zero heat flux, owing to their zonal symmetry.

The ability of the vertical shear to support steady radiating monopolar vortices can
be generalized to include a zonal dipolar component in the vicinity of marginally stable
zonal flows. The theory shows that the major contribution to nonzero heat flux is provided
by a combination of a circular symmetric PV anomaly and a zonally antisymmetric part
of the lee Rossby waves; an additional zonal dipolar component is not essential. This
analysis provides a physical interpretation of the self-amplifying hetons (SAH) that emerge
spontaneously in numerical simulations [37].

The theory of steady radiating monopolar vortices is consistent with observations
of the most long-lived vortices in the subtropical westward flows (Chen et al. [53]). The
westward flows are characterized by sloping isopycnals that reduce the background PVG
in the upper layer, which is only weakly affected by bottom friction. In contrast, the sloping
isopycnals in the eastward flows reduce PVG in the lower layer, where bottom friction
dominates in controlling the longevity of baroclinic vortices [35].

In the broad context, the further exploration of coupled vortex–wave structures
and their symmetry properties should reveal basic elements on the way to building
more adequate closure schemes of the heat transport in baroclinic turbulence. Future
research directions may include inhomogeneous background flows, realistic stratification,
cyclone–anticyclone asymmetry, inertia–gravity waves, bottom topography, continental
boundaries, atmospheric forcing, etc.
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