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Abstract: Ground-glass nodules (GGN) are the main manifestation of early lung cancer, and accurate
and efficient identification of ground-glass pulmonary nodules is of great significance for the treat-
ment of lung diseases. In response to the problem of traditional machine learning requiring manual
feature extraction, and most deep learning models applied to 2D image classification, this paper
proposes a Transformer-based recognition model for ground-glass nodules from the view of global 3D
asymmetry feature representation. Firstly, a 3D convolutional neural network is used as the backbone
to extract the features of the three-dimensional CT-image block of pulmonary nodules automatically;
secondly, positional encoding information is added to the extracted feature map and input into the
Transformer encoder layer for further extraction of global 3D asymmetry features, which can preserve
more spatial information and obtain higher-order asymmetry feature representation; finally, the
extracted asymmetry features are entered into a support vector machine or ELM-KNN model to
further improve the recognition ability of the model. The experimental results show that the recogni-
tion accuracy of the proposed method reaches 95.89%, which is 4.79, 2.05, 4.11, and 2.74 percentage
points higher than the common deep learning models of AlexNet, DenseNet121, GoogLeNet, and
VGG19, respectively; compared with the latest models proposed in the field of pulmonary nodule
classification, the accuracy has been improved by 2.05, 2.05, and 0.68 percentage points, respectively,
which can effectively improve the recognition accuracy of ground-glass nodules.

Keywords: ground-glass nodules; 3D ResNet; transformer; support vector machine; ELM-KNN

1. Introduction

Lung cancer is one of the cancers with the highest global mortality rate, and one of the
significant factors contributing to the high mortality rate of lung cancer is late discovery
and treatment [1]. In the early stage of lung cancer, lung lesions often appear in the form
of pulmonary nodules, among which ground-glass nodules (GGN) are one of the main
manifestations of early lung cancer [2]. Interventional treatment can achieve a cure rate of
over 80% for patients with early malignant lung diseases accompanied by ground-glass
nodules [3]. For lung examination, low-dose spiral CT technology is usually used. Doctors
can judge lung lesions by observing the image characteristics of lung nodules in computer
tomography (CT) [4]. However, with the continuous increase of medical imaging data,
doctors’ diagnostic work is becoming more and more arduous [5], and doctors will be
affected by various factors in the process of reading films, resulting in missed diagnoses
and misdiagnoses [6]. The recognition of ground-glass pulmonary nodules with the help of
computer-aided diagnosis (CAD) technology based on medical imaging can reduce doctors’
work intensity and improve their ability to diagnose lesions [7].
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At present, domestic and foreign scholars have proposed many effective lung nodule
recognition algorithms. The traditional machine learning method is to manually design
and extract nodule features, and then select appropriate classifiers for lung nodule classifi-
cation [8]. However, the feature dimensions of medical images are often high, and there
may be redundant features [9], which limits the use of traditional machine learning. Deep
learning can automatically learn different medical image data and obtain key features from
it [10], further improving the accuracy of disease diagnosis. More and more researchers
are applying it to the field of medical imaging. Gao et al. [11] used a multi-input 2D
Convolutional Neural Network (CNN) [12] for the prediction of benign and malignant
pulmonary nodules. Gao et al. [13] proposed a lung nodule classification method based
on fused prior knowledge. Liu et al. [14] introduced center clipping into DenseNet to
recognize pulmonary nodules. Zhang et al. [15] fused the semantic features of lung nodules
with the benign and malignant discrimination network of lung nodules into a multi-branch
network, completing the task of diagnosing benign and malignant lung nodules. However,
these methods are all based on two-dimensional image classification algorithms, ignoring
the characteristics of pulmonary nodules in three-dimensional spaces, and have certain
limitations [16]. Some works attempt to use the three-dimensional features of pulmonary
nodules for classification. Wang et al. [17] used an enhanced three-dimensional VGG16 [18]
network to classify pulmonary nodules. Raunak et al. [19] used multitask learning convo-
lutional neural networks for the segmentation and classification of pulmonary nodules. Li
Wei et al. [20] fused the features of multi-layer sections of pulmonary nodules to achieve
the classification of malignant degrees of pulmonary nodules. Halder et al. [21] utilized a
deep learning framework based on adaptive morphology for lung nodule classification.
Yi et al. [22] applied multi-scale and multipath convolutional neural networks for lung
nodule classification. These models are effective in 3D image classification, but due to the
limitations of local receptive fields in convolutional operations in capturing long-distance
pixel relationships [23], recognition models based on convolutional neural networks have
shortcomings in extracting global features of lung nodule images.

The preferred model in the field of Natural Language Processing (NLP), Trans-
former [24], is capable of long-distance attention computation. Inspired by Transformer,
Google directly applied the standard Transformer to image classification in 2020 and pro-
posed the model Vision Transformer [25]. Afterwards, more and more researchers are
applying Transformer to image classification. However, Transformer lacks inductive bias
similar to CNN [26], and this prior knowledge needs to be learned through a large amount
of data. The lack of labeled data is a common problem in the field of medical images [27].
Based on the above information, this paper attempts to combine a 3D Convolutional neural
network and Transformer and proposes a recognition model of ground-glass lung nodules
based on 3D ResNet [28] and Transformer for better 3D asymmetry feature representation.
In response to the traditional machine learning methods that rely on manual experience to
extract features, this article utilizes a deep learning model with powerful feature extraction
capabilities to extract features. At the same time, considering that medical images are three-
dimensional block images, the 3D convolution method is used in this paper to enable the
neural network to better extract medical image features, and selects the ResNet model with
good robustness as the backbone for feature extraction; in response to the shortcomings of
CNN in extracting global image features, this paper cites the Transformer encoder layer to
enable the model to learn richer global image features and enhance its feature expression
ability; finally, an Support Vector Machine (SVM) [29] classifier with strong generalization
ability is selected to output the recognition results. Through 10-fold cross validation on
a private lung CT dataset, and comparing the model proposed in this paper with other
mainstream recognition models, the experimental results show that the fused 3D ResNet
and Transformer lung nodule recognition models have better classification accuracy than
mainstream ground-glass lung nodule recognition methods.

To summarize, our contributions are as follows. We propose a Transformer model
for 3D pulmonary nodule image recognition. This model does not rely on manual feature
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extraction and utilizes 3D convolution to extract better image features of three-dimensional
medical image blocks. The Transformer encoder layer is introduced to learn richer global
image features. The recognition accuracies of this model reached 95.89% and 95.72% on a
private dataset and the open Luna16 [30], respectively.

The rest of the paper is organized as follows: Section 2 describes the relevant works to
our paper. In Section 3, we first describe the overall structure of the proposed model and
then detail the three parts of the model, the 3D ResNet, The Transformer Encoder, and the
SVM. In Section 4, we present the extensive experimental results and analysis. Finally, in
Section 5, we present a summary and the limitations and future research directions of the
model proposed in this paper.

2. Related Work

The pulmonary nodule recognition algorithm is generally based on doctors provid-
ing the location of the lung nodule, and then training the CT image of the lung nodule
with a classifier to distinguish between nodules and non-nodules. It mainly utilizes rele-
vant machine learning algorithms to extract image features. At present, computer-aided
diagnosis tasks based on deep learning have achieved outstanding performance in the
diagnosis of thyroid cancer, breast cancer, and skin cancer, among others [31], and the
classification method of ground-glass nodules is also developing in medical diagnosis [32].
For example, Hu et al. [33] used the deep Convolutional neural network and residual
architecture to segment GGN and then used the Transfer learning method to build a deep
neural network to classify benign and evil GGNs. Li et al. [34] used the deep Convolutional
neural network to solve the identification of solid, half-time center, and ground glass.
Ni et al. [35] used a GGN detector composed of 3D U-Net and 3D multiple Receptive
fields to detect the position of GGN and then used the Attention-v1 depth 3D Convolu-
tional neural network to identify the invasiveness of GGN. Different deep learning models
have also been used in the classification of ground-glass nodules, such as AlexNet [36],
VGG16 [18], GoogLeNet [37], ResNet [28], etc., which have been applied in medical im-
age analysis. Improving the network structure of CNN [12] to continuously improve
the accuracy of classification has also become the focus of current image classification
research [38]. For example, Dai et al. [39] proposed a CNN architecture with mixed convo-
lutional scales, which solves the problem of reduced accuracy in electroencephalography
(EEG) motor imagery classification when training data is limited. Lei et al. [40] constructed
an extended CNN model by replacing the convolutional kernel of traditional CNN with
an extended convolutional kernel and solved the problem of detail loss in the extended
CNN model by stacking extended convolutional kernels with different expansion rates.
Harsh Sharma et al. [41] used Convolutional neural network architecture with different
depths to extract features from chest radiograph images and classify the images to detect
whether a person has pneumonia. Most deep learning models are applied to 2D image
classification [42], while CT medical images of lung nodules are three-dimensional block
images, and its three-dimensional image block features are better at representing spatial
asymmetry information and texture information [43]. For example, Wu Baorong et al. [44]
trained the three-dimensional and two-dimensional multi-scale images of nodules and
weighted their classification results to achieve the classification of pulmonary nodules.
Shen et al. [45] extracted distinguishing features from images of lung nodules at different
scales and sent them to a Convolutional neural network to obtain the heterogeneity between
benign and malignant nodules, thus improving the classification accuracy. Zhang et al. [46]
used the DenseNet architecture as the backbone, as well as 3D filters and pooling kernels,
achieving a decent performance. Yuan et al. [47] designed a gradient boosting method for
3D dual-path network features. The experimental results showed that the accuracy of lung
nodule classification obtained using this method was improved by about 3% compared to
2D CNN, strongly proving the feasibility of 3D CNN.

Transformer [24], first proposed for Natural Language Processing, has achieved great
success in computer vision tasks. It can encode long-term dependencies and learn efficient
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asymmetry feature representation. Vision Transformer [25] introduced pure Transformer
into visual tasks for the first time, dividing images into a series of image patches and
taking them as input, achieving promising results and demonstrating the effectiveness of
Transformer in spatial asymmetry feature representation and image classification. After-
ward, Transformer was also applied to various tasks in medical imaging [48]. For example,
You et al. [49] used Transformer for 2D medical image segmentation, proposed a generative
adversarial model, Castformer, and designed a novel multi-scale Transformer module
that uses adversarial training strategies to improve segmentation accuracy. Cao et al. [50]
proposed a pure Transformer model similar to Unet for medical image segmentation, Swin-
Unet, which jumps and connects labeled images to a U-shaped Encoder-Decoder for local
and global semantic feature learning. Chen et al. [51] introduced the hybrid Transformer
ConvNet model into volume medical Image registration and proposed the model Trans-
Morph. Jeya Maria et al. [52] proposed a gated axial attention model that extends the
existing architecture by introducing additional control mechanisms into the self-attention
module. The method proposed in this paper combines 3D convolutional neural networks
with Transformer to extract 3D features while also learning richer global image features.

3. Model Architecture

The model architecture of the proposed algorithm is shown in Figure 1, which contains
three main components: a 3D ResNet as the backbone to extract deep features, a Transformer
encoder layer, and a Support vector machine classification layer.

Figure 1. Model architecture.

3.1. 3D ResNet

Ground-glass lung nodules are stereoscopic image blocks, and their 3D image block
features are better in characterizing spatial information and texture information. Different
from 2D convolution, 3D convolution can better extract the features of the three dimen-
sions of ground-glass pulmonary nodules and can fully extract the context information in
pulmonary nodules, which effectively alleviates the dependence of traditional machine
learning methods on manual extraction of features. Therefore, according to the location
information of lung nodules marked by doctors, this paper cuts the corresponding size of
the stereo block on the CT image and extracts the 3D image block features through the 3D
ResNet network.

ResNet has strong robustness, which solves the problem of gradient vanishing when
the network depth in the neural network reaches very deep. In addition, given the large
demand for training data sets for the Transformer model, this paper uses ResNet as the
basis to make the model generalize on general data sets. Therefore, this paper selects the
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ResNet network as the Backbone. In this paper, the residual module of the original 2D
version of the ResNet model is improved, and its convolutional layer and pooling layer are
transformed into a 3D version.

When constructing a 3D convolution layer, a set of 3D feature extractors is first
established to extract the feature representation of the image, and multiple sets of 3D
convolution kernels are used to convolve different input feature quantities to generate
new feature volumes. The convolution function operated by the 3D convolutional layer is
expressed by the following Equation [12]:

y = conv(x, w)

where x represents the original data operated by the convolution function, w repre-
sents the filter, y represents the output layer of the convolution, and the input x has
B × C × D × H ×W dimensions, where B is the batch size, C is the number of channels, D
represents the length of the feature map, that is, the number of slices on the z-axis, and H
and W represent the height and width, respectively.

The pooling layer is an important layer running on each feature channel, combining
the surrounding feature values into one by appropriate operation. The 3D pooling layer
is used to reduce the size of the feature map to reduce the amount of computation while
retaining the original image information. The common pooling is Max pooling and average
pooling, and the model in this paper uses the Max pooling method.

In this paper, a 3D ResNet with a depth of 18 is used as the feature extraction Backbone.
Its detailed network structure is shown in Table 1, where padding is all set to 1, 16 in the
Input Size represents the batch size of 16 image blocks of pulmonary nodules that are input
at a time.

Table 1. Three-dimensional ResNet network structure.

Network
Composition Input Size Output Size Layer Structure

Input layer 16 × 1 × 48 × 48 × 48 16 × 32 × 48 × 48 × 48 [3 × 3 × 3conv+ BN +ReLU]

Pooling layer 16 × 32 × 48 × 48 × 48 16 × 32 × 24 × 24 × 24 3 × 3 × 3 in stride of 2,
Maximum pooling with padding of 1

First layer 16 × 32 × 24 × 24 × 24 16 × 32 × 24 × 24 × 24 [3 × 3 × 3conv (in stride of 1) + BN + ReLU] × 2

Second layer 16x 32 × 24 × 24 × 24 16 × 64 × 12 × 12 × 12 [3 × 3 × 3conv (in stride of 2) + BN + ReLU,
3 × 3 × 3conv (in stride of 1) + BN + ReLU] × 2

Third layer 16 × 64 × 12 × 12 × 12 16 × 128 × 6 × 6 × 6 [3 × 3 × 3conv (in stride of 2) + BN + ReLU,
3 × 3 × 3conv (in stride of 1) + BN + ReLU] × 2

Fourth layer 16 × 128 × 6 × 6 × 6 16 × 256 × 3 × 3 × 3 [3 × 3 × 3conv (in stride of 2) + BN + ReLU
3 × 3 × 3conv (in stride of 1) + BN + ReLU] × 2

3.2. Position Encoding

After extracting features through 3D ResNet, the image is then input into the Trans-
former Encoder. The input of the Transformer model is a sequence, so position encoding
needs to be added to the feature map extracted by 3D ResNet. The purpose of adding
position encoding is to preserve the position information of each pixel in the feature map.
The position encoding used in this experiment is the sine position encoding method used
in Transformer. The calculation formulas are [24]:

PE(pos,2i) = sin
(

pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

)
Among them, pos is the position of the graph vector in the sequence, and i is the

index of the channel. This paper calculates a position encoding in the three-dimensional
directions x, y, and z, calculates the sine of odd positions, calculates the cosine of even
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positions, and then converts pos_x, pos_y, and pos_z is concatenated to obtain an array of
BHWDC, which is then transformed into BCDHW through permute (0, 4, 3, 1, 2). Therefore,
the output and input feature shapes of position encoding are the same.

3.3. Transformer Encoder

The universal Transformer module is composed of an encoder-decoder structure,
where the encoder converts the input image into a vector representation and outputs
it. In the recognition algorithm for ground-glass nodules proposed in this paper, we
only use the encoder structure in the Transformer model as a feature extractor and use
its self-attention mechanism to obtain global features to assist in the recognition task of
ground-glass nodules.

The 3D ResNet processes the ground-glass nodule image blocks, and the size of each
image block is converted to a 256 × 3 × 3 × 3 feature map. Then, the feature map is
transferred into the Transformer encoder for further feature extraction. The Transformer
encoder requires a one-dimensional encoding sequence as input, so we segment the feature
map in pixels, and the number of pixels obtained is the effective input sequence length of
the Transformer encoder. In this paper, the sequence length is 27.

Next, we will introduce the Transformer encoder in detail. The Transformer encoder
consists of a Multi-head self-attention and Multilayer Perceptron (MLP) [53]. Each sub-
layer is preceded by Layer Normalization [54], and each sublayer is followed by residual
connection [28], as shown in Figure 2.

Figure 2. Transformer Encoder Structure Diagram.

The use of the Multi-head attention mechanism can combine information learned from
different heads, which is beneficial for the model to achieve better results. The multi-head
attention mechanism divides the Q, K, and V matrices into multiple parts in the Embedding
dimension, each part being a head. Next, calculate each group of attention in parallel. The
calculation of attention needs to introduce the concepts of Query, Key, and Value. Key
is matched with Query, and Value represents the information extracted from the input.
The process of matching Query and Key can be understood as calculating the correlation
between the two. The larger the correlation, the larger the weight of the corresponding
Value. The attention result is obtained by multiplying the correlation by Value. Finally, the
calculation results of each header are concatenated to generate an output value.
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Q, K, and V are derived from self-attention and input Xembedding, generating a Linear
map [24]:

Q = Xembedding ∗WQ
K = Xembedding ∗WK
V = Xembedding ∗WV

WQ, WK, and WV are the parameter matrices of linear mapping, and the dimension
is 256 × 256. The dimensions of Q, K, and V is consistent with Xembedding, which is
batch × 27 × 256. According to the larger dot product of two vectors, the more similar
they are, the attention matrix of each head is calculated in parallel through QKT, and then
the Value is weighted according to the attention matrix. Finally, the attention results of
each head are concatenated to obtain the output of multi-head attention, the formula is as
follows [24]:

Oi = Attention(Qi, Ki, Vi) = softmax(QiKT
i√

dk
)Vi

MultiHeadAttention
(

Xembedding

)
= Concat[O1, . . . , Oh]WO

where
√

dk turns the attention matrix into a standard normal distribution, and softmax is
normalized to make the sum of attention weights 1, Oi is the attention calculation result for
each head, h is the number of heads, and WO is the parameter matrix.

Next, we will introduce the Residual connection and Layer Normalization. The
residual connection adds up the inputs and outputs of the previous layer. The Layer
Normalization normalizes the hidden layer in the neural network into a standard normal
distribution to accelerate convergence. Finally, the Feedforward network uses two layers of
Linear map and then passes through the Relu Activation function to get the output.

3.4. The SVM Classifier

The ground-glass nodules undergo feature extraction through the upper two layers of
the network structure, and the output features are classified using SVM to obtain recognition
results. SVM has the characteristic of strong generalization ability for datasets, so this paper
uses an SVM classifier. SVM maps data from low dimensional space to high dimensional
space through kernel functions and classifies it in high dimensional space. Common kernel
functions include linear kernel function, polynomial kernel function, and radial basis kernel
function. Due to the advantages of parameter variables, low computational complexity,
and high computational efficiency of the radial basis function, we select it as the kernel
function of SVM in this paper. Its mathematical expression is as follows [55].

K(xi, xj) = exp
[
−‖X− Xi‖2

2σ2

]
Among them, σ is the width of the radial basis kernel function, and C and σ are the

important parameters of the SVM model.
In order to obtain the best parameter combination of C and σ, this paper uses a

grid search algorithm optimized through K-fold cross-validation to ensure the optimal
performance of SVM.

The basic idea of optimizing SVM model parameters through a grid search algo-
rithm [56] is: list all parameter combinations and generate a grid; perform SVM modeling
on all parameter combinations in sequence; select the parameter combination with the
highest modeling accuracy.

The algorithm steps are as Algorithm 1.
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Algorithm 1. Grid search algorithm

Input: the value of C and σ, and the high-order combined feature vectors on the training
set obtained from the model based on 3D ResNet and Transformer encoder.

Output: SVM model constructed with optimal parameter combination.
1: for C in [C1, C2. . .Ci]
2: for σ in [σ1, σ2. . .σj]
3: construct a support vector classification model;
4: conduct 10-fold cross-validation;
5: if (score > best_score)
6: best_score = score;
7: best parameter combination = {‘C’: C, ‘σ’: σ};
8: end if
9: end for
10: end for
11: Construct a Support vector classification model using the best combination of parameters.

The experimental results indicate that the optimal parameter combination is as follows:
‘C’ = 5, ‘σ’ = 10

√
5.

3.5. ELM-KNN Classifier

The ground-glass nodules are input into the ELM-KNN [57] model for classification
after feature extraction by the Transformer. The Extreme Learning Machine (ELM) [58] is
used to map input features from low-dimensional space to high-dimensional space, and
the K-Nearest Neighbor (KNN) algorithm [59] is used to classify the mapped features. For
the specific content of the ELM-KNN model, please refer to the literature [57]. Through
cross-validation, parameters K of KNN in this study are selected as 10, weights as ‘distance’,
and P as 4 for the experiment.

4. Experimental Design and Result Analysis
4.1. Dataset and Preprocessing

This paper adopts a private lung CT dataset for experiments in Sections 4.2–4.5. and a
public lung CT dataset of LUNA16 [30] for experiments in Section 4.6, respectively.

The first dataset contains a total of 500 lung CT images and was labeled by five
experienced radiologists. There are 369 ground-glass pulmonary nodules, 1559 non-ground-
glass pulmonary nodules, and 488 uncertain types in this labeled dataset. In order to make
the experimental data set balanced, this paper selected 369 non-ground-glass pulmonary
nodules and 369 ground-glass pulmonary nodules, totaling 738 pulmonary nodule samples
for experiments.

The second data set of LUNA16 contains a total of 888 lung CT images, which are
illustrated in Figure 3. In order to balance the positive and negative samples, we randomly
selected 1320 benign nodule samples and 1320 malignant nodule samples, giving a total of
2640 samples for experiments.

Figure 3. Examples of lung CT images.
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The above two experimental datasets, are all divided into a training set and a testing
set with the ratio of 80% vs. 20%, respectively.

For deep learning models, a larger amount of data may be required to obtain good
results. The dataset used in this paper may not have enough data for the deep learning
model. In order to enhance the learning ability of the network and reduce the occurrence
of overfitting of the network model, this paper uses the following data augmentation
processing methods:

(1) 3D RandomRotation: For the original input data, rotate it 180 degrees by randomly
fixing one of its edges.

(2) 3D RandomShift: For the input 3D image, use random displacement to move it in any
direction along the x, y, and z axes, with a range of 10% of the input image size.

(3) Gaussian Noise: In order to avoid overfitting and enhance learning ability by adding
an appropriate amount of noise, this experiment sets its mean (offset) to 0.2 and sigma
(standard deviation) to 0.3.

(4) 3D RandomScale: The ability to achieve internal and external image scaling. When
scaling outward, the resulting image size will be larger than the original, but when
scaling inward, it will cause its size to decrease. In this experiment, the scaling factor
is set to be between 0.8 and 1.1.

(5) 3D RandomFlip: For the original input image, flip it 180 degrees using a flip matrix.

This paper randomly executes one of the above data augmentation methods during
each training round, and the quantity of expanded samples are ten times that of origi-
nal samples.

4.2. Model Parameter Settings and Experimental Environments

The training data for the model in this paper is the lung nodule three-dimensional
image block, whose size is 1 × 48 × 48 × 48. The lung nodule recognition algorithm uses
3D ResNet and Transformer to extract features from the image. The depth selection of the
3D ResNet model is 18. The image size is 256 × 3 × 3 × 3 after 3D convolution, and a 3D
position code is added to the image to record the position information. Then, the image is
flattened into 27 patches, and the size of patches is 1 × 1 × 1. The Transformer encoder
takes a sequence of 27 × 256 vectors as input, where the number of heads parameter h of
the multi-head attention mechanism is 8, as shown in Figure 4.

Figure 4. Input pulmonary nodule images into 3D ResNet and Transformer Encoder for feature extraction.
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In this section, the experiments in this paper involve two environments:

(1) Vgg19 model: AMD EPYC 7543 32 CPU; two NVIDIA A40 graphics cards, each card
contains 48GB graphics memory; Ubuntu 18.04 operating system; Pytorch 1.9.1 deep
learning framework; Python 3.8 programming language.

(2) Other models: Intel Core i7-7820X CPU; one NVIDIA GeForce RTX 2080 Ti graphics
card with 11GB graphics memory; Windows operating system; Pytorch 1.9.1 deep
learning framework; Python 3.7 programming language and integrated development
tool PyCharm.

All the comparison models are consistent with the settings of the proposed model.
The number of epochs of each data in the training sample is 100, the learning rate is 0.0001,
and the batch size is 16.

4.3. Selection of Transformer Encoder Layers

For the number of Transformer encoder layers, it is not the case that the more layers
there are, the better the classification effect. In order to select the optimal number of layers,
this paper carried out experiments for the different number of layers (1, 2, 3, 4, 5) in the same
experimental environment, and obtained the recognition accuracy of ground-glass nodules
under the different numbers of layers. The results are shown in Figure 5. Experiments
show that when the encoder layer comprises two layers, the accuracy is the highest, so the
number of layers is two in this paper.

Figure 5. Selection of Transformer Encoder Layers.

4.4. Classifier Selection

In order to obtain better recognition results of ground-glass nodules, this paper uses
six classifier models: Fully Connected Layer, Decision Tree [60], Random Forest [61],
AdaBoost [62], SVM, and ELM-KNN [57] in the selection of classifiers, and optimizes
model parameters using a grid search algorithm. The experiment is carried out in the same
experimental environment, and the results are shown in Table 2.
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Table 2. Model accuracy for different classifiers.

Classifier Accuracy

Fully Connected Layers 0.9315
Decision Tree 0.9315

Random forest 0.9383
AdaBoost 0.9520

SVM 0.9589
ELM-KNN 0.9589

From Table 2, we find that the classification effect of ELM-KNN and SVM is 0.9589,
which is 2.74 percentage points higher than that of using the Full Connection Layer. Com-
pared with the classifier using the Decision Tree, the accuracy is improved by 2.74 percent-
age points. Compared with the classifier using Random Forest, the accuracy is improved
by 2.06 percentage points. The accuracy of these two classifiers is 0.69 percentage points
higher than that of the classifier using AdaBoost. We can see that using SVM or ELM-KNN
as the classifier has the same good classification effect, so we chose these two classifiers to
do a comparison experiment on the two databases.

4.5. Comparative Experiments

In order to verify the superiority of the proposed method, this paper conducts compar-
ative experiments with the commonly used deep learning models ResNet18 [28], AlexNet,
DenseNet121 [63], GoogLeNet, and VGG19 [18] in the same experimental environment, on
the same dataset, and with the same data preprocessing. All the network models employ 3D
convolution. In addition, this paper also uses ResNet34 [28] as a feature extraction network
and only applies the Transformer model to complete the recognition task of ground-glass
nodules. Finally, the models ResNet and GBM and Attention [64], MSMA-Net [65], and
MVCSNet [66] proposed by the latest papers in the field of lung nodule classification are
used to perform the recognition task of ground-glass nodules in the same experimental
environment. The above experimental results are shown in Table 3.

Table 3. Performance comparison of different network models.

Deep Network Model Accuracy F-Measure

ResNet18 0.9110 0.9128
AlexNet 0.9110 0.9103

DenseNet121 0.9384 0.9379
GoogLeNet 0.9178 0.9167

VGG19 0.9315 0.9315
ResNet34 + Transformer 0.9452 0.9452

Transformer 0.9110 0.9127
ResNet + GBM + Attention 0.9384 0.9404

MSMA-Net 0.9384 0.9388
MVCSNet 0.9521 0.9517

ResNet18 + Transformer + SVM 0.9589 0.9600
ResNet18 + Transformer + ELM-KNN 0.9589 0.9594

As can be seen from Table 3, when the classifier is SVM, the accuracy and F-measure of
the proposed method are 95.89% and 96.00%, respectively, which are 4.79 percentage points
and 4.72 percentage points higher than that of ResNet18. From this data, it can be seen that
adding the Transformer encoder layer to the model can improve the accuracy of recognition.
When only the Transformer model is applied to extract features in this paper, the accuracy
is 91.10%, which is lower than the method proposed in this paper. The reason is that when
an experiment only uses Transformer, it needs a large amount of data to obtain a good
learning effect. In addition, in the experiment, when this paper used a deeper ResNet34 as
the feature extraction network, the accuracy and F-measure are reduced by 1.37 percentage
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points and 1.48 percentage points. This result shows that when using a network with strong
expressive power such as Transformer for modeling, the feature extraction network can use
a lighter structure to balance effect and performance. Finally, compared with the common
deep learning models of AlexNet, DenseNet121, GoogLeNet, and VGG19, the accuracy
of this paper is improved by 4.79, 2.05, 4.11, and 2.74 percentage points, respectively, and
the F-measures is improved by 4.97, 2.21, 4.33, and 2.85 percentage points, respectively.
Compared with the models proposed in the latest paper in the field of nodule classification,
the accuracy is improved by 2.05, 2.05, and 0.68 percentage points, respectively, and F-
measure is improved by 1.96, 2.12, and 0.83 percentage points, respectively, which fully
proves the superiority of the proposed model in ground-glass nodule recognition.

4.6. Experimental Results on the Luna16 Dataset

In order to verify the performance of the model in this paper on the public dataset, we
used the dataset Luna16 for experiments. In this paper, the LUNA16 dataset is used for
the classification of benign and malignant nodules. According to the nodule information
provided by the LUNA16 dataset, we can find the malignant score given by the physician
from the corresponding LIDC-IDRI [67] labeling file. In order to balance the positive and
negative samples, we randomly selected 1320 benign samples and 1320 malignant samples,
giving a total of 2640. In addition, the same data augmentation processing as the dataset in
Section 4.1 is applied.

In terms of parameter setting, the Batchsize of model training is 16, the Epoch is 100,
the learning rate is 0.0001, and the number of Transformer encoder layers is 5.

In this paper, we select the models ResNet and GBM and Attention [64], DPNCap-
sNet [68], MVF-CNN 25 [69] and MVCSNet [66] proposed in the latest papers on the
Luna16 dataset for comparison, and the experimental results are shown in Table 4.

Table 4. Performance comparison of different network models on LUNA16 dataset.

Deep Network Model Accuracy F-Measure

ResNet + GBM + Attention 0.9130 N/A
DPNCapsNet 0.9156 N/A
MVF-CNN 25 0.928 N/A

MVCSNet 0.9239 0.9090
ResNet18 + Transformer + SVM 0.9572 0.9567

ResNet18 + Transformer + ELM-KNN 0.9633 0.9633

It can be seen from Table 4 when the classifier is SVM, the accuracy of the proposed
method is higher than that of the above papers, and the accuracy is increased by 4.42, 4.16,
2.92, and 3.33 percentage points, respectively, which fully illustrates the effectiveness and
generalization of the ground-glass nodule recognition model based on 3D ResNet and
Transformer proposed in this paper on the LUNA16 public dataset.

5. Conclusions

In this paper, a ground-glass nodule recognition model based on Transformer from
the view of global 3D asymmetry feature representation is proposed. Given the traditional
machine learning methods relying on artificial experience to extract features, this paper uses
the deep learning model with powerful feature extraction ability to represent asymmetry
features. At the same time, considering that the medical image is a 3D block image, this
paper uses the 3D convolution method to make the neural network better extract 3D
medical image features. Aiming at the shortcomings of CNN in extracting global image
features, this paper refers to the Transformer encoder, so that the model can learn richer
global 3D asymmetry features and enhance the feature expression ability of the model. In
the selection of the number of Transformer encoder layers, this paper conducts experiments
on the number of Transformer encoder layers (1, 2, 3, 4, 5). The experimental results show
that when the number of Transformer encoder layers is 2, the proposed model achieves
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the highest accuracy of 95.89%. Finally, the method proposed in this paper is compared
with other deep learning models and the models of the latest papers in the field of lung
nodules. The experimental results show that the transformer-based method proposed in
this paper is superior to other recognition models, and the recognition accuracy reaches
95.89%, which verifies the effectiveness of the method in ground-glass nodule recognition.

Although the Transformer-based recognition method proposed in this paper shows
good performance, there are some limitations which are also our future research directions:

(1) The model proposed in this paper only uses sinusoidal position encoding in the
position encoding section. In the future, more position encoding methods can be
attempted to enable the model to obtain richer image information.

(2) The number of samples used in this paper is limited. In subsequent studies, the
number of samples can be increased to improve the accuracy and generalization
performance of ground-glass pulmonary nodule recognition.

(3) The main content of this paper is to study the classification of ground-glass pulmonary
nodules. The samples used are already detected nodule areas. Subsequent research
can include the detection of pulmonary nodules and visualize the test results of the
detection section.
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