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Abstract: A divisor B of a nonzero polynomial A, defined over the prime field of two elements, is
unitary (resp. bi-unitary) if gcd(B, A/B) = 1 (resp. gcdu(B, A/B) = 1), where gcdu(B, A/B) denotes
the greatest common unitary divisor of B and A/B. We denote by σ∗∗(A) the sum of all bi-unitary
monic divisors of A. A polynomial A is called a bi-unitary superperfect polynomial over F2 if the sum
of all bi-unitary monic divisors of σ∗∗(A) equals A. In this paper, we give all bi-unitary superperfect
polynomials divisible by one or two irreducible polynomials over F2. We prove the nonexistence of
odd bi-unitary superperfect polynomials over F2.

Keywords: sum of divisors; bi-unitary divisors; polynomials; finite fields.

1. Introduction

Let n and k be positive integers, and let σ(n) (resp. σ∗(n)) denote the sum of positive
(resp. unitary) divisors of the integer n. A divisor d of n is unitary if d and n/d are coprime.
We call the number n a k−superperfect number if σk(n) = σ(σ(...(σ(︸ ︷︷ ︸

k-times

n)))) = 2n. When

k = 1, n is called a perfect number. An integer M = 2p − 1, where p is a prime number,
is called a Mersenne number. It is also well known that an even integer n is perfect if
and only if n = M(M + 1)/2 for some Mersenne prime number M. Suryanarayana [1]
considered k−superperfect numbers in the case k = 2. Numbers of the form 2p−1 (p is
prime) are 2-superperfect if 2p−1 − 1 is a Mersenne prime. It is not known if there are odd
k-superperfect numbers. Sitaramaiah and Subbarao [2] studied the unitary superperfect
numbers, with the integers n satisfying σ∗2(n) = σ∗(σ∗(n)) = 2n. They found all unitary
superperfect numbers below 108. The first unitary superperfect numbers are 2, 9, 165, and
238. A positive integer n has a bi-unitary divisor, d, if the greatest common unitary divisor
of d and n/d is equal to 1. The arithmetic function σ∗∗(n) denotes the sum of positive
bi-unitary divisors of the integer n. Wall [3] proved that there are only three bi-unitary
perfect numbers (σ∗∗(n) = 2n), namely, 6, 60, and 90. Yamada [4] proved that 2 and 9 are
the only bi-unitary superperfect numbers, that is, σ∗∗2(n) = 2n if and only if n ∈ {2, 9}.

Here, let A be a nonzero polynomial over the prime field F2. We say that A is a
splitting polynomial if it can be factored completely into linear factors over F2. A divisor
B of A is unitary (resp. bi-unitary) if gcd(B, A/B) = 1 (resp. gcdu(B, A/B) = 1), where
gcdu(A, A/B) denotes the greatest common unitary divisor of B and A/B. We denote
by σ the sum of the monic divisors B of A, that is, σ(A) = ∑B|A B. σ∗(A) (resp. σ∗∗(A))
represents the sum of all unitary (resp. bi-unitary) monic divisors of A. Note that all the
functions σ, σ∗, and σ∗∗ are multiplicative and degree-preserving.

We say that a polynomial A is an even polynomial if it has a linear factor in F2[x]; other-
wise, it is an odd polynomial. A polynomial M of the form 1+ xa(x+ 1)b is called Mersenne.
The first five Mersenne polynomials over F2 are M1 = 1 + x + x2, M2 = 1 + x + x3,
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M3 = 1 + x2 + x3, M4 = 1 + x + x2 + x3 + x4, and M5 = 1 + x3 + x4. Note that all these
polynomials are irreducible, so we call them Mersenne primes.

Notations: We use the following notations throughout the article:

• N (resp. N∗) represents the set of non-negative (resp. positive) integers.
• deg(A) denotes the degree of the polynomial A.
• A is the polynomial obtained from A with x replaced by x+ 1, that is, A(x) = A(x+ 1).
• P and Q are distinct irreducible non-constant polynomials.
• Pi and Qj are distinct odd irreducible non-constant polynomials.

Let ω(A) denote the number of distinct irreducible monic polynomials that divide
A. The notion of a perfect polynomial over F2 was introduced first by Canaday [5]. A
polynomial A is perfect if σ(A) = A. Canaday studied the case of even perfect polynomials
with ω(A) ≤ 3. In the past few years, Gallardo and Rahavandrainy [6–8] showed the non-
existence of odd perfect polynomials over F2 with either ω(A) = 3 or with ω(A) ≤ 9 in the
case where all exponents of the irreducible factors of A are equal to 2. A polynomial A is said
to be a unitary (resp. a bi-unitary) perfect if σ∗(A) = A (resp. σ∗∗(A) = A). Furthermore,
A is called a unitary (resp. a bi-unitary) superperfect if σ∗2(A) = σ∗(σ∗(A)) = A (resp.
σ∗∗2(A) = σ∗∗(σ∗∗(A)) = A).

Note that the function σ∗∗2 is degree-preserving but not multiplicative, and this is the
main challenge in this work. Thus, working on bi-unitary superperfect polynomials over
F2 is not an easy task especially when A is divisible by more than two irreducible factors.

In this paper, we prove the non-existence of odd bi-unitary superperfect polynomials
A when A is divisible by at least two irreducible factors (Corollary 4). We give a complete
classification for all bi-unitary superperfect polynomials over F2 that are divisible by at most
two distinct irreducible factors (Theorems 1 and 2). Bi-unitary superperfect polynomials
over F2 that are neither unitary perfect nor bi-unitary perfect are found. The polynomials
x4(x + 1)4, x9(x + 1)9, x9(x + 1)13, and x2(x + 1)2d−1, d is a positive integer, are examples of
bi-unitary superperfect polynomials that are neither unitary perfect nor bi-unitary perfect.

Our main results are given in the following theorems:

Theorem 1. Let A be a bi-unitary superperfect over F2 such that ω(A) = 1; then, A, A ∈
{x2, x2d−1}, where d ∈ N∗.

Theorem 2. Let A be a bi-unitary superperfect over F2 such that ω(A) = 2; then, A, A ∈
{x2(x + 1)2, x4(x + 1)4, x9(x + 1)9, x9(x + 1)13, x2(x + 1)2d−1, x2d1−1(x + 1)2d2−1}, where
d, d1, d2 ∈ N∗.

2. Previous Work

Many researchers studied the unitary perfect polynomials over F2. In their works [7,8],
the authors listed the unitary perfect polynomials over F2, where ω(A) does not exceed
4. They listed others that are divisible by x(x + 1)M, where M is a Mersenne polynomial,
raised to certain powers. They proved that the only unitary perfect polynomials over F2

of the form A = xa(x + 1)b ∏i=1 Mi and hi = 2ni , ni ∈ N∗ are those of the form B2n or B2n,
where

B ∈


x3(x + 1)3 M2

1 , x3(x + 1)2 M1, x5(x + 1)4 M4 if ω(A) ≤ 3,

x7(x + 1)4 M2 M3, x5(x + 1)6 M2
1 M4, x5(x + 1)5 M4 M5, x7(x + 1)7 M2

2 M2
3 if ω(A) = 4,

x7(x + 1)6 M1
2 M2 M3, x7(x + 1)5 M2 M3 M5 if ω(A) = 5.

In [9], Beard found many bi-unitary perfect polynomials over Fpd , some of which
are neither perfect nor unitary perfect. Beard showed that the only bi-unitary perfect
polynomials over F2 with exactly two prime factors are x2(x + 1)2 and x2n−1

(x + 1)2n−1
, for
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any n ∈ N∗ (Theorem 5 in [9]). He conjectured a characterization of the bi-unitary perfect
polynomials, which splits over Fp when p > 2. Beard also gave examples of non-splitting
bi-unitary perfect polynomials over Fp when p ∈ {2, 3, 5}. Rahavandrainy [10] gave all
bi-unitary perfect polynomials over the prime field F2, with at most four irreducible factors
(Lemmas 7 and 8).

Gallardo and Rahavandrainy [11] classified some unitary superperfect polynomials
with a small number of prime divisors under some conditions on the number of prime
factors of σ∗(A). They proved that A ∈ F2[x] is a unitary superperfect polynomial if

A ∈
{

x2n
(x + 1)2m

, x3·2n
(x + 1)3·2m

, x3(x + 1)5, x(x + 1)5, x7(x + 1)7 if ω(A) = 2,
x2(x + 1)3M1, x3(x + 1)3Ma

1, x(x + 1)5Ma
1, x(x + 1)5(x3 + x2 + 1) if ω(A) = 3.

For some m, n ∈ N∗ and a ∈ {1, 2}.

3. Preliminaries

The following two lemmas are helpful.

Lemma 1. Let A be a polynomial in F2[x]; then, σ∗
(

A2n
)
= (σ∗(A))2n

and n is a non-negative
integer.

Proof. The result follows since σ∗ is multiplicative and σ∗(p2n
) = 1 + p2n

= (1 + p)2n
=

(σ∗(p))2n
.

Lemma 2. If A is a unitary superperfect polynomial over F2, then A2n
is also a unitary superperfect

polynomial over F2 for all non-negative integers n.

Proof. Let A be a unitary superperfect, and let B = σ∗(A). By Lemma 1, we have
σ∗2
(

A2n
)
= σ∗

(
σ∗
(

A2n
))

= σ∗
(

B2n
)
= (σ∗(B))2n

= (σ∗(σ∗(A)))2n
= A2n

.

Lemma 3 (Lemma 2.4 in [11]). Let A be a polynomial in F2[x].

(1) If P is an odd prime factor of A, then x(x + 1) divides σ∗(A).
(2) If x(x + 1) divides A, then x(x + 1) divides σ∗(A).
(3) If A is unitary superperfect that has an odd prime factor, then x(x + 1) divides A.

The following results are needed, and they are a result of Beard’s [9] and Raha-
vandrainy’s [10] works.

Lemma 4 (Theorem 1 and its Corollary in [9]). If A is a non-constant bi-unitary perfect
polynomial, then x(x + 1) divides A and ω(A) ≥ 2.

Proposition 1 (Lemma 2.2 in [10]).

(1) σ∗∗(P2a+1) = σ(P2a+1).
(2) σ∗∗(P2a) = (1 + Pa+1)σ(Pa−1) = (1 + P)σ(Pa)σ(Pa−1).

The table in Section 7 shows some values of σ∗∗(A) when A is a power of the first five
Merssene primes.

Corollary 1. If a is a positive integer, then

(1) 1+x divides σ∗∗(xa).
(2) x divides σ∗∗((1 + x)a).

Proof. An immediate result of Proposition 1.
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Corollary 2 (Corollary 2.3 in [10]). Let T ∈ F2[x] be irreducible. Then,

(i) If a ∈ {4r, 4r + 2}, where 2r− 1 or 2r + 1 is of the form 2αu− 1, u odd, then σ∗∗(Pa) =

(1 + P)2α · σ(P2r) · (σ(Pu−1))2α
, gcd(σ(P2r), σ(Pu−1)) = 1.

(ii) If a = 2αu− 1 is odd, with u odd, then σ∗∗(Pa) = (1 + P)2α−1 · (σ(Pu−1))2α
.

The proof of the below proposition follows from Proposition 1 and the binomial
formula.

Proposition 2. Let the polynomial Mi be the Mersenne prime and Qj be an irreducible polynomial
over F2, and let a, c ∈ N∗. If αj ∈ N, then

(1) x(x + 1) divides σ∗∗(Mc
i ).

(2) σ∗∗(Mc
1) = xa(x + 1)aΠ

j
Q

αj
j .

(3) σ∗∗(Mc
2) = xa(x + 1)2aΠ

j
Q

αj
j .

(4) σ∗∗(Mc
3) = x2a(x + 1)aΠ

j
Q

αj
j .

(5) σ∗∗(Mc
4) = xa(x + 1)3aΠ

j
Q

αj
j .

(6) σ∗∗(Mc
5) = x3a(x + 1)aΠ

j
Q

αj
j .

Proposition 3 (Corollary 2.4 in [10]).

(1) σ∗∗(xa) splits over F2 if and only if a = 2 or a = 2d − 1, for some d ∈ N∗.
(2) σ∗∗(Pc) splits over F2 if and only if P is Mersenne and c = 2 or c = 2d − 1 for some d ∈ N∗.

Lemma 5 summarizes key results taken from Canaday’s paper [5].

Lemma 5. Let T be irreducible in F2[x] and let n, m ∈ N.

(i) If T is a Mersenne prime and if T = T∗, then T ∈ {M1, M4}.
(ii) If σ(x2n) = PQ and P = σ((x + 1)2m), then 2n = 8, 2m = 2, P = M1, and Q = P(x3) =

1 + x3 + x6.
(iii) If any irreducible factor of σ(x2n) is a Mersenne prime, then 2n ≤ 6.
(iv) If σ(x2n) is a Mersenne prime, then 2n ∈ {2, 4}.

Lemma 6 (Lemma 2.6 in [12]). Let m ∈ N∗ and M be a Mersenne prime. Then, σ(x2m),
σ((x + 1)2m), and σ(M2m) are all odd and square-free.

4. Bi-Unitary Superperfect Polynomials

Recall that A is a bi-unitary superperfect polynomial in F2[x] if σ∗∗2(A) = σ∗∗(σ∗∗(A)) =
A. The polynomial A = x4(1 + x)4 is a bi-unitary superperfect polynomial over F2.

The following polynomials are considered over F2 :

C = 1 + x + x4, B1 = x3(x + 1)4M1, B2 = x3(x + 1)5M2
1,

B3 = x4(x + 1)4M2
1, B4 = x6(x + 1)6M2

1, B5 = x4(x + 1)5M3
1,

B6 = x7(x + 1)8M5, B7 = x7(x + 1)9M2
5, B8 = x8(x + 1)8M4M5,

B9 = x8(x + 1)9M4M2
5, B10 = x7(x + 1)10M2

1 M5, B11 = x7(x + 1)13M2
2 M2

3,
B12 = x9(x + 1)9M2

4 M2
5, B13 = x14(x + 1)14M2

2 M2
3, R1 = x4(x + 1)5M4

1C,
R2 = x4(x + 1)5M5

1C2.

The proof of the following lemmas follow directly.
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Proposition 4. If A is a bi-unitary perfect polynomial over F2, then A is also a bi-unitary super-
perfect polynomial.

Proposition 5. If A is a bi-unitary superperfect polynomial over F2, then B = σ∗∗(A) is also a
bi-unitary superperfect polynomial.

Rahavandrainy (Lemma 2.6 in [10]) proved that if A is a bi-unitary perfect polynomial
over F2, where A = A1 A2 such that gcd(A1, A2) = 1, then A1 is a bi-unitary perfect
polynomial if and only if A2 is a bi-unitary perfect polynomial. Rahavandrainy’s previous
result is not valid in the case of bi-unitary superperfect polynomials because the bi-unitary
superperfect polynomial A = x2(1 + x)2(1 + x + x2)2 is a counterexample over F2. In fact,
A1 = x2(1 + x)2 is a bi-unitary superperfect, but A2 = (1 + x + x2)2 is not a bi-unitary
superperfect.

Lemma 7 (Theorem 1.1 in [10]). Let A ∈ F2[x] be a bi-unitary perfect polynomial such that
ω(A) = 3. Then, A, A ∈ {Bj : j ≤ 7}.

Lemma 8 (Theorem 1.2 in [10]). Let A ∈ F2[x] be a bi-unitary perfect polynomial such that
ω(A) = 4. Then A, A ∈ {Bj : 8 ≤ j ≤ 13}⋃{R1, R2}.

Proposition 6. If A(x) is a bi-unitary superperfect polynomial over F2, then so is A(x).

Lemma 9. x(x + 1) divides σ∗∗(Pa), a is a positive integer.

Proof. Since P is odd, then P(0) = P(1) = 1. If a = 2n + 1, then σ∗∗(P2n+1)(0) =
1 + P(0) + . . . + P2n+1(0)︸ ︷︷ ︸

(2n+1)-times

= 1 + 2n + 1 = 0. If a = 2n, then 1 + Pn+1(0) = 0. Thus, x

divides σ∗∗(Pa) for every a ∈ N. Similarly, x + 1 divides σ∗∗(Pa). Hence, x(x + 1) divides
σ∗∗(Pa).

Lemma 10. Let A be a polynomial in F2[x].

(1) If P is an odd prime factor of A, then x(x + 1) divides σ∗∗(A).
(2) If x(x + 1) divides A, then x(x + 1) divides σ∗∗(A).

Proof.

(1) We write A = PaB, where a ∈ N∗ and B ∈ F2[x] such that gcd(P, B) = 1. However,
1 + P divides σ∗∗(A), and the result follows since x(x + 1) divides 1 + P.

(2) In a similar manner, we write A = xa(x + 1)bB, where a, b ∈ N∗.

Corollary 3. If A ∈ F2[x] and ω(A) ≥ 2, then x(x + 1) divides σ∗∗(A).

Proof. Let ω(A) ≥ 2. If x(x + 1) divides A, then Corollary 1 is completed. If x(x + 1) does
not divide A, then A is divisible by an irreducible polynomial P /∈{x, 1 + x}, and the result
follows using Lemma 9.

Corollary 4. Let A be a polynomial in F2[x] with ω(A) ≥ 2. If A is a bi-unitary superperfect,
then x(x + 1) divides A.

Proof. Let A = σ∗∗2(A) = σ∗∗(B), where B = σ∗∗(A). Since ω(A) ≥ 2, then either P or
x(x + 1) divides A. In both cases, x(x + 1) divides σ∗∗(A) = B (Lemma 10). Thus, x(x + 1)
divides σ∗∗(B) = σ∗∗2(A).

The below corollary follows directly from Corollary 4.
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Corollary 5. If A = PaQb and a, b ∈ N∗. is a bi-unitary superperfect polynomial over F2, then
A = xa(x + 1)b.

The following lemma is similar to Proposition 3.

Lemma 11. Let a, b ∈ N∗, then

(1) If a is even; then, σ∗∗2(xa) and σ∗∗2((x + 1)a) splits over F2 if and only if a ∈ {2, 4, 10, 12}.
(2) If a is odd, then σ∗∗2(xa) and σ∗∗2((x+ 1)a) splits overF2 if and only if a ∈

{
5, 9, 13, 2d − 1

}
for some d ∈ N∗.

Proof.

(1) If σ∗∗(xa) splits, a = 2 (Proposition 3) and σ∗∗2(xa) = (x + 1)2. Suppose that σ∗∗(xa)
does not split with a = 4r, 2r − 1 = 2αu − 1, (resp. a = 4r + 2, 2r + 1 = 2αu − 1),

u is odd, r ≥ 1. However, σ∗∗2(xa) = σ∗∗
(
(1 + x)2α · σ(x2r) ·

(
σ(xu−1)

)2α)
; thus,

σ∗∗
(
(1 + x)2α

)
must split. Hence, α = 1, and since σ(x2r) is odd and square-free

(Lemma 6), then σ(x2r) has a Mersenne factor. Thus, 2r ≤ 6 and, hence, u ≤ 3.
(2) Assume a = 2αu− 1, with u is odd. If σ∗∗(xa) splits, then a = 2d − 1, d is positive

(Proposition 3). If σ∗∗(xa) does not split, then a 6= 2d − 1 and since σ∗∗2(xa) =

x2α−1 · σ∗∗
((

σ(xu−1)
)2α)

splits, u > 1. Again, using Lemma 6, σ(x2r) has a Mersenne

factor. Thus, u − 1 ≤ 6 and, hence, u ∈ {3, 5, 7}. For u = 3, σ∗∗2(xa) = x2α−1 ·
σ∗∗
((

σ(x2)
)2α)

= x2α−1 · σ∗∗
(

M2α

1

)
. Hence, α = 1 and the same result is obtained

when u ∈ {5, 7}.
The same proof is performed for σ∗∗2((x + 1)a), and the proof is complete.

Lemma 12. Let a and b have the form 2n − 1, where n ∈ N∗, and let the polynomial A =
1 + xa(x + 1)b be Mersenne prime over F2; then, σ∗∗2(A) = xb(x + 1)a.

Proof. Let a = 2n1 − 1 and b = 2n2 − 1; then,

σ∗∗2(A) = σ∗∗2
(

1 + xa(x + 1)b
)

= σ∗∗(σ(1 + xa(x + 1)b)

= σ∗∗
(

xa(x + 1)b
)

= xb(x + 1)a.

5. Proof of Theorem 1

We consider the polynomial A = Pa and a ∈ N∗. We prove that σ∗∗(A) cannot have
more than one prime factor when A is a prime power.

Proposition 7. If A ∈ {x, x + 1} and σ∗∗2(Aa) splits over F2, then A is a bi-unitary superperfect
polynomial.

Proof. Follows from part (1) of Lemma 11.

Proposition 8. Assume P is odd, then A = Pα ∈ F2[x] is not a bi-unitary superperfect polynomial.
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Proof. Assume A = Pa is a bi-unitary superperfect. Since P divides A, then x(x + 1)
divides σ∗∗(A), and using Lemma 10, we have that x(x + 1) divides σ∗∗2(A) = Pa, a con-
tradiction.

In particular, if M is a Mersenne prime polynomial over F2, then Mc (c is a positive
integer) is never a bi-unitary superperfect polynomial.

Corollary 6. Let a ∈ N∗ and let A = Pa be a bi-unitary superperfect polynomial over F2; then,
P ∈ {x, x + 1}.

It is clear from the preceding two corollaries that a bi-unitary superperfect polynomial
must be even.

Lemma 13. Let A be a polynomial over F2 with ω(A) = 1; then, A is a bi-unitary superperfect
polynomial if and only if A, A ∈ {x2, x2d−1}, where d ∈ N∗.

Proof. Using Corollary 6, A = xα or (x + 1)α. Assume A = xα and α = 2m; then,

σ∗∗2(A) = σ∗∗
((

xm+1 + 1
) xm − 1

x− 1

)
. Both xm+1 + 1 and xm + 1 split over F2 only when

m = 1. Thus, σ∗∗2(A) = σ∗∗
(

x2 + 1
)
= x2. If α = 2m+ 1, then σ∗∗2(A) = σ∗∗

(
x2(m+1) − 1

x− 1

)
.

The expression x2(m+1) + 1 splits over F2 when 2m + 2 = 2d, d ∈ N∗. Then, σ∗∗2(A) =

σ∗∗
(

x2d − 1
x− 1

)
= A = x2d−1. The sufficient condition follows via direct computation, and

the result follows since if A is a bi-unitary superperfect, then so is A.

6. Proof of Theorem 2

We consider the polynomial A = PaQb and a, b ∈ N∗. Note that A = x2(1 + x)2

and A = x2α−1(1 + x)2α−1 are bi-unitary superperfect polynomials over F2, as shown
Proposition 4 and Theorem 5 in [9].

Proposition 9 (Lemma 3.1 in [10]). If the polynomial σ∗∗(xa(x+ 1)b) does not split, then (a ≥ 3
or b ≥ 3) and (a 6= 2n − 1 or b 6= 2m − 1 for any n, m ≥ 1).

Lemma 14. Let a, b, d ∈ N∗. The polynomial A = xa(x + 1)b is a bi-unitary superperfect over F2
if and only if one of the following is true.

(1) If a and b are odd and σ∗∗(xa(x + 1)b) splits, then a and b are of the form 2d − 1.
(2) If a and b are odd and σ∗∗(xa(x + 1)b) does not split, then (a, b) ∈ {(9, 9), (9, 13), (13, 9)}.
(3) If a and b are even, then a = b ∈ {2, 4}.
(4) If a and b are of opposite parity, then (a, b) ∈

{(
2, 2d − 1

)
,
(

2d − 1, 2
)}

.

Proof.

(1) If a = 2m + 1 and b = 2n + 1, then σ∗∗2(A) = σ∗∗
(

σ∗∗(xa)(1 + x)b
)

. However,

σ∗∗(x2m+1) and σ∗∗(x + 1)2n+1 split over F2 when 2m + 1 and 2n + 1 are of the form
2d − 1 (Proposition 3).

(2) If a = 2αu− 1 and b = 2βv− 1, u, v are odd. We have u > 1 and v > 1 since σ∗∗(xa(x+ 1)b)

does not split. σ∗∗(xa(x + 1)b) = σ∗∗
(
(1 + x)2α−1(σ(xu−1)

)2α

x2β−1σ
(
(x + 1)v−1

)2β)
.

Using Proposition 9 (u− 1 ≥ 3 and α = 1) or (v− 1 ≥ 3 and β = 1). Furthermore,
σ
(

xu−1) and σ
(
(x + 1)v−1

)
does not split since σ∗∗(xa(x + 1)b) does not split. Thus,

there exist Merssene primes M (resp. M′) that divides σ
(
xu−1) (resp. σ

(
(x + 1)v−1

)
.
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Hence, (u− 1 ≤ 6) or (v− 1 ≤ 6), and we have that u, v ∈ {5, 7}. If u = v = 5, then
a = b = 9. If u = 5 and v = 7, then a = 9 and b = 13. If u = v = 7, then a = b = 13 is
dismissed.

(3) If a, b even, then a ∈ {4r, 4r + 2} such that 2r− 1, 2r + 1 is of the form 2αu− 1, where
u is odd and b ∈ {4r′, 4r′ + 2} such that 2r′ − 1, 2r′ + 1 is of the form 2β vs. −1, v odd.
Thus,

σ∗∗(A) = (1 + x)2α−1σ(x2r)
(

σ(xu−1)
)2α

x2β−1σ
(
(x + 1)2r′

)(
σ
(
(x + 1)v−1

))2β

.

If σ(x2r), σ
(
(x + 1)2r′

)
, σ(xu−1), and σ

(
(x + 1)v−1

)
are Mersenne, then 2r, 2r′, u−

1, v− 1 ∈ {2, 4}. Thus, a = b = 4. If σ(x2r), σ(xu−1), σ
(
(x + 1)2r′

)
and σ

(
(x + 1)v−1

)
are not Mersenne, then r, r′, u− 1, v− 1 > 2 and ω(σ∗∗2(A)) > 2, a contradiction. For
a = b = 2, A is bi-unitary perfect; hence, A is a bi-unitary superperfect.

(4) Now, let a = 2m + 1 and b = 2n. Since σ∗∗
(
(x + 1)2n

)
splits over F2 only when n = 1,

then σ∗∗2(A) = σ∗∗
(
σ∗∗(x2m+1)σ∗∗

(
(x + 1)2)). However, σ∗∗(x2m+1) splits over F2

if 2m + 1 is of the form 2d − 1. If a = 2m and b = 2n + 1, then a = 2 and b = 2d − 1.
The sufficient condition can be easily verified.

The proof of Theorem 2 is now complete.

7. Some Values of σ∗∗(A) and σ∗∗2(A)

For convenience of readers, we list the below table that consists of the values of σ∗∗(A)
and σ∗∗2(A) for A ∈ {xa, (x + 1)a, Mb

i }, where 1 ≤ a ≤ 13, 1 ≤ b ≤ 7. We consider the
polynomials C1 = x4 + x + 1, C2 = x6 + x5 + x4 + x2 + 1, C3 = x6 + x5 + x4 + x + 1, and
C4 = x10 + x9 + x8 + x7 + x2 + x + 1.

Table 1. A ∈ {xa, (x + 1)a, Ma}.

A a σ** σ**2

xa 1 x x + 1
2 x2 (x + 1)2

3 x3 (x + 1)3

4 x2M1 x(x + 1)3

5 xM2
1 x2(x + 1)3

6 x4M1 x(x + 1)3M1
7 x7 (x + 1)7

8 x4M5 x3(x + 1)3M1
9 xM2

5 x6(x + 1)3

10 x2M2
1 M5 x5(x + 1)5

11 x3M4
1 x2(x + 1)5C1

12 x2M2
1 M2M3 x5(x + 1)7

13 xM2
2 M2

3 x6(x + 1)7
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Table 1. Cont.

A a σ** σ**2

................ ................ ................ ................
(1 + x)a 1 x x + 1

2 x2 (x + 1)2

3 x3 (x + 1)3

4 x2M1 x(x + 1)3

5 xM2
1 x2(x + 1)3

6 x4M1 x(x + 1)3M1
7 x7 (x + 1)7

8 x4M5 x3(x + 1)3M1
9 xM2

5 x6(x + 1)3

10 x2M2
1 M5 x5(x + 1)5

11 x3M4
1 x2(x + 1)5C1

12 x2M2
1 M2M3 x5(x + 1)7

13 xM2
2 M2

3 x6(x + 1)7

................ ................ ................ ................
Ma

1 1 x(x + 1) x(x + 1)
2 x2(x + 1)2 x2(x + 1)2

3 x3(x + 1)3 x3(x + 1)3

4 x2(x + 1)2C1 x3(x + 1)3M1
5 x(x + 1)C2

1 x3(x + 1)3M2
1

6 x4(x + 1)4C1 x3(x + 1)3M3
1

7 x7(x + 1)7 x7(x + 1)7

................ ................ ................ ................
Ma

2 1 x(x + 1)2 x2(x + 1)
2 x2(x + 1)4 x2(x + 1)2M1
3 x3(x + 1)6 x4(x + 1)3M1
4 x2(x + 1)4M1M5 x6(x + 1)4M1
5 x(x + 1)2M2

1 M2
5 x10(x + 1)5

6 x4(x + 1)8M1M5 x8(x + 1)4M1M5
7 x7(x + 1)14 x8(x + 1)7M2M3

Ma
3 1 x2(x + 1) x(x + 1)2

2 x4(x + 1)2 x2(x + 1)2M1
3 x6(x + 1)3 x3(x + 1)4M1
4 x4(x + 1)2M1M4 x4(x + 1)6M1
5 x2(x + 1)M2

1 M2
4 x5(x + 1)10

6 x8(x + 1)4M1M4 x4(x + 1)8M1M4
7 x14(x + 1)7 x7(x + 1)8M2M3

................ ................ ................ ................
Ma

4 1 x(x + 1)3 x3(x + 1)
2 x2(x + 1)6 x4(x + 1)2M1

3 x3(x + 1)9 x(x + 1)3(M5)
2

4 x2(x + 1)6M1C2 x7(x + 1)4M1M2
5 x(x + 1)3M2

1C2
2 x9(x + 1)5M2

2
6 x4(x + 1)12M1C2 x5(x + 1)4M3

1 M2
2 M3

7 x7(x + 1)21 x(x + 1)7

C2
4
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Table 1. Cont.

A a σ** σ**2

................ ................ ................ ................
(M5)

a 1 x3(x + 1) x(x + 1)3

2 x6(x + 1)2 x2(x + 1)4M1
3 x9(x + 1)3 x3(x + 1)M2

4
4 x6(x + 1)2M1C3 x4(x + 1)7M1M3
5 x3(x + 1)M2

1C2
3 x5(x + 1)9M2

3
6 x12(x + 1)4M1C3 x4(x + 1)5M3

1 M2M2
3

7 x21(x + 1)7 x7(x + 1)
(
σ
(

x10))2

8. Conclusions

In conclusion, we proved the non-existence of odd bi-unitary superperfect polynomials
and provided a classification for bi-unitary superperfect polynomials over F2 based on their
irreducible factors. In particular, we showed that a non-constant bi-unitary superperfect
polynomial A over F2 can be divisible by one irreducible polynomial x or x + 1 with
exponent 2 or 2n − 1 for a positive integer n. Furthermore, we showed that the only bi-
unitary superperfect polynomials over F2 with exactly two irreducible factors are of the
form xa(x + 1)b with a, b ∈ {2, 4, 9, 13, 2d − 1}, d is a positive integer.
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