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Abstract: The problem of formulating variational models for irreversible processes of media defor-
mation is considered in this paper. For reversible processes, the introduction of variational models
actually comes down to defining functionals with a given list of arguments of various tensor dimen-
sions. For irreversible processes, an algorithm based on the principle of stationarity of the functional
is incorrect. In this paper, to formulate a variational model of irreversible deformation processes with
an expanded range of coupled effects, an approach is developed based on the idea of the introduction
of the non-integrable variational forms that clearly separate dissipative processes from reversible
deformation processes. The fundamental nature of the properties of symmetry and anti-symmetry
of tensors of physical properties in relation to multi-indices characterizing independent arguments
of bilinear forms in the variational formulation of models of thermomechanical processes has been
established. For reversible processes, physical property tensors must necessarily be symmetric with
respect to multi-indices. On the contrary, for irreversible thermomechanical processes, the tensors
of physical properties that determine non-integrable variational forms must be antisymmetric with
respect to the permutation of multi-indices. As a result, an algorithm for obtaining variational
models of dissipative irreversible processes is proposed. This algorithm is based on determining
the required number of dissipative channels and adding them to the known model of a reversible
process. Dissipation channels are introduced as non-integrable variational forms that are linear in
the variations of the arguments. The hydrodynamic models of Darcy, Navier–Stokes, and Brinkman
are considered, each of which is determined by a different set of dissipation channels. As another
example, a variational model of heat transfer processes is presented. The equations of heat conduction
laws are obtained as compatibility equations by excluding the introduced thermal potential from the
constitutive equations for temperature and heat flux. The Fourier and Maxwell–Cattaneo equations
and the generalized heat conduction laws of Gaer–Krumhansl and Jeffrey are formulated.

Keywords: variational principle; dissipative processes; symmetry properties; dissipation channels;
hydrodynamics; heat conduction laws; heat transfer equations

1. Introduction

Due to their relevance, coupled processes of deformation of media, taking into account
heat and mass transfer and various physical fields, are subjects of tremendous interest in
the scientific world in recent years. We note several recent monographs that provide an
overview, analysis and comparison of such models [1–3].

Research and modeling of reversible and irreversible processes of deformation ther-
modynamics, taking into account the coupled interactions effects of various physical fields
and deformation fields, are extremely in demand in applications [4–11]. The associated
coupled thermodynamic effects are usually significant in highly heterogeneous systems
with microstructures and nanostructures, where concentration and temperature gradients
can be significant. In [4], the authors discussed thermal diffusion and diffusion-thermal
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effects in an axisymmetric fluid flow along a stretching wall. It was shown in [5,6] that in
the processes of heat and mass transfer, it is necessary to take into account the features of the
structure, which manifest themselves through various cross-effects. Interesting studies of
heat and mass transfer processes in deformable bodies and inhomogeneous structures are
provided in [7–11]. Variational models were considered in [12] to describe the relationship
between the processes of deformation and heating for periodic structures.

Although, in general, these effects are of a lower order in comparison with the effects
due, for example, to the Fourier and Fick laws (which are associated with the basic vari-
ables), but coupled effects can manifest themselves in systems where concentration and
temperature gradients can be significant, in particular, in highly inhomogeneous systems
with micro- and nanostructures [11–15]. Undoubtedly, coupled effects can make a signif-
icant contribution to the modeling of reversible and irreversible processes of structures’
deformation. An example of the importance of coupled effects can be the damping theory
of oscillations, originally proposed in papers [16–18] and later improved in the research [19],
which received remarkable experimental confirmation. Variational methods of modeling
the processes of thermodynamics in complex environments are preferable because they
allow you to propose the most complete and fully thermodynamically consistent models
that are invariant with respect to coordinate transformations. In this regard, we also note
papers [20–22], where variational models were used to describe irreversible processes and
where the fundamental nature of the principle of possible displacements, which is valid for
reversible and irreversible processes, was emphasized.

Determination of a list of generalized variables of functionals when modeling re-
versible and irreversible processes using variational methods is one of the main problems.
This problem was initially considered in [23–26], related to coupled thermos-elasticity and
heat transfer, and then was developed in relatively recent pioneering articles [13–15].

For modeling reversible thermodynamic deformation processes, variational methods
are very effective [11,20–22,27,28], etc. They involve the introduction of thermodynamic
potentials for models of media of varying complexity and the use of variational principles.
The use of variational approaches makes it possible to formulate both the constitutive and
balance equations and the boundary value problem as a whole.

For irreversible processes, this approach is not correct. Typically, to formulate models
of irreversible processes, thermodynamic potentials and thermodynamic inequalities are
used, reflecting the second law of thermodynamics [25,29,30]. This approach does not allow
formulating a closed mathematical model in a variational way. A constructive alternative
to this approach is to use the dissipative function [31,32]. In this case, the force factors
are defined as the gradients of this dissipative function, which contradicts the definition
of dissipative processes and, therefore, seems incorrect. Here, it is necessary to note the
paper [32], where, although authors are talking about the introduction of a dissipative
functional, nevertheless, the possibility of using the principle of possible displacements
written in variations is briefly postulated, which formally allows us to correct the variational
formulation (the structure of the dissipative linear form is not discussed).

In the present paper, to describe dissipative processes, we, for the first time, propose to
introduce a universal variational model that can be written in the variations using a linear
variational form of independent arguments (see also [33–35]). The variational equation is
determined by adding the required number of dissipation channels to the known model
of a reversible process (the known Lagrangian). Dissipation channels are introduced as
non-integrable variational forms that characterize dissipative models of media of varying
complexity depending on the tensor dimension of the arguments. We proposed an algo-
rithm according to which the structure of the energy variational equality is established
using the fundamental symmetry properties of tensors of physical characteristics for the
functional of the reversible processes and, respectively, using the anti-symmetry properties
for tensors of physical moduli in the non-integrable variational forms for the dissipative
process. Complete mathematical models of reversible and irreversible processes are ob-
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tained using stationarity principles. Hydrodynamic irreversible processes and heat transfer
processes are considered as examples.

2. Variational Form in Thermodynamic Processes of Deformations: Dissipation Channels

It is known that for solid deformation problems, the Lagrange variational principle
for reversible processes is written in the form:

δL = δ(A−U) = 0

where, L = A −U is the Lagrangian, A is the work of the external forces given in the
volume V and on the surface of the body, U =

∫
V

UV(εij; . . .)dV is the potential energy,

and UV(εij; . . .) is the potential energy density. The following are dependent on a list
of kinematic arguments: deformations tensor εij, derivatives of the deformation tensor
εij,k, etc.

Necessary conditions for reversible processes are Green’s formulas, which provide the
possibility of generating energetically consistent constitutive relations.

Along with reversible processes, we also consider irreversible ones. In this case,
the variational form δU, which is the possible work of internal forces, is not integrable.
Consequently, the tensor static factors corresponding to tensor kinematical arguments and
performing possible work on these variables are not expressed in terms of derivatives of
certain potential. We assume, in this case, that the static factors are continuous functions of
the kinematic parameters.

For irreversible processes, the variational principle was proposed by L.I. Sedov [33–35].
The corresponding variational equation for dynamic processes is written as:

δI − δW∗ = 0 (1)

where I = A− (U − K), K is the kinetic energy, (U − K) is the reversible part of dynamic
energy for the deformation process, and δW∗ is the linear form with respect to variations in
the kinematic parameters, which takes into account irreversible processes (i.e., a change in
entropy and heat gain).

We further assume that the list of kinematical parameters (generalized arguments) for
the dissipative part of the linear variational form δW∗ coincides with the list of kinematical
parameters of the variational form for the reversible part of the energy (potential energy
and kinetic energy U − K).

Also, we propose that Equation (1) is obtained by integrating the corresponding
densities over the volume of the body V and over the time interval from the moment
t0, corresponding to the initial configuration, to the time t1, corresponding to the final
configuration. The linear form δW∗ can contain both integrals over the volume and over
the hypersurface of the event space occupied by the body. In the general case, by volume
integral of the event space, we mean the integral:

∫
[. . .]dV =

t1∫
t0

∫
V

[. . .]dVdt

Analyzing the general structure of the variational form δW∗, we use the symbolic form
of notation, which permits simplification of the notation of the expressions under study. To
perform the above, we introduce multi-indices for volume and surface parts of the linear
form. Let us assume that the multi-indices a and b range from 1 to N (according to the
number of tensor kinematic parameters). Along with δU, defined as a sum of all integrable
forms for the process under consideration, let us consider the variational form δU, which
represents a particular non-integrable form. Then, the variational form will be written in
the following form:



Symmetry 2023, 15, 2173 4 of 21

δU =
∫
V

Pa(Qb)δQadV (2)

where the upper bar indicates that the corresponding variational form (2) is a non-integrable,
Qa indicates tensor objects of any tensor order (generalized kinematic variables), and Pa are
internal force factors that perform possible work on the introduced generalized kinematic
variables Qa, respectively, in the volume.

For example, the value Qa can be understood as a tensor of the second rank εij, and/or
a tensor of the third rank εij,k. The value Pa(Qb)δQa is understood not as a convolution of
vectors, but as a convolution of tensor objects Pa and δQa of the same rank.

Equation (1) can be generalized when the non-integrated variational form is defined
not only in the volume but also on the surface of the body:

δU =
∫
V

PV
a (QV

b )δQV
a dV +

x

F

PF
a (Q

F
b )δQF

a dF (3)

where QV
a , QF

a and PV
a , PF

a are generalized kinematic variables (tensor objects) and internal
force factors that perform possible work on the introduced generalized kinematic variables.

Both parts of Equation (3) are obtained by integrating the corresponding densities
in the volume of the body and of its surface and over the time interval from the moment
t0, corresponding to the initial configuration, to the time t1, corresponding to the final
configuration.

It should be borne in mind that time is considered as a parameter. Therefore, the list
of kinematic parameters (arguments) should also include time derivatives of kinematic
parameters of various tensor dimensions − generalized velocities. For example, the defor-
mation tensor εij and the strain rate tensor

.
εij are the various generalized variables Qa and

Qb, Qa 6= Qb, a 6= b.
We will model dissipative processes using the variational approach. Let us introduce

the sufficient non-integrability conditions, which are constructed explicitly for the corre-
sponding bilinear terms. Sufficient conditions of non-integrability of form (2) will have
the form:

∂Pa
∂Qb
− ∂Pb

∂Qa
= 2Cab(Qc),

Cba = −Cab,
(4)

Thus, for irreversible processes, the quantities of Cab in the constitutive relations
are not symmetrical with respect to multi-indices, while for reversible processes, similar
parameters Cab(Qc) (tensors of elastic moduli) are obviously symmetrical when permuting
multi-indices, Cab = Cba. As an example, let us consider the form δU = σijδεij + σmnδεmn.
Assume that this form is integrated. Then, σij = ∂U

∂εij
, σmn = ∂U

∂εmn
, σij = Cijmnεmn, and

Cijmn = Cmnij, where the last equation follows from the equality ∂
∂εij

∂U
∂εmn
− ∂

∂εmn
∂U
∂εij

= 0.

In this case, δU = σijδεij + σmnδεmn = Cijmn(εmnδεij + εijδεmn) = Cijmnδ(εijεmn).
On the other hand, if we can form (εmnδεij − εijδεmn), then it is impossible to construct

a potential for it, and, consequently, such a form is non-integrable.
Generally, we can propose that ∂Pa

∂Qb
defines in (4) the tensor of effective modulus and

includes the integrable and non-integrable constituent parts:

∂Pa

∂Qb
= Cab(Qc) + Cab(Qc) (5)

For reversible processes, it should be assumed that Cba = 0. Then, equalities (2) pass
into the conditions of integrability of the linear form δU, and δU = δU. On the contrary,
the presence of a value Cba in expression (5) is a sign of the non-integrability of form (2).
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Note that the sufficient conditions in non-integrable (4) can be used as links intro-
duced on the Lagrange multipliers in the formulation of the extended linear form, which
is the basis for the variational formulation of processes, including both reversible and
irreversible processes.

However, for physically linear models, Equation (2) can be explicitly integrated and
used to formulate the linear form δU for nonholonomic media directly.

Indeed, for physically linear models, the tensors of thermomechanical properties, Cab
and Cab, do not depend on the kinematic parameters (generalized deformation factors).
Therefore, by direct integration (5), we can obtain:

Pa = (Cab + Cab)Qb (6)

Taking into account the constitutive Equation (6), we rewrite (2) in the form:

δU =
∫

PaδQadV =

=
∫
(Cab + Cab)QbδQadV =

= δ
∫ 1

2 CabQaQbdV + 1
2

∫
[Cab(QbδQa −QaδQb)]dV

Comparing the last equality with the variational Equation (1), for physically linear
nonholonomic media, we obtain the following general form of the terms of main variational
Equation (1):

I =
∫
[PV

i Ri −
1
2

CabQaQb]dV δW∗ =
1
2

∫
[Cab(QbδQa −QaδQb)]dV (7)

Following (7), we can state that obtaining the work of dissipative forces in general
form required at least two objects of the same tensor dimension. So, for example, we can
use two tensors, εij and

•
εij, to define the variant of dissipation work: εijδ

•
εmn −

•
εmnδεij.

Thus, Equations (6) and (7) provide a generalized variational description of linear
models of media with dissipation and, generally, determine the general algorithm for
elaboration of the dissipative media models.

As a result, an algorithm for constructing a variational model of dissipative processes,
which is reduced to the following sequence of steps, is proposed:

- Postulation of a kinematic model (assignment of a list of arguments);
- Formulation of the work of internal forces (definition of the force model);
- Formulation of conditions for integrability/non-integrability of the work of internal forces;
- Integration of the reversible part and formulation of the functional for the reversible

part of the process under consideration;
- Formulation of dissipation channels.

3. Variational Equations

Let us consider linear isotropic media and present a general procedure for constructing
a variational model of irreversible processes. The developed algorithm can be used for
models of virtually any complexity. First of all, consider the stationary problem for a
generalized gradient isotropic body and assume that the list of kinematic arguments is
determined as distortion tensor and first derivatives of the distortion tensor in the stationary
case. Let us use the most general principle of possible displacements, which can be used
to formulate dissipative models of physically linear and nonlinear processes and can be
extended to dynamic processes in the sense indicated above. Consider the possible work of
internal forces:

δU =
∫
V

(σijδRi,j + σijkδRi,jk)dV (8)
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where (σijδRi,j + σijkδRi,jk) is the possible work of internal forces density, Ri,j and Ri,jk
are distortion and curvature of displacement (generalized kinematic arguments) and the
tensors of stresses σij and double stresses σijk, which perform possible work on variations
of the corresponding generalized kinematic arguments.

Taking into account (8), we determine the effective physical characteristics, generally,
of a physically nonlinear medium—the tensors of the elastic moduli of the fourth and
sixth ranks:

∂σij

∂Rm,n
= Cijkm,

∂σijk

∂Rm,nl
= Cijkmnl (9)

We consider isotropic media and assume that stresses σij do not depend on curvatures
of displacement vector and that the double stresses do not depend on distortions, i.e.,
tensors of moduli of odd rank are equal to zero. The following necessary conditions for the
reversibility of the deformation process under consideration must be in place:

∂σij
∂Rm,n

− ∂σmn
∂Ri,j

= 0

∂σijk
∂Rm,nl

− ∂σmnl
∂Ri,jk

= 0
(10)

Equation (10) helps to formulate the definition for the tensors of elasticity moduli of
the fourth and sixth ranks for reversible processes of deformation:

∂σij
∂Rm,n

= ∂σmn
∂Ri,j

= Cijmn

∂σijk
∂Rm,nl

= ∂σmnl
∂Ri,jk

= Cijkmnl

(11)

Substitution of (11) into Equation (10) leads to the formulation of the symmetry
properties of the tensors of the moduli of reversible deformation processes (Cijmn = Cmnij,
Cijkmnl = Cmnlijk): {

Cijmn − Cmnij = 0

Cijkmnl − Cmnlijk = 0
(12)

In other words, symmetry conditions (12) are necessary conditions of integrability for
the linear form (σijδRi,j + σijkδRi,jk). In symbolic form, the variation of the possible work
of internal forces is written in unified form not only for a static problem, but also for the
corresponding dynamic process. For linear processes, the variation of the possible work for
internal forces and the conditions for its potentiality have the following simple form:

δU =
∫

PaδQadV =

=
∫

CabQbδQadV =
∫

CbaQaδQbdV = δ
∫

CabQbQadV = δ
t1∫

t0

∫
UVdVdt, Cab = Cba

(13)

Let us consider processes that, generally, can be irreversible. The following statement
holds true for physically linear and nonlinear deformation models for isotropic media (the
validity of the statement of the lemma for linear processes follows from (4), (6), and (12)).

Lemma: Let us consider an irreversible process of deformation of a physically nonlinear gradient
medium (a common case) for which the possible work of internal forces has the form (8). Then, the
following assertions hold:

1. The necessary conditions for the existence of a potential energy density UV are the symmetry
properties of the tensors of the elastic moduli Cijmn, Cijkmnl :

Cijmn = Cmnij, Cijkmnl = Cmnlijk (14)
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2. Sufficient conditions for dissipative deformation processes are the antisymmetric properties of
the tensors of dissipative moduli Cijmn, Cijkmnl

Cijmn = −Cmnij, Cijkmnl = −Cmnlijk (15)

3. The effective elastic moduli of media in which the deformation process occurs with energy
dissipation are determined by tensor functions:

∂σij

∂Rm,n
= Cijmn + Cijmn, Cijkmnl 6= 0, Cijmn 6= 0 (16)

Proof: Let us write down the necessary conditions for the reversibility of the deformation
process (conditions for the existence of a potential energy density):

∂σij

∂Rm,n
− ∂σmn

∂Ri,j
= 0,

∂σijk

∂Rm,nl
− ∂σmnl

∂Ri,jk
= 0 (17)

Obviously, Equation (17) can be rewritten in the form:
∂σij

∂Rm,n
= ∂σmn

∂Ri,j
,

∂σijk
∂Rm,nl

= ∂σmnl
∂Ri,jk

.
In the left and right parts of the last equations, there are tensors of the fourth and sixth

rank, respectively.
We denote these as: Cijmn, Cijkmnl

∂σij

∂Rm,n
=

∂σmn

∂Ri,j
= Cijmn,

∂σijk

∂Rm,nl
=

∂σmnl
∂Ri,jk

= Cijkmnl (18)

The tensors in (18) will be referred to as the effective moduli of elasticity. Formally
excluding derivatives of stresses in (17) and, accordingly, double stresses with the help of
(18), we obtain (14), which proves the first part of the lemma.

Next, we write the sufficient conditions for the dissipative (irreversibility) of the
deformation process:

∂σij

∂Rm,n
− ∂σmn

∂Ri,j
= 2Cijmn 6= 0

∂σijk

∂Rm,nl
−

∂σmnl
∂Ri,jk

= 2Cijkmnl 6= 0, (19)

From (19), it follows that:

2Cmnij =
∂σmn
∂Ri,j
−

∂σij
∂Rm,n

= −(
∂σij

∂Rm,n
− ∂σmn

∂Ri,j
) = −2Cijmn

2Cmnlijk =
∂σmnl
∂Ri,jk

−
∂σijk

∂Rm,nl
= −(

∂σijk
∂Rm,nl

− ∂σmnl
∂Ri,jk

) = −2Cijkmnl

Hence, item 2 of the lemma is also proved.
If Cijkmnl = 0, Cijmn = 0 , then expression (19) degenerates into the necessary condi-

tions for the reversibility of deformation processes (see (17)). Therefore, for dissipative
processes one, should consider nonhomogeneous Equation (19), Cijkmnl 6= 0, Cijmn 6= 0 .
The sufficient non-integrability conditions of (19), written with respect to effective moduli

∂σij
∂Rm,n

,
∂σijk

∂Rm,nl
(see Equation (17)), are a system of inhomogeneous algebraic equations. The

solution of these equations can be represented as:

∂σijk

∂Rm,nl
= Cijkmnl + Cijkmnl

∂σij

∂Rm,n
= Cijmn + Cijmn. (20)

Hence, item 3 of the lemma is also proved.
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Constitutive Equation (20) can be integrated in the quadrature, and physically linear
equations of Hooke’s law can be obtained, if the modulus tensors do not depend on
kinematic variables:

σij = (Cijmn + Cijmn)Ri,j

σijk = (Cijklmn + Cijklmn)Rl,mn
(21)

�

Theorem 1. Let the deformation processes of physically linear processes with kinematic variables
Ri,j, Ri,jk be considered. Then, the possible work (8) of internal forces is represented as the sum of
variation of the functional corresponding to the reversible part of the deformation process (variation
of the potential energy of deformation) and of the non-integrable linear variational form that models
irreversible deformation processes associated with dissipation:

δU = δU + 1
2

∫
V
[Cijmn(Rm,nδRi,j − Ri,jδRm,n) + Cijkmnl(Rl,mnδRi,jk − Ri,jkδRl,mn)]dV

U = 1
2

∫
V
[CijmnRm,nRi,j + Cijkmnl Ri,jkRl,mn]dV

Proof: Let us use the results of the lemma and take into account Equation (21). Substituting
(21) into (8), we obtain the following sequence of equalities:

δU =
∫
V
(σijkδRi,jk + σijδRi,j)dV =

=
∫
V
[(Cijmn + Cijmn)Rm,nδRi,j + (Cijklmn + Cijklmn)Rl,mnδRi,jk]dV =

=
∫
V
[Cijmn(Rm,nδRi,j + Ri,jδRm,n)/2 + Cijklmn(Rl,mnδRi,jk + Ri,jkδRl,mn)/2]dV+

+
∫
V
[Cijmn(Rm,nδRi,j − Ri,jδRm,n)/2 + Cijklmn(Rl,mnδRi,jk − Ri,jkδRl,mn)/2]dV =

= δ 1
2

∫
V
[CijklmnRl,mnRi,jk + CijmnRm,nRi,j]dV+

+ 1
2

∫
V
[Cijmn(Rm,nδRi,j − Ri,jδRm,n) + Cijklmn(Rl,mnδRi,jk − Ri,jkδRl,mn)]dV

(22)

The proof of the theorem follows from the expressions obtained on the right side in (22).
Then, a variational model of the considered processes is produced by the following

equation:

δI − δW∗ = 0, I = A−U,

U = δ 1
2

∫
V
[CijklmnRl,mnRi,jk + CijmnRm,nRi,j]dV,

δW∗ = 1
2

∫
V
[Cijmn(Rm,nδRi,j − Ri,jδRm,n) + Cijklmn(Rl,mnδRi,jk − Ri,jkδRl,mn)]dV

(23)

Obviously, the statements of the lemma and Theorem 1 can also be generalized to dy-
namic processes for media with generalized properties, in which the generalized kinematic
variables are tensor objects of various ranks and time derivatives of these variables. In this
case, symbolic notation allows us to write the statement of the theorem in the following
simple form:

δU = δ
1
2

t2∫
t1

∫
V

CabQaQbdVdt +
1
2

t2∫
t1

∫
V

[Cab(QbδQa −QaδQb)]dVdt
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Then, the Hamilton–Ostrogradsky principle for describing irreversible dissipative
processes in the mechanics of deformable media (the modified variational principle, the L.I.
Sedov principle) has the form:

δI − δW∗ = 0, I = A−U (24)

δW∗ =
1
2

t2∫
t1

∫
V

[Cab(QbδQa −QaδQb)]dVdt, U = δ
1
2

t2∫
t1

∫
V

CabQaQbdVdt

It is clear that generalizations, in the case of dissipative processes, are defined not
only in the volume but also on the surface of the body (see (3)). The variational linear non-
integrable forms in (22) and (23) will be referred to as dissipation channels. On the other
hand, this value can be associated terminologically with the dissipation function [31]. �

Theorem 2 (on the correspondence of the dissipation channels approach to the second
law of thermodynamics). Assume that the deformation process is completely modeled on the basis
of variational equality (22). Then, the deformation process always occurs with positive dissipation;
i.e., the dissipation function is always greater than zero δW∗ > 0 for irreversible processes. The
expression for the variational form for dissipation channels (23) is invariant with respect to the order
of terms in them.

Proof: Using Equation (23), we find:

δW∗ = δ(A−U) (25)

For the gradient model of the media, the Clapeyron theorem takes place A = 2U.
Then, we receive the following equation from (25):

δW∗ = δ

A− 1
2

∫
V

[CijklmnRl,mnRi,jk + CijmnRm,nRi,j]dV

 = δ(A−U) =
1
2

δ(A) = δU > 0

Any possible dissipation channel for linear media should also be considered. This
dissipation channel is presented up to a constant amplitude, i.e., in the form of a prod-
uct of a dissipative module and the corresponding non-integrable form of generalized
arguments Qa and Qb. A factor in this form is a dissipative modulus. The correct sign
of the dissipative module is determined by any particular problem in such a way that
the simulated process corresponds to the physical meaning. For example, we can con-
sider a closed cycle in the phase space defined by the generalized coordinates Qa and
Qb. Then, the dissipative modulus must be chosen so that the integral corresponding
to the dissipation channel, proportional to the area of the hysteresis loop for the consid-
ered cycle, will be greater than zero. Let us now consider two variational forms with
different orders of the generalized variables Qa and Qb. Assume that the disssipative
modulus in the variational form

∫
[Cab(QbδQa −QaδQb)]dV is chosen so that this form is

positive
∫
[Cab(QbδQa −QaδQb)]dV > 0, which corresponds to the correct description of

the thermodynamic process for any particular problem. Along with this form, we consider
another, formally possible, writing of the variational form as

∫
[Cab(QaδQb −QdδQa)]dV.

However, if we take into account that the dissipative moduli tensor is antisymmetric
Cab = −Cba,

∣∣Cab
∣∣ = ∣∣Cba

∣∣, then we obtain:∫
[
∣∣Cab

∣∣(QaδQb −QdδQa)]dV = −
∫
[Cab(QbδQa −QaδQb)]dV =

=
∫
[
∣∣Cba

∣∣(QbδQa −QaδQb)]dV > 0

The theorem is proved. �
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To summarize, we note that we use the principle of possible displacements as the only
variational principle that allows us to model dissipative processes, and we write it in the
form of separate parts: relatively reversible processes and dissipative processes. Reversible
processes are determined by the variation of the functional (integrable variational form),
and irreversible processes are determined by dissipation channels, which are the non-
integrable variational forms.

4. On Modeling Viscoelastic Processes

Consider an example of modeling viscous effects [31] in the mechanics of solids. The
traditional approach is associated with the introduction of a dissipative function [31] as a
certain potential with respect to deformation velocities in irreversible processes.

Let us show that the algorithm based on the introduction of dissipation channels is
devoid of the fundamental contradictions of the traditional approach associated with the
existence of the possibility of irreversible processes. Following the traditional approach [31],
for the account of viscosity, a dissipative stress tensor σij

′ is introduced, which is determined
in terms of the dissipative function R. The dissipative function R = ηβijβij + (ξ/3)viivjj
for an isotropic body has a form similar to the strain energy density, where vij is the strain
rate tensor, βij is the strain rate deviator tensor, vkk is the spherical strain rate tensor, and
the values η, ξ are viscosity coefficients. It is assumed [31] that for dissipative stress tensor
σij
′, there are relations similar to Green’s formulas σij

′ = ∂R
∂vij

. Note that in our opinion, the
traditional approach is contradictory since it actually asserts the existence of a potential
in irreversible processes. It is believed, in the traditional approach, that viscosity can be
taken into account in the equations of motion by replacing the elastic stress tensor σij in
these equations with the sum σij + σij

′ where σij
′ is the dissipative stress tensor.

Regarding a viscoelastic medium, it can be shown that the method of introducing
dissipation channels in a generalized Sedov’s variational method, being correct, produces a
result that is consistent with the traditional approach [31]. Let us assume that for viscoelastic
processes, the lists of arguments of strain energy for reversible processes and of dissipation
channels for irreversible processes depend on the distortion tensor Ri,j and on the distortion

rate tensor
.
Ri,j.

Since the process under consideration is dynamic by default, the dynamic Lagrangian
depends on the displacement rates

.
Ri. If we let the reversible part of the dynamical

Lagrangian coincide exactly with the corresponding energy density in the classical theory of
elasticity, the variation of the dissipative energy, in accordance with the chosen kinematics,
will have the form:

δW∗ =
1
2

∫
Dijmn(

.
Rm,nδRi,j − Rm,nδ

.
Ri,j)dV

Let us take into account the dissipative part of the deformation energy and write down
the generalized variational equality (24). We can obtain:

δA− δ(U − K)− δW∗ =

= δA +
∫

ρ
.
Riδ

.
RidV −

∫
σijδRi,jdV − 1

2

∫
V

Dijmn(
.
Rm,nδRi,j − Rm,nδ

.
Ri,j)dV =

= δA +
∫

ρ
.
Riδ

.
RidV −

∫
σijδRi,jdV−

−
∫
V

Dijmn
.
Rm,nδRi,jdV + 1

2

∫
V

DijmnRm,nδRi,jdV|t2
t1
=

= δA +
∫

ρ
.
Riδ

.
RidV −

∫
(σij + σij

′)δRi,jdV + 1
2

∫
V

DijmnRm,nδRi,jdV|t2
t1

(26)

where σij
′ = Dijmn

.
Rm,n.

Equation (26) completely proves the assumption made above. Indeed, the first two
terms in the last line of (26) determine the static and dynamic loading of the body under
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consideration, and the third term allows us to state that the equation of motion and the
static boundary condition are written with respect to σij + σij

′.
This proves the statement that the equation of motion, in the case of viscosity, is

written with respect to the sum of elastic and dissipative stresses σij + σij
′, as follows from

the traditional approach based on the introduction of a potential of dissipative function.
The last term determines the initial “boundary” condition, which, as follows from (26),
depends on the dissipative modulus of elasticity Dijmn and Dijmn = −Dmnij.

5. Examples of Modeling Dissipative Processes in Hydrodynamics

As examples of modeling dissipative processes, let us consider, in succession, the
hydrodynamic models of Darcy, Navier–Stokes, and Brinkman. Further, in all examples,
we will assume that the Lagrangian L is the same for the reversible part of the processes.
The Lagrangian provides an introduction to the equations of motion of the term with the
hydrodynamic pressure gradient p,i and the term with the inertial force ρ

..
ri:

L = A + K−U = A− 1
2

t∫
0

∫
V

[(2µ/3 + λ)ri,irj,j − ρ
.
ri

.
ri]dVdt (27)

We can see that the first term in Equation (27) leads to the appearance of a pressure
gradient in the equations of equilibrium. The second term in (27) determines the inertial
forces and is the classical kinetic energy.

5.1. Darcy Hydrodynamics

Let us show that the following dissipation channel, which determines Darcy hydrody-
namics with laminar flow, has the structure:

δU1 =
1
2

t∫
0

∫
V

η

KD (
.
riδri − riδ

.
ri)dVdt (28)

where η is the fluid dynamic viscosity, and KD is the Darcy permeability.
Then, taking into account (27) and (28) and following the generalized variational

principle of Sedov (24), δL− δU1 = 0, we obtain the following variational equation for the
Darcy hydrodynamic model:

t∫
0

∫
V
[− η

KD
.
ri − ρ

..
ri + p,i + pV

i ]δridVdt +
t∫

0

∫
F

(
pF

i − pni
)
δridFdt+

+
∫
V
[ρ

.
ri +

1
2

η

KD ri] δridV|t0 = 0
(29)

Here, the term
t∫

0

∫
V

pV
i δridVdt +

t∫
0

∫
F

pF
i δridFdt = δA defines the external work of

given pressure pV
i , pF

i in the volume V and, consequently, on the surface F.
The first term in Equation (29) provides the equation of motion, the second term

defines the boundary conditions, and the third term allows one to obtain the boundary’s
“initial” conditions. Therefore, the motion equation of a non-stationary Darcy flow has
the form:

η
.
ri = KD(p,i + pV

i − ρ
..
ri) (30)

Let us transform these equations of motion to the form:

.
ri + τD

..
ri =

KD

η
(p,i + pV

i )
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Here, the definition of the relaxation time of fluid flow velocity is introduced naturally:

τD = KDρ/η

We can see that Darcy’s hydrodynamic equation is similar to the Maxwell–Cattaneo
heat equation written in terms of temperature. Fluid flow in a channel and heat propagation
are governed by the same equation. This finding provides a basis for modeling heat
propagation through hydrodynamic experiments and vice versa. Thus, a temperature–
hydrodynamic analogy is established.

Let us consider the case of a steady flow of an incompressible weightless fluid in a flat
capillary under the influence of a pressure difference at the ends of the capillary. In this
case,

..
ri = 0, ri,i = 0, pV

i = 0, and the solution of Equation (30) has the form:

.
rx =

KD

η
p,x, p,x = Const. (31)

This solution (31) corresponds to ideal fluid sliding along the channel wall. Within the
framework of Darcy hydrodynamics, the fluid flow is laminar, without any interaction of
the fluid with the walls of the capillary.

5.2. Hydrodynamics Model of Navier–Stokes

Let us show that the linear hydrodynamic model of Navier–Stokes is determined
using the following dissipation channel:

δU2 =
1
2

t∫
0

∫
V

η(
.
ri,jδri,j − ri,jδ

.
ri,j)dVdt. (32)

In this case, variational Equation (30) leads to the variational model of Navier–Stokes
hydrodynamics:

t∫
0

∫
V

(
η∆

.
ri − ρ

..
ri + p,i + pV

i
)
δridVdt +

t∫
0

∫
F

(
pF

i − pni − η
.
ri,jnj

)
δri}dFdt+

+

[∫
V
(ρ

.
ri − 1

2 η∆ri)δridV +
∫
F

1
2 ηri,jnjδridF

]∣∣∣∣∣
t

0

= 0
(33)

The Navier–Stokes fluid dynamics equations of motion follow from (31) as the Euler
equation:

η∆
.
ri − ρ

..
ri + p,i + pV

i = 0 (34)

For the steady flow of an incompressible, weightless fluid with conditions of complete
adhesion (no velocities at the boundary of contact of fluid with the walls of a flat capillary
at y = ±h), Equation (34) has the following solution:

.
rx =

KD
η

p,x(1− (y/h)2)
h2

KD
, p,x = Const (35)

The solution presented above, (35), satisfies the condition of complete adhesion on the
capillary wall (

.
rx(y = ±h) = 0) and corresponds to Poiseuille’s law.

5.3. Model of Brinkman-Type Hydrodynamics

Let us consider one more hydrodynamic process whose dissipation is defined as the
sum of dissipation channels (28) and (30):

δL− δU1 − δU2 = 0 (36)
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Therefore, taking into account the Equations (27), (28), (32), and (36), we obtain the
following variational equation that completely determines the mathematical model of
Brinkman hydrodynamics:

t∫
0
[
∫
V
(η∆

.
ri − ρ

..
ri −

η
KD

.
ri + p,i + pV

i )δridV +
∫
F
(pF

i − pni − η
.
ri,jnj)δridF]dt+

+

{∫
V
[ρ

.
ri +

1
2 η(−∆ri +

1
KD

ri)]δridV +
∫
F
( 1

2 ηri,jnjδri)dF

}
| t0 = 0.

(37)

From the variational Equation (37), we find the governing equations which are the
equations of motion in Brinkman’s hydrodynamics:

η∆
.
ri −

η

h2
m

.
ri + p,i + pV

i − ρ
..
ri = 0. (38)

In the case of the steady flow of an incompressible, weightless fluid in a flat capillary of
width 2h, the solution of the Equation (38) with boundary conditions for complete adhesion
on the capillary wall has the form:

.
rx =

KD
η

p,x(1−
ch(y/hm)

ch(h/hm)
), p,x = Const (39)

Comparing the solutions corresponding to the Darcy (31), Navier–Stokes (35), and
Brinkman models (39) of hydrodynamics, it can be noted that the Darcy model is charac-
terized by a dissipative parameter KD (Darcy permeability), the Navier–Stokes model is
determined by a dissipative parameter η (dynamic viscosity), and the Brinkman model is
characterized, accordingly, by a combination of two dissipative parameters, KD and η.

The velocity profiles shown in Figure 1 are normalized to the value p,xKD/η, and the
transverse coordinate is normalized to the half-width of the capillary h.
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Figure 1. Normalized velocity profiles.

Darcy model-1, Navier–Stokes model-2 for (h/hm)
2 = h2/KD = 1 , and Brinkman

model-3 for (h/hm)
2 = h2/KD = 1 .

Let us provide a comparative analysis of the velocity profiles for three models: the
Darcy, Navier–Stokes, and Brinkman models. Darcy’s hydrodynamic Equation (30) deter-
mines the velocity profile in the capillary that is constant in transverse coordinates, and the
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Navier–Stokes Equation (34) defines a parabolic velocity profile known as Poiseuille’s law
(35). Neither of these two models of hydrodynamics can explain the presence of boundary
layers in a liquid, and these two models do not allow one to determine the thickness of
these boundary layers that arise near the walls of the capillary. The Brinkman model (38), in
contrast to the Darcy and Navier–Stokes models, makes it possible to describe the boundary
layer and scale effect associated with the characteristic thickness of the liquid boundary
layer hm =

√
KD.

Finally, let us analyze the scale effects for the Brinkman model (see Figure 2). It is
possible to detect the existence and determine the thickness of the boundary layer only
within the framework of Brinkman hydrodynamics (38), when both the first and second
dissipation forms (28) and (32) are taken into account in the hydrodynamic equations (see
Equation (36)). In the Brinkman model, the motion equations have the form of inhomoge-
neous Helmholtz equations describing the boundary layer with a characteristic thickness
equal to hm. The boundary layer near the walls of the capillary and the corresponding
scale effect are taken into account within the framework of the solution obtained above for
the Brinkman hydrodynamics model. This is reflected in the structure of the solution (39)
and is illustrated by the curves presented in Figure 2, which show the normalized velocity
profiles for various values of the dimensionless parameter h/hm.
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As a result, in addition to the traditional interpretation of the Darcy parameter KD as
a characteristic of the permeability of the filter medium, another physical interpretation of
the permeability coefficient can be proposed as the square of the thickness of the “long”
boundary layer characteristic of a given liquid, KD = h2

m.

6. On Variational Models of Dissipative Heat Transfer Processes

Let us consider irreversible heat transfer processes, the great interest in which is
explained by their great applied value. The urgency of the problem of heat transfer
and the interest in it are associated with well-known attempts to modify the classical
equations of heat conduction to eliminate the contradictions of classical parabolic heat
conduction [36–39] as well as with the desire to modify the theory of heat transfer for
modeling size-dependent effects [27,28,40–42].

Heat transfer processes are modeled quite well, thanks to the use of first-principles
approaches and molecular dynamics methods. On the other hand, methods for experi-
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mental evaluation of heat transfer processes are well developed for them. Therefore, it is
quite understandable that, recently, there has been a great interest in the study of coupled
thermomechanical effects, transients, and scale effects in the problem of heat transfer in ho-
mogeneous and inhomogeneous media, including media with a microstructure [27,28,43].
To describe such effects, various modifications of the physical constitutive relations and,
accordingly, the heat balance equations are proposed. These modifications are usually in-
troduced phenomenologically to describe specific observed effects. The great importance of
variational approaches in relation to such irreversible processes cannot be underestimated;
they allow one to obtain energetically consistent mathematical models, regardless of their
complexity, which is very important for modeling coupled physical and mechanical effects.
In this work, the dissipative component of such processes is proposed to be modeled
using the idea of introducing dissipation channels. In the present section we show that the
known modifications of the heat conduction laws and the heat balance equations can be
constructed by introducing various dissipation channels.

Since heat flux is usually introduced as a temperature gradient, we will proceed to
show that it is sufficient to postulate the existence of a scalar potential whose gradient is
proportional to temperature to construct a variational model. Indeed, let us postulate the
existence of the potential R and introduce the following Lagrangian for the variational
problem of a reversible heat transfer process:

L = A + K−U,
A =

∫
V

PV RdV +
∫
F

PFRdF, K = 1
2

∫
V

τ
.
R

.
RdV, U = 1

2

∫
V

kV R,kR,kdV (40)

Here, L is the dynamic Lagrangian, A is the work of the external forces on the intro-
duced arguments in the volume and on the surface, and K, U are the kinetic and potential
energy for the reversible part of the considered processes.

We note that, for brevity—which does not reduce the generality of the proposed
approach—we can omit terms appearing outside the volume integral as a result of inte-
gration by parts which form the boundary and initial conditions. These terms obviously
arise during integration by parts of the variations from the derivatives of arguments. Let
us focus exclusively on the equations of constitutive relations and heat transfer equations.
We additionally assume, in Equation (40), that A = 0 and write the following variational
equation for considered reversible process:

δL =

t∫
0

∫
V

(τ
.
Rδ

.
R− kV R,iδR,i)dVdt =

t∫
0

∫
V

(kV∆R− τ
..
R)δRdVdt + . . . = 0 (41)

Green’s formulas make it possible to establish constitutive relations for a single scalar
force factor and a single vector force factor. These relations can be interpreted as a heat flux
and temperature, respectively:

T = ∂(KV −UV)/∂
.
R = τ

.
R qi = ∂(KV −UV)/∂R,i = −kV R,i (42)

where KV and UV are the kinetic and potential energy densities, respectively, 2KV = τ
.
R

.
R,

2UV = kV R,kR,k, and coefficients kV and τ allow a physical interpretation as the coeffi-
cient of thermal conductivity and the relaxation time for the thermal conductivity flux,
respectively, to be applied to them.

Indeed, excluding the scalar potential R in the Euler equation of the variational equality
(41) using the constitutive relations (42), we obtain (see also [28,44]):

kV∆T − τ
..
T = 0
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Therefore, the proposed variational model produces, for reversible processes, a heat
balance equation of a hyperbolic type (the coefficient kV is treated as a thermal conductivity
coefficient).

To obtain a more complete model of the heat balance equation with the diffusion
mechanism of dissipation, we introduce the following dissipation channel, which we will
refer to as the Fourier dissipation channel:

δU1T =
1
2

t∫
0

∫
V

cV(
.
RδR− Rδ

.
R)dVdt (43)

We have introduced a coefficient cV to determine the last dissipation channel (43). In
what follows, it will be shown that the coefficient cV is a physical interpretation of the heat
capacity coefficient at constant volume.

Remark 1. Note that, in general, we assume that the list of arguments of the dissipative part
coincides with the list of arguments of the Lagrange functional for the invertible part. Bilinear terms
are sources for formulating dissipative channels. Therefore, for example, the dissipation channel (43)
must correspond to a bilinear term 2B R

.
R in the potential energy density for the reversible part of

the functional. Therefore, the full quadratic form in potential energy density must have the form
−A

.
R

.
R + 2B R

.
R + CRR. At the same time, for a specific model, the potential energy density may

not contain terms with modules B and/or C, because in the reversible part, these modules can be
assumed as zero, leaving non-zero corresponding dissipative modules. Hereinafter, we will omit
the discussion of the structure for the potential energy and kinetic energy densities, assuming that
this question, clearly, can always be solved, whether the variational principle of the problem in the
complete formulation is required, including both boundary conditions and “initial” conditions, or
not. For example, for dissipation channels containing higher derivatives of generalized variables,
reversible processes will correspond to the gradient models, which are easily formulated.

The variational formulation of an irreversible process with a dissipation channel (43)
is provided by the following version of Sedov’s variational equality:

δL− δU1T =
t∫

0

∫
V
(τ

.
Rδ

.
R− kV R,iδR,i)dVdt− 1

2

t∫
0

∫
V

cV(
.
RδR− Rδ

.
R)dVdt =

=
t∫

0

∫
V
[−kV R,iδR,i + (cV R + τ

.
R)δ

.
R]dVdt + . . . =

=
t∫

0

∫
V
(kV∆R− τ

..
R− cV

.
R)δRdVdt + . . . = 0

(44)

The second line of the equalities (44) provides the structure of constitutive equations{
qi = −kV R,i

T = cV R + τ
.
R

(45)

and the last line in (44) is the Euler equation of heat balance, written in terms of the potential R:

kV∆R− τ
..
R− cV

.
R = 0.

Taking into account the second Equation (45), we introduce the temperature operator
T = t(R):

t(. . .) = cV(. . .) + τ(. . .),t (46)

and will use it to eliminate the potential R in physical equations (45) and in the Euler
equation.
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Indeed, using a temperature operator t(. . .) (46) on the equation of Hooke’s law for
the heat flux qi in (45), we obtain the Maxwell–Cattaneo heat law [27,28,36–39,45–47]:

cVqi + τ
.
qi = −kV T,i (47)

Assume τ = 0. Then, we can see that the heat conduction law (47) reduces into the
Fourier heat law:

cVqi = −kV T,i

Eliminating the potential R with the help of the operator (46) in the Euler Equation (44),
we obtain the heat balance equation for the Maxwell-Cattaneo thermal conductivity model,
written with respect to temperature [46,47], etc.:

kV∆T − τ
..
T − cV

.
T = 0

Let us introduce a dissipation channel containing higher order derivatives of general-
ized variables (see remarks above):

δU2T =
1
2

t∫
0

∫
V

a2(∆Rδ
.
R−

.
Rδ∆R)dVdt (48)

We can assume that the heat conduction equation for the more general process that is
being considered is determined as the sum of two dissipation channels, (43) and (48), and
the energy density of (40) and (41). Using integration by parts, we write the part of the
variational equation that provides the constitutive relations and the Euler equations (heat
transfer equation):

δL− δU1T − δU2T =

=
t∫

0

∫
V
(τ

.
Rδ

.
R− kV R,iδR,i)dVdt−

− 1
2

t∫
0

∫
V

cV(
.
RδR− Rδ

.
R)dVdt− 1

2

t∫
0

∫
V

a2(∆Rδ
.
R−

.
Rδ∆R)dVdt + . . . =

=
t∫

0

∫
V
[(τ

.
R + cV R− a2∆R)δ

.
R− kV R,iδR,i]dVdt + . . . =

=
t∫

0

∫
V
(a2∆

.
R + kV∆R− τ

..
R− cV

.
R)δRdVdt + . . . = 0

(49)

Constitutive equations of the considered model are provided as follows:{
qi = −kV R,i

T = t(R) = cV R + τ
.
R− a2∆R → t(. . .) = cV(. . .) + τ(. . .),t − a2∆(. . .)

(50)

and the Euler equation has the following view:

(a2∆
.
R + kV∆R− τ

..
R− cV

.
R) = 0 (51)

Using the temperature operator t(. . .) = cV(. . .) + τ(. . .),t − a2∆(. . .) on the consti-
tutive relation for the heat flux, (50) we obtain the Guyer–Krumhansl heat conduction
law [47]:

cVqi + τ
.
qi − a2qj,ji = −kV T,i (52)

Using the temperature operator t(. . .), (50) for the equation, and (51), we find the heat
balance equation corresponding to the Guyer–Krumhansl heat law:

a2∆
.
T + kV∆T − τ

..
T − cV

.
T = 0 (53)
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We considered a more complex model whose dissipative properties are determined by
a combination of dissipation channels (43), (48), and the following channel:

δU3T =
1
2

∫
V

b (
.
R,jδR,j − R,jδ

.
R,j)dV (54)

The variational model, in this case, is determined by the variational equality:

δL− δU1T − δU2T − δU3T = 0 (55)

It is easy to verify that the substitution of the relations (43), (48), (54) in (55), and
integration by parts leads, in this case, to the following variational equation:

δL− δU1T − δU2T − δU3T =

=
∫
V
(τ

.
Rδ

.
R− kV R,iδR,i)dV − 1

2

∫
V

cV(
.
RδR− Rδ

.
R)dV−

− 1
2

∫
V

a (∆Rδ
.
R−

.
Rδ∆R)dV − 1

2

∫
V

b (
.
R,jδR,j − R,jδ

.
R,j)dV + . . . =

=
∫
V
[(cV R + τ

.
R− a ∆R)δ

.
R− (kV R,i + b

.
R,i)δR,i]dV =

=
t∫

0

∫
V
[(a + b)∆

.
R + kV∆R− τ

..
R− cV

.
R]δRdVdt + . . . = 0

(56)

It follows from constitutive Equation (56) that the considered model can be interpreted as: qi = −kV R,i − b
.
R,i

T = t(R) = cV R + τ
.
R− a∆R

(57)

The heat transfer equation in terms of the potential R is written as follows (Euler’s
equation in (56)):

(a + b)∆
.
R + kV∆R− τ

..
R− cV

.
R = 0 (58)

Using the temperature operator t(R) = cV R + τ
.
R− a ∆R on the first Equation (57),

we can exclude the potential R and obtain the Jeffrey-type heat conduction law [43,47]:

cVqi + τ
.
qi − a∆qi = −kV T,i − b

.
T,i (59)

The last equation for the steady state case has the form:

cVqi − a∆qi = −kV T,i

It does not reduce to Fourier’s law for steady state. Notably, the same result was
established in [28].

Eliminating the potential R with the help of the constitutive equation for the tempera-
ture, i.e., using the temperature operator t(. . .) on (58), we obtain a heat transfer equation
with the Jeffrey heat law [48]:

(a + b)∆
.
T + kV∆T − τ

..
T − cV

.
T = 0 (60)

Notably, in models (49) and (56), Euler’s equations (the heat transfer Equations (53) and
(60)) actually coincide in the terms of the scalar potential R; however, the laws of heat con-
duction and, in general, mathematical formulations are different (compare (52) and (59)).

Obviously, using the technique of introducing dissipation channels, it is possible to
establish the variants of high-order theories of heat conduction, not only in relation to
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material coordinates but also in relation to time. Indeed, we can assume that the dissipative
model is constructed as a linear combination of dissipation channels:

δU1T + δU2T + δU3T + δU4

where δU4 = 1
2

∫
V

c (
..
Rδ

.
R−

.
Rδ

..
R)dV.

For this case, the generalized thermal conductivity law and heat balance equation can
be found as follows:

cVqi + τ
.
qi + c

..
qi − a ∆qi = −kV T,i − b

.
T,i

and
(a + b)∆

.
T + kV∆T − c

...
T − τ

..
T − cV

.
T = 0

Note that if, in particular, a + b = 0 in the last equation, then we arrive at an equation
of the form:

kV∆T − c
...
T − τ

..
T − cV

.
T = 0 (61)

In [49], it was shown that heat transfer Equation (61) provides the possibility of
predicting, with high precision, that the wave mechanism of heat transfer emerges at low
temperatures (ballistic propagation of heat through solids) and of predicting size-dependent
effects in thermal conductivity processes.

Remark 2. Note that the heat conduction equations require a certain revision concern to the heat
flux multiplier: this multiplier must be the specific heat coefficient at a constant volume in order to
obtain the correct heat balance equations.

7. Conclusions

We developed a variational principle which makes it possible for the considered model
of a reversible process (using a Lagrangian) to add dissipative models by introducing the
necessary number of dissipation channels. In particular, examples of formulations of the
Darcy, Navier–Stokes, and Brinkman hydrodynamic models were considered. Each of
these models is determined by same Lagrangian for the reversible part of process, but with
a different set of dissipation channels. In the Brinkman hydrodynamic model, a synergistic
effect was discovered which is associated with the simultaneous consideration of the Darcy
and Navier–Stokes dissipation channels. This effect explains the existence of a boundary
layer in a liquid and the scale effect associated with the thickness of the boundary layer.

Another example of modeling dissipative processes, which may be attractive for
applied purposes, is a sequence of variational models of heat transfer processes. All heat
conduction laws are obtained as compatibility equations which were received, with the
exception of thermal potential, from the equations of Hooke’s law for temperature and heat
flow. The laws of thermal conductivity of Fourier, Maxwell–Cattaneo, Guyer–Krumhansl,
and Jeffrey are obtained using a proposed universal approach. For different models,
different dissipation channels are established, each of which determines the original model
of thermal conductivity.
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