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Abstract: The time evolution of the continuous measure of symmetry for a system built of three
bodies interacting via the potential U(r) ∼ 1

r is reported. Gravitational and electrostatic interactions
between the point bodies were addressed. In the case of a pure gravitational interaction, the three-
body-system deviated from its initial symmetrical location, described by the Lagrange equilateral
triangle, comes eventually to collapse, accompanied by the growth of the continuous measure of
symmetry. When three point bodies interact via the repulsive Coulomb interaction, the time evolution
of the CMS is quite different. The CMS calculated for all of the studied initial configurations of the
point charges, and all of their charge-to-mass ratios, always comes to its asymptotic value with time,
evidencing the stabilization of the shape of the triangle, constituted by the interacting bodies. The
influence of Stokes-like friction on the change in symmetry of three-body gravitating systems is
elucidated; the Stokes-like friction slows the decrease in the CMS and increases the stability of the
Lagrange triangle.

Keywords: three-body problem; Lagrange triangle; continuous measure of symmetry; gravity;
Coulomb interaction; asymptotic value; friction

1. Introduction

In the three-body problem, three bodies/masses move in 3D space due to their gravi-
tational interactions, as described by Newton’s law of gravity [1]. Solutions to this problem
require that the future and past motions of the bodies be uniquely determined based
solely on their present positions and velocities [1,2]. In the general case, the motions of
the interacting bodies take place in three dimensions (3D), and there are no restrictions
on their masses nor on their initial conditions. This problem is referred as “the general
three-body problem” [1–3]. Unlike two-body problems, no general closed-form solution of
the three-body problem exists. The behavior of three-body dynamical systems is chaotic
for most initial conditions, and numerical methods are generally required for deriving the
trajectories of the involved masses. In a restricted number of special configurations of the
bodies, the exact solutions of the problem do exist. A special case of the three-body problem
was analyzed by Euler [1–3]. Euler considered three bodies of arbitrary (finite) masses
and placed them along a straight line. Euler demonstrated that the bodies would always
stay on the same straight line for suitable initial conditions, and that the line would rotate
about the center of mass of the system, resulting in periodic motions of all three bodies
along ellipses [1–3]. Lagrange considered an equilateral triangle configuration of the three
bodies, and demonstrated that, in this case, the bodies also move along elliptic orbits [1–3].
In the Lagrange solution, the initial configuration is an equilateral triangle and the three
bodies are located at its vertices. We demonstrate that the “Lagrange equilateral triangle”
enables the straightforward introducing of the continuous measure of symmetry to the
analysis of the three-body problem. Lagrange proved that for suitable initial conditions,
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the triangular configuration is maintained, and that the trajectories of the three bodies
remain elliptical within the motion [1–3]. This great progress in the development of the
three-body problem is related to the fundamental studies by Henri Poincaré [4]. Poincaré
and Bendixson studied the conditions giving rise to the existence of periodic solutions in
the three-body problem [4].

The three-body problem remains one of the “evergreen” problems of physics. Novel
ideas were successfully applied for the solution of the problem. In particular, deep artificial
neural networks (abbreviated as ANNs) were involved in the solution of the problem [5]. It
was demonstrated that for computationally challenging regions of phase space, a trained
ANN can replace existing numerical solvers, enabling the fast and scalable simulations of
many-body systems [5]. The relativistic Pythagorean three-body problem was addressed
recently (within this problem, three bodies with masses 3, 4, and 5 are positioned at rest in
a planar, right-angled triangle at positions (1, 3), (−1, −2), and (1, −1), respectively) [6].
Dissipative effects, through gravitational wave emission, were considered [6]. A statistical,
approximate solution of the bound, nonhierarchical three-body problem was reported
(instead of predicting the actual outcome, the authors calculated the probability of any
given outcome of interactions between the bodies) [7]. Periodic collisionless equal-mass
free-fall orbits were elucidated [8].

Our paper presents a new approach to the three-body problem, based on the appli-
cation of the continuous measure of symmetry (abbreviated as CMS) to the problem. It
seems that the first successful symmetrization of the equations of the three-body problem
was performed by Broucke and Lass in 1973 [9]. It was demonstrated that the equations
of the general three-body problem take on a very symmetric form when one considers
only their relative positions, rather than their position vectors relative to some given coor-
dinate system [9]. From these equations one quickly derives some well-known classical
properties of the three-body problem, such as the first integrals and the equilateral triangle
solutions [9]. We demonstrate the possibility of applying the recently introduced CMS to
the analysis of the three-body problem. The symmetry is usually considered within a binary
paradigm; simply and roughly speaking, symmetry is present or absent in a given physical
system. This YES/NO binary paradigm has been broken by introducing the continuous
measure of symmetry based on the symmetry distance of the shape, which was introduced
by Zabrodsky, Peleg, and Avnir in the 90s [10–14]. The symmetry distance of the shape is
defined as the minimum mean square distance required to move the points of the original
shape in order to obtain a symmetrical shape [10–15]. Successful applications of the CMS
to the analysis of physical problems is demonstrated [16–19].

2. Materials and Methods

Computer simulations were carried out with the software “Taylor Center”, version 42;
http://taylorcenter.org/Gofen/TaylorMethod.htm [20,21], accessed on 1 January 2023.

This software is an advanced ordinary differential equations solver implementing the
modern Taylor integration method (Automatic Differentiation) in a multi-functional user-
friendly environment with unique features such as graphing and real-time animation of
the trajectories in 2D and 3D stereo, and with the highest number of significant digits—the
Intel extended 10 byte format with 63-bit mantissa (19 decimal digits). The demo version of
the “Taylor Center” software is free of charge [20,21].

3. Results and Discussion
3.1. The Continuous Measure of Symmetry and Its Calculation

Let us become acquainted with the continuous measure of symmetry, as it was defined
and developed by Zabrodsky, Peleg, and Avnir [10–14]. Consider a non-symmetrical shape

consisting of p points Mi,
(
i = 1, 2 . . . np

)
and a given symmetry group, denoted as

∼
G. The

continuous symmetry measure, labeled CMS and denoted as S(
∼
G), is determined by the

minimal average square displacement of the points, Mi, that the shape has to undergo
in order to acquire the prescribed G-symmetry; seen as the minimum effort required to

http://taylorcenter.org/Gofen/TaylorMethod.htm
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transform a given shape into a symmetrical shape. Rigorously speaking, the symmetry

measure of the
∼
G-symmetry point group’s content S(

∼
G) of an object is a function of the

distance between the original structure and a searched
∼
G-symmetric reference structure; of

the same point objects and connectivity, and which is the closest to the original distorted
structure [10–19].

Assume that the
∼
G-symmetrical shape emerges from the set of points M̂i. Since the set

M̂i is established, a CMS is defined as

S(
∼
G) =

1

np
∼
R

2 ∑np
i=1

∣∣Mi − M̂i
∣∣2, (1)

where
∼
R is the distance between the center of mass to the vertex of the closest equilateral

triangle, which is used for the normalization of the CMS (the squared values in Equation (1)
supply a function that is isotropic, continuous, and differentiable; it should be mentioned

that after normalization 0 < S(
∼
G) < 1 is true). The continuous measure of symmetry

defined using Equation (1) is a dimensionless value. At the first step, the points of the

nearest shape demonstrating the
∼
G-type symmetry must be established. An algorithm

that identifies the set of points M̂i that constitute this symmetrical shape was introduced
in [6–11]. Figure 1 depicts an equilateral triangle M01M02M03 representing the symmetric
shape that corresponds to the given non-symmetric triangle M1M2M3.
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Figure 1. Given non-symmetric triangle M1 M2 M3 (a). The equilateral triangle M01 M02 M03

represents the symmetrical shape corresponding to the non-symmetric triangle M1 M2 M3.
(b) M01 M02 M03 is the equilateral triangle. Calculation of the CMS where point O is the common
centroid shown in (c).

The transformation of the non-symmetric triangle M1M2M3 to the symmetric equilat-
eral triangle M01M02M03 is performed as follows: vertex Mi is rotated counterclockwise
around the common centroid O of triangle M1M2M3 by 2π(i−1)

3 radians (one vertex of
triangle M1M2M3 remains fixed); thus, triangle M1M′2M′3 emerges. Next, the location of
the centroid O′ of the intermediate triangle M1M′2M′3 is determined. Centroid O′ is then
rotated clockwise around the centroid O by − 2π(i−1)

3 radians (for the details see [14]).
Therefore, the equilateral triangle M01M02M03 shown in Figure 1 represents the

closest symmetrical shape to the pristine non-symmetrical triangle M1M2M3 [6–14]. Since
the set M̂i is established, the CMS is calculated using Equation (1) (the importance of
the normalization procedure should be emphasized). The equilateral Lagrange triangle
supplying the solution to the three-body problem hints to the effectiveness of the use of
CMS for the solution of the three-body problem [1,2].
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3.2. Symmetrized Equations of Motion for the Three-Body Problem

Consider the three-body problem for a set of three gravitating masses mi, i = 1 . . . 3.
In the center-of-mass frame, the equations of motion of the point gravitating masses appear
as follows:

→..
xi = −Gmj

→
x i −

→
x j∣∣xi − xj
∣∣3 − Gmk

→
x i −

→
x k

|xi − xk|3
, i, j, k = 1, 2, 3), (2)

where xi, xj , xk(i, j, k = 1 . . . 3) are the coordinates of the masses in the center-of-mass

frame defined by ∑i=3
i=1 mi

→
x i=0; d

dt ∑i=3
i=1 mi

→
x i=0, as illustrated in Figure 2, and G is the

gravitational constant.
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Figure 2. Location of gravitating masses mi, i = 1 . . . 3 in the center-of-mass frame, CM is the center
of mass of the system [9]; blue vectors depict

→
x i; red vectors depict the vectors of the relative locations

of the masses
→
r i.

Broucke and Lass suggested the procedure of symmetrization of Equation (2), with
the use of the vectors of the relative locations of the masses,

→
r i =

→
x j −

→
x k (vector

→
r i

corresponds to the side opposite the apex of the triangle occupied by mass mi, see Figure 2).
Equation (3) is obviously true for vectors

→
r i [9]

∑3
i=1
→
r i = 0 (3)

Introducing vectors
→
r i yields the equations of motion re-shaped and symmetrized as

follows:
→..
r i = −G

(
M
→
r i

r3
i
−mi

→
R

)
, (4)

where M = ∑3
i=1 mi is the total mass of the system and vector

→
R is defined by Equation (5):

→
R = ∑3

i=1

→
r i

r3
i

, (5)

The first term in Equation (4) is identical to that appearing in the standard two-body
Kepler problem, whereas the second term in Equation (4) generates the complexity of
the evergreen three-body problem. The Lagrange solution of the problem corresponds

to the case when r1 = r2 = r3 takes place. In this situation
→
R = 0 is true. Thus, the three-

body problem is reduced to the two-body one, and the gravitating masses remain in the
vertices of an equilateral triangle. The triangle may change its size and rotate; gravitating
masses are moving along ellipses with different eccentricities; however, they are oriented
at different angles to one another [22]. The motion of the gravitating masses in this case
is periodic, with the same period for all of the masses. It should be emphasized that the
aforementioned Lagrange solution remains stable only if one of the masses is much larger
than other two [23,24].
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3.3. Extension of the Problem to the Coulomb Interaction

Consider the system of three point charges qi, i = 1, 2, 3 possessing the corresponding
masses mi, i = 1, 2, 3. For a sake of simplicity, we assume that the motion of the point
charges is slow; thus, the electrodynamic interaction between the charges may be neglected
and only the electrostatic and gravitational interactions between the bodies are essential.
We consider the case in which the initial velocities of the interacting bodies are zero; thus,
our approach will be true at least at the initial stage of the motion, when the velocities of
the bodies are still small (very roughly speaking, it is true when v

c � 1 is true, where v is
the velocity of the charge and c is the velocity of light in a vacuum). The vector equations
of motion in this non-relativistic case appear as follows:

→..
x i = −(Gmj −

K
mi

qiqj)

→
x i −

→
x j∣∣xi − xj
∣∣3 − (Gmk −

K
mi

qiqk)

→
x i −

→
x k

|xi − xk|3
, (6)

where K is the Coulomb constant. To make the problem even more simple, we also
assume Gmj � K

mi
qiqj and, thus, the gravitational interaction is negligible (obviously, this

case has nothing to do with celestial mechanics); this simple case yields interesting and
understandable results. Hence, the equation of motion is re-written as follows:

→..
x i =

K
mi

qiqj

→
x i −

→
x j∣∣xi − xj
∣∣3 +

K
mi

qiqk

→
x i −

→
x k

|xi − xk|3
(7)

The symmetrical coordinates introduced and discussed in detail in the previous section
yield, in turn, Equation (8) [9]:

→..
r i = K

[(
qi
mi

qj +
qj

mj
qi +

qk
mk

qk

)→
r i

r3
i
− qi

(
qi
mi

→
r j

r3
j
+

qj

mj

→
r i

r3
i
+

qk
mk

→
r k

r3
j

)]
, i, j, k = 1 . . . 3, (8)

In the case where q1
m1

= q2
m2

= q3
m3

= µ takes place, we obtain this from Equations (8)
and (9), which resembles Equation (4), namely:

→..
r i = Kµ

(
Q
→
r i

r3
i
− qi

→
R

)
, (9)

where Q = ∑3
i=1 qi is the total electrical charge of the system and vector

→
R is defined

using Equation (5). Equation (9) immediately leads to the conclusion that the solution of
the three-body problem, similar to that suggested by Lagrange, exists in the case when
the interaction between the bodies is the pure electrostatic/Coulomb one. The Lagrange
triangle appears as a solution of the three-body problem when the electrical charges of the
same sign are initially placed in the vertices of an equilateral triangle, and the condition
q1
m1

= q2
m2

= q3
m3

= µ = const takes place.

3.4. Considering Friction and Dissipative Processes

Now we consider the impact of the dissipative forces on the time evolution of the CMS.

Assume that the Stokes-like friction force
→
F f r acts on the interacting bodies, i.e.,

→
F f r = −bi

→.
x i takes place, where bi is the friction factor and

.
xi is the velocity of i-th body.

Generally speaking, the friction factors may be various for the different interacting bodies.
Equation (6), considering the friction force, yields Equation (10):

→..
x i = −(Gmj −

K
mi

qiqj)

→
x i −

→
x j∣∣xi − xj
∣∣3 − (Gmk −

K
mi

qiqk)

→
x i −

→
x k

|xi − xk|3
− bi

mi

→.
x i, (10)
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Thus, Equation (2) is re-shaped as follows:

→..
x i = −Gmj

→
x i −

→
x j∣∣xi − xj
∣∣3 − Gmk

→
x i −

→
x k

|xi − xk|3
− bi

mi

→.
x i, (11)

Vector
→..
r i =

→..
x j −

→..
x k is re-written as Equation (12) (similarly to Equation (4)):

→..
r i = −G

(
M
→
r i

r3
i
−mi

→
R

)
−
(

bj

mj

→.
x j −

bk
mk

→.
x k

)
, (12)

We assume b1/m1 = b2/m2 = b2/m2 = const = γ; thus, the second term in Equation (12)
appears as follows: (

bj

mj

→.
x j −

bk
mk

→.
x k

)
= γ

(→.
x j −

→.
x k

)
= −γ

→.
r i, (13)

and we derive Equation (14), resembling Equation (4). However, considering the dissipative
friction forces:

→..
r i = −G

(
M
→
r i

r3
i
−mi

→
R

)
+ γ

→.
r i, (14)

when the bodies are initially located in the vertices of the equilateral triangle
→
R = 0, and

consequently we derive
→..
r i = −GM

→
r i

r3
i
+ γ

→.
r i, (15)

In parallel to Equation (14), we obtain, for the Coulomb interactions, Equation (16):

→..
r i = Kµ

(
Q
→
r i

r3
i
− qi

→
R

)
+ γ

→.
r i, (16)

which resembles Equation (15) for the equilateral Lagrange triangle. Equation (15) is the
second-order nonlinear ordinary differential equation. The exact solution of the three-body
problem, considering the dissipation forces and similar to that suggested by Lagrange,

exists only when the condition b1
m1

= b2
m2

= b3
m3

is fulfilled and the condition
→
R = 0 takes

place. For a sake of simplicity, we consider in our treatment the case where b1 = b2= b3 = b
is true.

3.5. The Three-Body Problem and the Continuous Measure of Symmetry

The three-body problem in its general case has no analytical solution. We studied,
with the computer simulations, the evolution of the continuous measure of symmetry
of the three-body systems interacting via the Newtonian–Coulomb potential U(r) ∼ 1

r .
We also considered the situations in which friction is present [7]. The initial location of
the point bodies/charges was slightly shifted from their initial configuration, constituting
the equilateral triangle (the so-called “Lagrange triangle”). Computer simulations were
carried out with the software “Taylor Center”, version 42; http://taylorcenter.org/Gofen/
TaylorMethod.htm [20,21], accessed on 1 January 2023.

Gravitational and Coulomb interactions were considered. In the first series of com-
puter experiments, the displacement of bodies from their initial location was 5%, as shown
in Figure 3. In the second series of the numerical experiments, the mass-to-charge ratio of
the interacting particles was varied. In the third series of simulations, the location of the
particles and their charge-to-mass ratio were varied simultaneously.

http://taylorcenter.org/Gofen/TaylorMethod.htm
http://taylorcenter.org/Gofen/TaylorMethod.htm
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Figure 3. Deformation of the Lagrange triangle adopted in the numerical simulations. Point masses
mi, i = 1 . . . 3 are initially located in the vertices of the equilateral triangle. Diplacement δ1 = 0.05
corresponds to the displacement of the mass m1 to the right (in the positive direction of axis x),
displacement δ2 = −0.05 corresponds to the displacement of the mass m1 to the left (in the negative
direction of axis x).

We start from the first series of computer experiments, in which pure gravitational
interaction between the bodies is assumed. The displacement of the bodies from their initial
location is illustrated in Figure 3; we shift the bodies along the coordinate axes. δ1 = 0.05
corresponds to the displacement of the mass m1 to the right (in the positive direction of
axis x), whereas δ2 = 0.05 corresponds to the displacement of the mass m1 to the left (in the
negative direction of axis x).

Simple combinatory analysis demonstrates that there exists in total 64 possibilities
of the distortion of the initial equilateral triangle, when locations of all of the vertices are
perturbed; we do not report here the exhaustive analysis of all of the possible deformations
of the Lagrange triangle, as we are focused on some of the illustrative examples of the
general three-body problem. In all of the cases, the continuous measure of symmetry
(see Section 2) was taken as a dynamic variable, i.e., S(t) was calculated, quantifying
the distortion of the initial equilateral Lagrange triangle under the motion governed by
gravitational or Coulomb forces (see Equations (4) and (9)). Consider Example #1, in which
three bodies interact via a pure gravitational interaction, and x1 = 1.05 is assumed, as
shown in Figure 3 (G = 1 is assumed for the sake of simplicity). The initial positions of
the gravitating bodies are m1(1.05, 0), m2(cos(π/3), sin(π/3)), and m3(cos(2π/3), sin(2π/3));
the initial velocities are zero and friction is absent, i.e., b = 0. The motion of two sets of
dimensionless masses was analyzed, namely: m1 = m2= m3 = 1 and m1 = 3, m2 = 4, m3 = 5.
The results of the calculations for both sets of masses are supplied in Figure 4.

Figure 4 reveals a number of very important qualitative conclusions: (i) Irrespective of
the interrelation between the gravitating masses, the distortion of the Lagrange triangle
destroys the symmetry of the systems and results in the gravitational collapse of the system;
the situation CMS = 1 corresponds to the disappearance of the one of the sides of the
triangle, as will be shown below. (ii) The destruction of the symmetry is not immediate;
systems demonstrate a certain stability until some threshold value of distortion. The
calculation of this value needs additional physical and computational insights, which are
not covered in the present paper. It is noteworthy that there exists a 3D extension of the
Lagrange triangle, and it is the Lagrange tetrahedron, where four gravitating bodies are
located at its vertices.

Now consider the impact of friction on the time evolution of the CMS. The initial
positions of the gravitating bodies are m1(1.05, 0), m2(cos(π/3), sin(π/3)), and m3(cos(2π/3),
sin(2π/3)); the initial velocities are zero; the dimensionless friction factor is varied in the
range 0 < b < 10. The motion of the two sets of dimensionless masses is analyzed, namely:
m1 = m2= m3 = 1. The results of the calculations for both sets of masses are supplied
in Figure 5.
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Figure 4. Time evolution of the continuous measure of symmetry (CMS) for a pure gravitational
interaction of masses initially located in the vertices of the equilateral Lagrange triangle. Initial
distortion corresponding to x = 1.05 is adopted. Inset (A) depicts the time evolution of the CMS
until the gravitational collapse of the three-body gravitating system; inset (B) demonstrates the initial
stage of the motion. Initial velocities are zero. The blue curve corresponds to the set of masses
m1 = m2= m3 = 1; the red curve corresponds to the set of masses m1 = 3, m2 = 4, m3 = 5; friction is
absent, b = 0. The orange box, shown in inset (A) indicates the initial stage of motion, shown in more
detail in inset (B).
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Figure 5. Impact of friction on the time evolution of CMS is shown. A pure gravitational interaction
of masses initially located in the vertices of the equilateral Lagrange triangle is assumed. Initial
distortion corresponding to x = 1.05 is adopted. The set of masses are m1 = m2= m3 = 1; the friction
factor is varied in the range 0 < b < 10.

Again, we conclude that the distortion of the Lagrange triangle destroys the symmetry
of the system and results in the gravitational collapse of the system; and this remains true in
the presence of friction. An increase in friction shifts the degradation of symmetry in tim; in
other words, friction, as it may be expected, increases the stability of the Lagrange triangle.

3.6. The Coulomb Interaction, the Three-Body Problem, and the Continuous Measure of Symmetry

Now we consider the slightly deformed Lagrange triangle (x = 1.05 and x = 0.95 is
true for one of the vertices). The point charges qi, i = 1..3 are located in the vertices of the
triangle; the initial velocities of the charges are zero. We address the situation in which
electrodynamic interactions are neglected, and the Coulomb interactions dominate over



Symmetry 2023, 15, 2153 9 of 15

gravitational ones (the Coulomb constant is equaled to unity). The masses of the bodies
and their charges are m1 = m2= m3 = 1; q1 = q2 = q3 = 1; and friction is absent, i.e., b = 0. The
equations of motion are supplied by Equation (9). The results of the computer simulations,
which establish the time evolution of the CMS, denoted S(t), are supplied in Figure 6.
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Figure 6. Time evolution of the continuous measure of symmetry calculated for the system of the
identical point charges located in the vertices of the distorted Lagrange triangle. The red line depicts
the time evolution of CMS for x = 1.05; the blue line shows the time evolution of CMS for x = 0.95.
The initial velocities of the point charges are zero; the masses are equal.

The time evolution of CMS demonstrates, in both of the cases, an identical behavior,
which may be described as follows: the systems start with a non-zero value of the CMS
(the initial Lagrange triangle is distorted); afterwards, the charges came to the vertices of
the equilateral triangle (CMS equals zero, see Figure 6), and afterwards the CMS grew
and attained an asymptotic value. This result is intuitively clear: consider that only the
repulsive Coulomb forces act between the point charges; these forces are weakened over the
course of motion of the charges; thus, the shape of the triangle constituted by the charges is
stabilized, and consequently the CMS attains its asymptotic value. This non-obvious result
is of primary importance, enabling the qualitative characterization of the configuration of
the moving point charges. The charges come to the vertices of the equilateral triangle with
non-zero velocities, and thus, they pass these points and continue to move, driven by the
repulsive Coulomb forces, finally obtaining the configuration quantified by the asymptotic
value of the CMS. We will demonstrate that the asymptotic behavior of the CMS is observed
for various interrelations between the charges and masses of the interacting bodies.

Consider now the situation in which m1 >> m2= m3 and q1 >> q2 = q3 takes place. These
conditions are similar to those inherent for the stable Lagrange solution of the three-body
problem [1,2]. The time evolution of the continuous measure of symmetry for this case is
depicted in Figure 7.
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Figure 7. Time evolution of the continuous measure of symmetry calculated for the system of the
point charges located in the vertices of the distorted Lagrange triangle. m1 = 1000; m2 = m3 = 1;
q1 = 1000; q2 = q3 = 1; and friction is absent, i.e., b = 0 is adopted. The red line depicts the time
evolution of CMS for x = 1.05; the blue line shows the time evolution of CMS for x = 0.95. Initial
velocities of the point charges are zero.
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In this situation, the initial CMS is decreased over the course of motion of the electri-
cally charged bodies, and it comes to its saturation value depending on the initial distortion
of the Lagrange triangle, as shown in Figure 7. Again, only repulsive Coulomb interactions
are present in the system; the Coulomb repulsion is decreased with time and eventually
the CMS attains its saturation value, quantifying the distortion of the initial triangle.

We also varied, in our computer experiments, the charge of one of the point masses
(q1 = 0.95, q1 = 1.05 were tested numerically). In these experiments the charges were
placed in the vertices of the undistorted equilateral Lagrange triangle. The time evolution
of the CMS is shown in Figure 8.
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is distorted); afterwards, the charges come to the vertices of the equilateral triangle with 

Figure 8. Time evolution of the continuous measure of symmetry calculated for the system of the point
charges located in the vertices of the non-distorted equilateral Lagrange triangle. m1 = m2 = m3 = 1
is assumed; the red line corresponds to q1 = 1.05; the blue line corresponds to q1 = 0.95; friction is
absent, i.e., b = 0 is adopted. The initial velocities of the point charges are zero.

In this case, the initial value of the CMS is zero (the initial Lagrange triangle is
equilateral). The value of the CMS grows over the course of motion of the charges and
comes to saturation, as shown in Figure 8.

We also tested the situation in which the initial Lagrange triangle was slightly distorted
and the charge-to-mass ratio of one of the charges was also slightly different from that
prescribed for the other charges. The time evolution of the CMS in this case is shown
in Figure 9.
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Figure 9. Time evolution of the continuous measure of symmetry calculated for the system of the
point charges located in the vertices of the distorted Lagrange triangle. m1 = m2= m3 = 1; q1 = 0.95/1.05;
q2 = q3 = 1 is assumed. The red line depicts the time evolution of CMS S(t) for x1 = 1.05, q1 = 1.05;
the blue line shows the time evolution of CMS for x1 = 0.95, q1 = 0.95; friction is absent, i.e., b = 0 is
adopted. The initial velocities of the point charges are zero.

The time evolution of the CMS in this case is similar to that shown in Figure 6,
namely, the systems start with a non-zero value of the CMS (the initial Lagrange triangle
is distorted); afterwards, the charges come to the vertices of the equilateral triangle with
non-zero velocities (CMS equals zero, see Figure 9), and afterwards the CMS grows with
time and attains its asymptotic value.
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Now we perturb the geometrical symmetry and the charge-to-mass ratio for different
vertices of the initial Lagrange triangle, namely, we assume x1 = 1.05 and q2 = 0.95 and
x1 = 0.95 and q2 = 1.05; friction is absent, b = 0. The temporal evolution of the CMS is
illustrated in Figure 10.
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Figure 10. Time evolution of the continuous measure of symmetry calculated for the system of
the point charges located in the vertices of the distorted Lagrange triangle. m1 = m2= m3 = 1;
q1 = q3 = 1 is assumed. The red line corresponds to x1 = 1.05, q2 = 0.95; the blue line corresponds to
x1 = 0.95, q1 = 1.05. The initial velocities of the point charges are zero.

The time evolution of the CMS resembles qualitatively the behavior of the CMS
depicted in Figure 9; however, the CMS does not attain zero as its minimal value, as it
recognized from Figure 10.

The qualitative description of the change in the shape of the initial Lagrange triangle
is illustrated in Figure 11, which supplies the main types of the time evolution of the
Lagrange triangle.
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Figure 11. Qualitative description of the time evolution of the Lagrange triangle’s shape. Arrows
indicate the direction of the bodies’ motion. (A) The pure gravitational interaction is illustrated. The
initial location of the bodies corresponds to that depicted in Figure 2. Gravity causes the deformation
of the triangle, resulting in the eventual disappearing of one its sides corresponding to CMS → 1.
(B) The time evolution of the Lagrange triangle under Coulomb interactions, corresponding to the
numerical experiments illustrated in Figures 6 and 8, is depicted. CMS grows with time and comes to
its saturation value. (C) The time evolution of the Lagrange triangle under the Coulomb interactions,
corresponding to the numerical experiments illustrated in Figure 7, is shown. CMS is decreased with
time and comes to its asymptotic value. Arrows show the directions of the motion of the bodies. (1),
(2), (3), (4) are the consequent stages of deformation of the Lagrange triangle.
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Now we consider the situation already addressed in Figure 8, where the Stokes-like
friction is taken into account. The time evolution of the CMS is shown in Figure 12.
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Figure 12. Time evolution of CMS is depicted. Friction is taken into account. The situation, similar to
that addressed in Figure 8, is illustrated, however, the friction factor is varied in the range 0.2 < b < 1.
m1 = m2 = m3 = 1 is assumed; q1 = 1.05.

The time evolution of the continuous measure of symmetry was calculated for the
system of the point charges located in the vertices of the non-distorted equilateral Lagrange
triangle. The friction factor was varied in the range 0.2 < b < 1. We recognize, from
Figure 12, that friction decreases the saturation value of the CMS, and this is intuitively
well expected. It is also noteworthy that the increase in friction decreases the saturation
values of the CMS; in other words, friction promotes more symmetrical eventual shapes in
the addressed systems.

Now, similarly to the case addressed in Figure 9, we perturb the geometrical symmetry
and, in parallel, we perturb the charge-to-mass ratio for different vertices of the initial
Lagrange triangle, namely we assume m1 = m2= m3 = 1, x1 = 1.05, and q1 = 1.05.

The friction factor is varied in the range 0 < b < 2. The temporal evolution of the
CMS in this case is illustrated in Figure 13. In this case, two ranges of the friction factor are
distinguished: namely, when 0 < b < 0.1, the saturation value of the CMS is decreased
with the growth of b; in contrast (see Figure 13A), when 0.25 < b < 2, the saturation
value of CMS is increased with the growth of b (see Figure 13B). The interpretation of this
observation calls for additional insights.

Perhaps the most surprising and intriguing result was obtained for the friction factor
restricted within the range of 0 < b < 0.12. This result is illustrated in Figure 14.

Somewhat surprisingly, for 0 < b < 0.12, the twin well-shaped time dependence of
the CMS was observed, as depicted in Figure 14. This means that the perturbed triangle
formed by the bodies twice comes to the equilateral Lagrangian shape. The origin of the
twin well-shaped curve, depicted in Figure 14, calls for additional physical insights.
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Figure 13. Time evolution of CMS calculated for various values of the friction factor b, for the case
m1 = m2= m3 = 1, x1 = 1.05, and q1 = 1.05. (A) When the friction factor b is restricted in the range
0 < b < 0.1, the saturation value of CMS is decreased with the growth of b. The orange box, shown
in inset (A) indicates the initial stage of motion, (B) When the friction factor b is restricted in the range
0.25 < b < 2, the saturation value of CMS is increased with the growth of b.
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Figure 14. Time evolution of CMS for the friction factor b = 0.1035; the segment of the curve marked
with a rectangle in Figure 13A is depicted. m1 = m2= m3 = 1, x1 = 1.05, and q1 = 1.05 is adopted.

4. Discussion

It seems that the Coulomb and gravity interaction are well expected to exert a similar
impact on the configuration of bodies in the three-body problem. It is demonstrated
that this conclusion is wrong: the CMS is stabilized over the course of the Coulomb
interaction between the bodies and comes with time to its asymptotic value, as shown
in Figures 5–9, which is impossible for the gravitational interaction. Contrastingly, the
symmetry of gravitating systems demonstrates a certain stability until some threshold
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value of distortion; however, eventually it is destroyed, as shown in Figure 4. Friction,
as it may be expected, increases the stability of the Lagrange triangle comprising the
gravitating masses.

In our future investigations we plan to address the evolution of the CMS for the 3D,
symmetric, initial configurations of bodies interacting via the potential (r) ∼ 1

r , such as the
Coulomb interaction of the charges forming a tetrahedron; this study may shed light on the
structure of the condensed phases of SiO2 ceramics.

5. Conclusions

We report the time evolution of the continuous measure of symmetry calculated
for a system of three bodies interacting via the potential U(r) ∼ 1

r . Gravitational and
electrostatic interactions between the point bodies were addressed. The continuous measure
of symmetry and its evolution with time were calculated with the software Taylor Center.
We conclude that the continuous measure of symmetry, seen as a dynamic variable, supplies
valuable qualitative information about the behavior of the three-body interacting system.
In the case of a pure gravitational interaction, the three-body system, deviated from its
initial symmetrical configuration described by the Lagrange equilateral triangle, comes
to collapse. This gravitational collapse is accompanied by the growth of the continuous
measure of symmetry, which eventually attains its limiting value, namely CMS → 1.
Stokes-like friction, quite expectedly, increases the stability of the Lagrange triangle built of
the gravitating masses.

When three point bodies interact via the repulsive Coulomb interaction, the time
evolution of the CMS is quite different. It should be emphasized that for all of the studied
initial configurations of the point charges and all of their charge-to-mass ratios, the CMS
always comes, with time, to its asymptotic value. This asymptotic temporal evolution of
the CMS is reported for the first time. Sometimes the CMS grows in a monotonic way,
sometimes it passes via the minimal value, but it always attains the asymptotic value,
which evidences the stabilization of the shape of the triangle constituted by the three
interacting bodies. This is an important and non-obvious qualitative conclusion emerging
from our computer simulations. The impact of friction on the time evolution of the bodies’
interaction via the Coulomb repulsion is elucidated. Somewhat surprisingly, the twin
well-shaped time dependence of the CMS was observed for a certain range of values of
the friction factor. This means that the perturbed triangle formed by the interacting bodies
twice comes to the equilateral Lagrangian shape. The origin and qualitative interpretation
of this phenomenon call for additional physical insights.

In our future studies, we plan to address the temporal evolution of the continuous
measure of symmetry calculated for bodies interacting via a diversity of potentials. We
also plan to involve Hamiltonian formalism in the analysis of the temporal evolution
of the CMS. We also plan to investigate the evolution of the CMS for the 3D symmetric
initial configurations of bodies interacting via the potential (r) ∼ 1

r , such as the Coulomb
interaction of electrical charges forming a tetrahedron; this study may shed light on the
structure of the condensed phases of SiO2 ceramics.
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