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Abstract: Let n ≥ 1 be a fixed integer. The main objective of this paper is to compute some topological
indices and coindices that are related to the graph complement of the prime ideal sum (PIS) graph
of Zn, where n = pα, p2q, p2q2, pqr, p3q, p2qr, and pqrs for the different prime integers p, q, r, and
s. Moreover, we construct M-polynomials and CoM-polynomials using the PIS-graph structure
of Zn to avoid the difficulty of computing the descriptors via formulas directly. Furthermore, we
present a geometric comparison for representations of each surface obtained by M-polynomials and
CoM-polynomials. Finally, we discuss the applicability of algebraic graphs to chemical graph theory.

Keywords: topological index; topological coindex; prime ideal sum (PIS) graph; complement of a
graph; M-polynomial; CoM-polynomial
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1. Introduction

Graph theory is a mathematical modeling method that explains the way objects are
related to each other by connecting them with graphs called edges. Arthur Cayley [1]
played a pivotal role in the resurgence of graph theory applications within the field of
chemistry, ultimately giving birth to what we now know as chemical graph theory [2]. In
this branch, the atoms organizing a molecule are considered as points; bonds between
atoms are considered as edges. Then, the concept of a topological index becomes involved,
whose final value is obtained from the values extracted from the molecular graph model.
Topological indices are formulas that enable us to predict the physicochemical data of
molecules, obtained through long experimental processes with mathematical calculations.
In this way, it is possible to gain recoup losses arising from parameters such as time,
equipment, budget, and environment during the experimental process. Topological indices
can be decomposed into distance- and degree-based indices. The Wiener index [3], Zagreb
indices [4], Randic index [5], Balaban index [6], and Hosoya [7] and Forgotten topological
indices [8] are the leading ones. While taking into account the number of other vertices
to which a vertex is connected for degree-based indices, distance-based indices take the
shortest path between two points as a basis. For novel and further properties of topological
indices, we also refer the reader to [9–12], where further references can be found. It may
not always be easy or even possible to make formulary calculations among hundreds
of topological indices. To eliminate this difficulty and also in order to have information
about the topological surface, a computing method has already been developed using
algebraic polynomials. For instance, in the domain of distance-based topological indices,
the Wiener polynomial is a general polynomial whose derivatives at 1 yield Weiner and
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hyper-Wiener indices [13]. It can be predicted that finding the shortest path between any
two points in a complex graph structure may not always be easy. Most of the time, the need
to use algorithms may be felt. Similarly, for the degree-based topological indices, M- and
NM-polynomials were defined in [14] and [15], respectively, and given as follows:

M(G; x, y) = ∑
i≤j

mij(G)xiyj,

where mij, i, j ≥ 1, and the number of edges uv ∈ E(G) such that{(d(u), d(v)) = {i, j}} for
the degrees d(u) and d(v) of u, v in G. In addition,

NM(G; x, y) = ∑
i≤j

nij(G)xiyj,

where nij, i, j ≥ 1, and the number of edges uv ∈ E(G) such that{(δ(u), δ(v)) = {i, j}} for
the neighborhood degrees δ(u) and δ(v) of u, v in G.

Over time, in parallel with the topological indices, topological coindices, calculated
according to the values taken from the complement of the molecular graph, have been
added to the literature (see [12,16] for details). The complement graph G was obtained
by plotting the relationship between non-adjacent pairs of points of a graph G [16]. The
indices calculated based on this new structure are also called topological coindices, and
just as the others, it is possible to classify them based on degree and distance. For example,
the first and the second Zagreb coindices were introduced by Doslic in [17] as follows:

M1(G) = ΣabεE(G)(d(a) + d(b))

and
M2(G) = ΣabεE(G)(d(a)d(b)),

where the degrees d(a) and d(b) indicate the number of vertices that are non-adjacent
to a and b, respectively. Later, the multiplicative Zagreb coindices [18], forgotten topological
coindex [19], second modified Zagreb coindex [20], redefined third Zagreb coindex [20],
Randic coindex [20], inverse Randic coindex [20], symmetric division coindex [20], har-
monic coindex [20], inverse sum indeg coindex [20], and augmented Zagreb coindex [20]
were also defined and studied. In 2022, Kirmani et al. [20] introduced and studied CoM-
polynomials as an alternative way to compute topological coindices. Additionally, some
recent studies can be presented as examples of the applications of degree-based topologi-
cal indices computed via the mentioned polynomials in QSPR analysis (see [21–24] and
references therein).

Topological indices and algebraic graph theory share a common focus on the analysis
and representation of graphs. Topological indices offer a distinctive set of numerical
measurements derived from graph topology. On the other hand, algebraic graph theory
provides mathematical tools and concepts that enable the analysis and comprehension of
graph features. These tools are effectively utilized to investigate and gain insights into
topological indices, thereby establishing a mutual relationship between the two. Graphs
with commutative rings are employed in robotics, information and communication theory,
elliptic curve cryptography, physics, and statistics. The constructed graphs from algebraic
structures exhibit remarkable properties that showcase their high degree of symmetry.
These properties establish a significant connection between chemical graph theory and
network utilized in parallel computing. The ring structure’s graphs have also been applied
in molecular graphs and the structures of genetic code [25]. Nowadays, studies on the
zero divisor graph of the ring Zn are a trending field in spectral and chemical graph theory
(see [26–29] for details). Studies on these topics in the literature motivated us to study
computing different descriptors with respect to a prime ideal sum graph. The prime ideal
sum graph of a commutative ring was defined in [30]. For a commutative ring R with
identity, the prime ideal sum graph of R is a graph whose vertices are nonzero proper
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ideals of R, and two distinct vertices I and J are adjacent if and only if I + J is a prime ideal
of R. They studied some connections between the graph-theoretic properties of this graph
and some algebraic properties of rings (see [30] for more details).

The main goals of the present paper are to compute some topological indices first
Zagreb index (M1(G)), second Zagreb index (M2(G)), second modified Zagreb index
(mM2(G)), redefined third Zagreb index (RezG3), forgotten topological index (F(G)), sym-
metric division index (SDD(G)), harmonic index (H(G)), inverse sum indeg index (I(G)),
and augmented Zagreb index (A(G)) and the topological coindex version each of them,
which are related to the complement of the PIS graph of Zn for n = pα, p2q, p2q2, pqr, p3q,
p2qr, pqrs, where p, q, r, and s are distinct primes. Furthermore, we construct M-polynomials
and CoM-polynomials using the PIS-graph structure of Zn to avoid the difficulty of cal-
culating descriptors via formulas directly. Furthermore, we discuss applications of the
M-polynomials and CoM-polynomials of molecular graphs in order to shed light on the
topological structures of the taken molecules. The paper ends with conclusions and direc-
tions for future research.

2. Motivation behind Topological Indices over Algebraic Graphs

In chemistry, group theory is used to study the symmetries and the crystal structures of
objects whenever an object or a system property is invariant under transformation. The idea
of constructing a graph from groups was advanced by Arthur Cayley, since an algebraic
structure is essential for the development of chemical systems as well as the study of many
chemical properties of molecules contained within these structures. The study of graphs
from rings commences with the exploration of the thoroughly-researched zero-divisor
graphs derived from commutative rings [31]. The other well-studied graphs produced
from rings can be listed as annihilating ideal graphs [32], comaximal graphs [33,34], Cayley
graphs [35], prime ideal sum graphs, total graph [36], etc.

Since topological indices are the numerical quantity of a network and are invariant
under graph isomorphisms, researchers are interested in examining the physical properties
and symmetries of algebraic structures through graph representations, similar to those in
chemistry. In addition, graphs constructed from rings are finite structures, and finite rings
and fields have received a significant amount of focus for their applications in cryptography
and coding theory [37–39]. In [40–42], the authors computed vertex-based eccentric and
edge-based topological indices of zero-divisor graphs of Zpq × Zr, where p, q, and r are
primes. They pointed out the benefits of these indices in understanding the characteristics
of different physical structures such as carbon nanostructures, hexagonal belts and chains,
fullerenes and nanocones, structure boiling points, and the relationships of various alkanes.
Moreover, they have significance in estimating and troubleshooting computer network
problems and developing efficient physical structure in robotics.

In particular, in a recent study (2023) entitled “Applications on Topological Indices of
Zero-Divisor Graph Associated with Commutative Rings”, it was declared that computed
values for topological indices over algebraic graphs help understand the characteristics
of various symmetric physical structures of finite commutative rings and have received
significant focus for their applications to cryptography, coding theory, robotics, and me-
chanics [43,44]. These predictions are also supported by the following recent articles, as the
graphs constructed from rings were highly symmetric [45–47]. Another article published in
Nature Communications [48], entitled “Algebraic Graph-Assisted Bidirectional Transform-
ers for Molecular Property Prediction”, shows promise that algebraic graph theory with
the applications of topological indices will gain a place in interdisciplinary applications in
the near future. Our prediction is that topological indices will be active in the optimization
of applications/systems developed using algebraic graphs [49].

Inspired by the abovementioned studies, in Section 6, we contribute to this literature
by computing prime ideal sum graphs of commutative rings. Precisely, we discuss some
applications of algebraic graphs to chemical graph theory.
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3. Preliminaries

First, let us list the related notations used in this paper (i ≤ j).

ni = |Vi| for Vi = {a ∈ V(G) | d(a) = i}
mij =

∣∣Eij
∣∣

Eij = {ab ∈ E(G) | d(a) = i and d(b) = j}
mij =

∣∣Eij
∣∣ for Eij = {ab ∈ E(G) | d(a) = i and d(b) = j}.

The following lemma is used to construct the CoM-polynomial of a commutative ring,
which is designed via the complement graph G of the related commutative ring, given
in [50]. Moreover, the prime ideal sum graph of a ring R is denoted by PIS(R).

Lemma 1. Let G be a connected graph of order n. Then, the statement given below is provided.

mij =
∣∣Eij
∣∣ = { ni(ni−1)

2 −mii for i = j
ninj −mij for i < j.

The concept of the CoM-polynomial of the two variables x, y is defined as follows [20]:

CoM(G; x, y) = M(G; x, y) = ∑
i≤j

mij(G)xiyj,

where mij, i, j ≥ 1, and the number of edges uv /∈ E(G) such that (d(a), d(b)) = (i, j).
Finally, we present the operators that will be used in the next section whenever

presenting the polynomials corresponding to topological descriptors:

Dx = x ∂(h(x,y))
∂x , Sx =

∫ x
0

h(t,y)
t dt, J(h(x, y)) = h(x, x),

Dy = y ∂(h(x,y))
∂y , Sy =

∫ y
0

h(x,t)
t dt, Qk(h(x, y)) = xkh(x, y).

4. Materials and Modeling

In this section, we present the formulas of topological indices and coindices as tables
(see Tables 1 and 2) that we use for calculating numeric values as follows:

Table 1. Topological indices.

Topological Index Formula Polynomial Form h(x, y) = M(x, y)

First Zagreb Index: M1 Σab∈E[d(a) + d(b)] (Dx + Dy)(h(x, y))|(1,1)

Second Zagreb Index: M2 Σab∈E[d(a)d(b)] (DxDy)(h(x, y))|(1,1)

Second Modified Zagreb Index: mM2 Σab∈E
1

[d(a)d(b)] (SxSy)(h(x, y))|(1,1)

Redefined Third Zagreb Index: RezG3 Σab∈E(d(a)d(b))[d(a) + d(b)] (DxDy)(Dx + Dy)(h(x, y))|(1,1)

Forgotten Topological Index: F Σab∈E[d2(a) + d2(b)] (D2
x + D2

y)(h(x, y))|(1,1)

Randic Index: Rk Σab∈E[d(a)d(b)]k (Dk
x + Dk

y)(h(x, y))|(1,1)

Inverse Randic Index: RRk Σab∈E
1

[d(a)d(b)]k (Sk
xSk

y)(h(x, y))|(1,1)

Symmetric Division Index: SDD Σab∈E
[d2(a)+d2(b)]
[d(a)d(b)]

(DxSy + SxDy)(h(x, y))|(1,1)

Harmonic Index: H Σab∈E
2

[d(a)d(b)] (2Sx J)(h(x, y))|x=1

Inverse Sum Indeg Index: I Σab∈E
[d(a)d(b)]
[d(a)+d(b)]

(Sx JDxDy)(h(x, y))|x=1

Augmented Zagreb Index: A Σab∈E
[d(a)d(b)]

[d(a)+d(b)−2]3
(S3

xQ−2 JD3
xD3

y)(h(x, y))|x=1
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Table 2. Topological coindices.

Topological Coindex Formula Polynomial Form h(x, y) = CoM(x, y)

First Zagreb Coindex: M1 Σab/∈E[d(a) + d(b)] (Dx + Dy)(h(x, y))|(1,1)

Second Zagreb Coindex: M2 Σab/∈E[d(a)d(b)] (DxDy)(h(x, y))|(1,1)

Second Modified Zagreb Coindex: mM2 Σab/∈E
1

[d(a)d(b)] (SxSy)(h(x, y))|(1,1)

Redefined Third Zagreb Coindex: RezG3 Σab/∈E(d(a)d(b))[d(a) + d(b)] (DxDy)(Dx + Dy)(h(x, y))|(1,1)

Forgotten Topological Coindex: F Σab/∈E[d2(a) + d2(b)] (D2
x + D2

y)(h(x, y))|(1,1)

Randic Coindex: Rk Σab/∈E[d(a)d(b)]k (Dk
x + Dk

y)(h(x, y))|(1,1)

Inverse Randic Coindex: RRk Σab/∈E
1

[d(a)d(b)]k (Sk
xSk

y)(h(x, y))|(1,1)

Symmetric Division Coindex: SDD Σab/∈E
[d2(a)+d2(b)]
[d(u)d(v)]

(DxSy + SxDy)(h(x, y))|(1,1)

Harmonic Coindex: H Σab/∈E
2

[d(a)d(b)] (2Sx J)(h(x, y))|x=1

Inverse Sum Indeg Coindex: I Σab/∈E
[d(a)d(b)]
[d(a)+d(b)]

(Sx JDxDy)(h(x, y))|x=1

Augmented Zagreb Coindex: A Σab/∈E
[d(a)d(b)]

[d(a)+d(b)−2]3
(S3

xQ−2 JD3
xD3

y)(h(x, y))|x=1

5. Polynomial Forms and Topological Descriptors of Algebraic Graphs
5.1. M-Polynomials and CoM-Polynomials of Some Commutative Rings

The first main result of this paper is the following theorem.

Theorem 1. Let p be a prime integer and α be an integer with α ≥ 2. Then, the M-polynomial and
CoM-polynomial of Zpα have the forms

M(Zpα ; x, y) = (α− 2)xyα−2, α ≥ 2
CoM(Zpα ; x, y) = 0, α ≥ 2.

Proof. Let us list all ideals ofZpα . Then, we have {0}, uα−1 = pα−1Zpα , uα−2 = pα−2Zpα , . . . ,
u3 = p3Zpα , u2 = p2Zpα , u1 = pZpα ,Zpα . Note that pZpα is a prime ideal of Zpα . Taking into
account the PIS graph over Zpα , it can be seen that pZpα is adjacent to pα−1Zpα , pα−2Zpα , . . . ,
p2Zpα as Zpα is local, and thus the sum of these ideals is equal to Zpα . Consider the following
graph representation of Zpα in Figure 1:

6

pZpα

pα−1Zpα pα−2Zpα p3Zpα p2Zpα

. . .

Figure 1. Prime ideal sum graph of Zpα .

From the PIS-graph structure of Zpα , we obtain:144

d(u1) = α − 2, d(u2) = d(u3) = ... = d(uα−1) = 1145

using the concept of the degree of a vertex. It follows that n1 = α − 2 and nα−2 = 1 using the146

notations given at the beginning of the Preliminaries section by vertex partition and by the147

edge-partition technique.148

m1α−2 = α − 2, m1α−2 = n1nα−2 −m1α−2 = (α − 2) × 1− (α − 2) = 0.

Hence,149

M(Zp2q; x, y) = ∑i≤j mijxiyj = (α − 2)xyα−2,150

CoM(Zp2q; x, y) = ∑i≤j mijxiyj = 0.151

Theorem 2. Let p and q be distinct prime integers. Then, the M-polynomial and CoM-polynomial of152

Z
p2q

have the forms153

M(Zp2q; x, y) = xy3 + x2y2 + 2x2y3,154

CoM(Zp2q; x, y) = 0.155

Proof. Let us consider the ideals u1 = pZn, u2 = qZn, u3 = pqZn, u4 = p2Zn for n = p2q. Then,156

PIS(Zn) is given in Figure 2. Since d(u1) = 2, d(u2) = 1, d(u3) = 3, d(u4) = 2, we have n1 = 1,157

n2 = 1, n3 = 1 by vertex partition. Therefore, we obtain:158

u3

u1

u4

u2

Figure 2. Prime ideal sum graph of Zp2q.

m13 = 1, m13 = n1n3 −m13 = 1− 1 = 0
m22 = 1, m22 = n2(n2−1)

2 −m22 = 2×1
2 − 1 = 0

m23 = 2, m23 = n2n3 −m23 = 2× 1− 2 = 0

using the edge-partition technique. Hence, the mentioned polynomials are obtained as159

follows:160

M(Zp2q; x, y) = ∑i≤j mijxiyj = m13xy3 +m22x2y2 +m23x2y3 = xy3 + x2y2 + 2x2y3;161

CoM(Zp2q; x, y) = ∑i≤j mijxiyj = m13xy3 +m22x2y2 +m23x2y3 = 0.162

163

Figure 1. Prime ideal sum graph of Zpα .

From the PIS-graph structure of Zpα , we obtain:

d(u1) = α− 2, d(u2) = d(u3) = ... = d(uα−1) = 1
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using the concept of the degree of a vertex. It follows that n1 = α− 2 and nα−2 = 1 using
the notations given at the beginning of the Preliminaries section by vertex partition and by
the edge-partition technique.

m1α−2 = α− 2, m1α−2 = n1nα−2 −m1α−2 = (α− 2)× 1− (α− 2) = 0.

Hence,
M(Zp2q; x, y) = ∑i≤j mijxiyj = (α− 2)xyα−2,

CoM(Zp2q; x, y) = ∑i≤j mijxiyj = 0.

Theorem 2. Let p and q be distinct prime integers. Then, the M-polynomial and CoM-polynomial
of Z

p2q
have the forms

M(Zp2q; x, y) = xy3 + x2y2 + 2x2y3,
CoM(Zp2q; x, y) = 0.

Proof. Let us consider the ideals u1 = pZn, u2 = qZn, u3 = pqZn, u4 = p2Zn for n = p2q.
Then, PIS(Zn) is given in Figure 2. Since d(u1) = 2, d(u2) = 1, d(u3) = 3, d(u4) = 2, we
have n1 = 1, n2 = 1, n3 = 1 by vertex partition. Therefore, we obtain:

m13 = 1, m13 = n1n3 −m13 = 1− 1 = 0
m22 = 1, m22 = n2(n2−1)

2 −m22 = 2×1
2 − 1 = 0

m23 = 2, m23 = n2n3 −m23 = 2× 1− 2 = 0

using the edge-partition technique. Hence, the mentioned polynomials are obtained
as follows:

M(Zp2q; x, y) = ∑i≤j mijxiyj = m13xy3 + m22x2y2 + m23x2y3 = xy3 + x2y2 + 2x2y3;
CoM(Zp2q; x, y) = ∑i≤j mijxiyj = m13xy3 + m22x2y2 + m23x2y3 = 0.

6

pZpα

pα−1Zpα pα−2Zpα p3Zpα p2Zpα

. . .

Figure 1. Prime ideal sum graph of Zpα .

From the PIS-graph structure of Zpα , we obtain:144

d(u1) = α − 2, d(u2) = d(u3) = ... = d(uα−1) = 1145

using the concept of the degree of a vertex. It follows that n1 = α − 2 and nα−2 = 1 using the146

notations given at the beginning of the Preliminaries section by vertex partition and by the147

edge-partition technique.148

m1α−2 = α − 2, m1α−2 = n1nα−2 −m1α−2 = (α − 2) × 1− (α − 2) = 0.

Hence,149

M(Zp2q; x, y) = ∑i≤j mijxiyj = (α − 2)xyα−2,150

CoM(Zp2q; x, y) = ∑i≤j mijxiyj = 0.151

Theorem 2. Let p and q be distinct prime integers. Then, the M-polynomial and CoM-polynomial of152

Z
p2q

have the forms153

M(Zp2q; x, y) = xy3 + x2y2 + 2x2y3,154

CoM(Zp2q; x, y) = 0.155

Proof. Let us consider the ideals u1 = pZn, u2 = qZn, u3 = pqZn, u4 = p2Zn for n = p2q. Then,156

PIS(Zn) is given in Figure 2. Since d(u1) = 2, d(u2) = 1, d(u3) = 3, d(u4) = 2, we have n1 = 1,157

n2 = 1, n3 = 1 by vertex partition. Therefore, we obtain:158

u3

u1

u4

u2

Figure 2. Prime ideal sum graph of Zp2q.

m13 = 1, m13 = n1n3 −m13 = 1− 1 = 0
m22 = 1, m22 = n2(n2−1)

2 −m22 = 2×1
2 − 1 = 0

m23 = 2, m23 = n2n3 −m23 = 2× 1− 2 = 0

using the edge-partition technique. Hence, the mentioned polynomials are obtained as159

follows:160

M(Zp2q; x, y) = ∑i≤j mijxiyj = m13xy3 +m22x2y2 +m23x2y3 = xy3 + x2y2 + 2x2y3;161

CoM(Zp2q; x, y) = ∑i≤j mijxiyj = m13xy3 +m22x2y2 +m23x2y3 = 0.162

163

Figure 2. Prime ideal sum graph of Zp2q.

In Figure 3, we give the 3D−surface representations of the M-polynomial and CoM-
polynomial forms of PIS(G(Zn)), respectively.
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(a) (b)

Figure 3. Polynomials corresponding to PIS(G(Zn)). (a) 3D−surf. of M(Zp2q; x, y); (b) 3D−surf. of
CoM(Zp2q; x, y).

Theorem 3. Let p and q be distinct prime integers. Then, the M-polynomial and CoM-polynomial
of Z

p2q2 have the forms

M(Z
p2q2 ; x, y) = 2x3y3 + 8x3y4 + 2x4y4,

CoM(Z
p2q2

; x, y) = 4x3y3 + 4x3y4 + x4y4.

Proof. Let us consider the ideals

u1 = pZn, u2 = qZn, u3 = pqZn, u4 = p2qZn, u5 = pq2Zn, u6 = p2Zn, u7 = q2Zn

where u1 and u2 are the prime ones and for n = p2q2. Then, PIS(Z
p2q2 ) is as follows:

It can be seen from the PIS-graph structure of Z
p2q2 in Figure 4 that d(u1) = 4,

d(u2) = 4, d(u3) = 4, d(u4) = 3, d(u5) = 3, d(u6) = 3, d(u7) = 3. We obtain n3 = 4, n4 = 3
by the vertex and edge-partition technique. It follows from Lemma 1 that:

m33 = 2, m33 = 4×3
2 − 2 = 4,

m34 = 8, m33 = 4× 3− 8 = 4,
m44 = 2, m44 = 3×2

2 − 2 = 1.

Hence, M(Zp2q2 ; x, y) = ∑i≤j mijxiyj = 2x3y3 + 8x3y4 + 2x4y4 and CoM(Zp2q2 ; x, y) =

∑i≤j mijxiyj = 4x3y3 + 4x3y4 + x4y4 are obtained.

7

(a) 3D-surf. of M(Zp2q; x, y) (b) 3D-surf. of CoM(Zp2q; x, y)
Figure 3. Polynomials corresponding to PIS(G(Zn)).

Theorem 3. Let p and q be distinct prime integers. Then, the M-polynomial and CoM-polynomial of164

Z
p2q2 have the forms165

M(Z
p2q2 ; x, y) = 2x3y3 + 8x3y4 + 2x4y4,166

CoM(Z
p2q2

; x, y) = 4x3y3 + 4x3y4 + x4y4.167

Proof. Let us consider the ideals168

u1 = pZn, u2 = qZn, u3 = pqZn, u4 = p2qZn, u5 = pq2Zn, u6 = p2Zn, u7 = q2Zn169

where u1 and u2 are the prime ones and for n = p2q2. Then, PIS(Z
p2q2 ) is as follows:170

u1

u2

u3

u4

u5

u6

u7

Figure 4. Prime ideal sum graph of Zp2q2 .

It can be seen from the PIS-graph structure of Z
p2q2 in Figure 4 that d(u1) = 4, d(u2) = 4,171

d(u3) = 4, d(u4) = 3, d(u5) = 3, d(u6) = 3, d(u7) = 3. We obtain n3 = 4, n4 = 3 by the vertex and172

edge-partition technique. It follows from Lemma 1 that:173

m33 = 2, m33 = 4×3
2 − 2 = 4,

m34 = 8, m33 = 4× 3− 8 = 4,
m44 = 2, m44 = 3×2

2 − 2 = 1.

Hence, M(Zp2q2 ; x, y) = ∑i≤j mijxiyj = 2x3y3 + 8x3y4 + 2x4y4 and174

CoM(Zp2q2 ; x, y) = ∑i≤j mijxiyj = 4x3y3 + 4x3y4 + x4y4 are obtained.175

176

Figure 4. Prime ideal sum graph of Zp2q2 .

In Figure 5, we give the 3D−surface representations of the M-polynomial and CoM-
polynomial forms of PIS(G(Zn)), respectively.
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(a) (b)

Figure 5. Polynomials corresponding to PIS(G(Zn)). (a) 3D−surf. of M(Zp2q2 ; x, y); (b) 3D−surf. of
CoM(Zp2q2 ; x, y).

Theorem 4. Let p, q, and r be distinct prime integers. Then, the M-polynomial and CoM-
polynomial of Zpqr have the forms

M(Zpqr; x, y) = 6x2y4 + 3x4y4

CoM(Zpqr; x, y) = 3x2y4.

Proof. Let us consider the ideals u1 = pZn, u2 = qZn, u3 = rZn, u4 = pqZn,
u5 = prZn, u6 = qrZn, where u1, u2, and u3 are the prime ones and n = pqr. Then,
PIS(Zpqr) is as follows (see Figure 6):

Taking into account the graph structure of Zpqr , it is obtained that d(u1) = 2, d(u2) = 2,
d(u3) = 2, d(u4) = 4, d(u5) = 4, d(u6) = 4. It follows that n2 = 3, n4 = 3 by vertex
partition. Then, we have

m24 = 6, m24 = 3× 3− 6 = 3,
m44 = 3, m44 = 3×2

2 − 3 = 0

by the edge-partition technique. Hence, we obtain:

M(Zpqr; x, y) = ∑i≤j mijxiyj = 6x2y4 + 3x4y4,
CoM(Zpqr; x, y) = ∑i≤j mijxiyj = 3x2y4.

8

(a) 3D-surf. of M(Zp2q2 ; x, y) (b) 3D-surf. of CoM(Zp2q2 ; x, y)
Figure 5. Polynomials corresponding to PIS(G(Zn)).

Theorem 4. Let p, q, and r be distinct prime integers. Then, the M-polynomial and CoM-polynomial177

of Zpqr have the forms178

M(Zpqr; x, y) = 6x2y4 + 3x4y4
179

CoM(Zpqr; x, y) = 3x2y4.180

Proof. Let us consider the ideals u1 = pZn, u2 = qZn, u3 = rZn, u4 = pqZn, u5 = prZn, u6 = qrZn,181

where u1, u2, and u3 are the prime ones and n = pqr. Then, PIS(Zpqr) is as follows (see Figure182

6):183

u1

u2

u3

u4

u5

u6

Figure 6. Prime ideal sum graph of Zpqr.

Taking into account the graph structure of Zpqr , it is obtained that d(u1) = 2, d(u2) = 2,184

d(u3) = 2, d(u4) = 4, d(u5) = 4, d(u6) = 4. It follows that n2 = 3, n4 = 3 by vertex partition. Then,185

we have186

m24 = 6, m24 = 3× 3− 6 = 3,
m44 = 3, m44 = 3×2

2 − 3 = 0
187

by the edge-partition technique. Hence, we obtain:188

M(Zpqr; x, y) = ∑i≤j mijxiyj = 6x2y4 + 3x4y4,189

CoM(Zpqr; x, y) = ∑i≤j mijxiyj = 3x2y4.190

191

Theorem 5. Let p and q be distinct prime integers. Then, the M-polynomial and CoM-polynomial of192

Zp3q have the forms193

M(Zp3q; x, y) = x2y2 + 6x2y4 + x4y4,194

CoM(Zp3q; x, y) = 5x2y2 + 6x2y4.195

Proof. Let us consider the ideals196

Figure 6. Prime ideal sum graph of Zpqr.

In Figure 7, we give the 3D−surface representations of the M-polynomial and CoM-
polynomial forms of PIS(G(Zn)), respectively.
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(a) (b)

Figure 7. Polynomials corresponding to PIS(G(Zn)). (a) 3D−surf. of M(Zpqr; x, y); (b) 3D−surf. of
CoM(Zpqr; x, y).

Theorem 5. Let p and q be distinct prime integers. Then, the M-polynomial and CoM-polynomial
of Zp3q have the forms

M(Zp3q; x, y) = x2y2 + 6x2y4 + x4y4,
CoM(Zp3q; x, y) = 5x2y2 + 6x2y4.

Proof. Let us consider the ideals

u1 = pZn, u2 = qZn, u3 = p2Zn, u4 = pqZn, u5 = p3Zn, u6 = p2qZn

where u1 and u2 are the prime ones for n = p3q. Then, PIS(Zp3q) is as follows (see Figure 8):
According to the PIS graph of Zp3q it is clear that d(u1) = 4, d(u2) = 2, d(u3) = 2,

d(u4) = 4, d(u5) = 2, d(u6) = 2. It follows that n2 = 4 and n4 = 2 by vertex partition.
Thus, the necessary coefficients to construct related polynomials are obtained as follows by
edge partition:

m22 = 2, m22 = 4×3
2 − 1 = 5,

m24 = 8, m24 = 4× 2− 6 = 6,
m44 = 2, m44 = 2×1

2 − 1 = 0.

Hence, we obtain M(Zp3q; x, y) = ∑i≤j mijxiyj = x2y2 + 6x2y4 + x4y4 and
CoM(Zp3q; x, y) = ∑i≤j mijxiyj = 5x2y2 + 6x2y4.

9

(a) 3D-surf. of M(Zpqr; x, y) (b) 3D-surf. of CoM(Zpqr; x, y)
Figure 7. Polynomials corresponding to PIS(G(Zn)).

u1 = pZn, u2 = qZn, u3 = p2Zn, u4 = pqZn, u5 = p3Zn, u6 = p2qZn197

where u1 and u2 are the prime ones for n = p3q. Then, PIS(Zp3q) is as follows (see Figure 8):198

u1

u2u3
u4

u5

u6

Figure 8. Prime ideal sum graph of Zp3q.

According to the PIS-graph of Zp3q it is clear that d(u1) = 4, d(u2) = 2, d(u3) = 2, d(u4) = 4,199

d(u5) = 2, d(u6) = 2. It follows that n2 = 4 and n4 = 2 by vertex partition. Thus, the necessary200

coefficients to construct related polynomials are obtained as follows by edge partition:201

m22 = 2, m22 = 4×3
2 − 1 = 5,

m24 = 8, m24 = 4× 2− 6 = 6,
m44 = 2, m44 = 2×1

2 − 1 = 0.

Hence, we obtain M(Zp3q; x, y) = ∑i≤j mijxiyj = x2y2 + 6x2y4 + x4y4 and202

CoM(Zp3q; x, y) = ∑i≤j mijxiyj = 5x2y2 + 6x2y4.203

(a) 3D-surf. of M(Zp3q; x, y) (b) 3D-surf. of CoM(Zp3q; x, y)
Figure 9. Polynomials corresponding to PIS(G(Zn)).

204

Theorem 6. Let p, q, and r be distinct prime integers. Then, the M-polynomial and CoM-polynomial205

of Zp2qr have the forms206

M(Zp2qr; x, y) = 5x4y4 + 14x4y6 + 5x6y6,207

Figure 8. Prime ideal sum graph of Zp3q.

In Figure 9, we give the 3D−surface representations of the M-polynomial and CoM-
polynomial forms of PIS(G(Zn)), respectively.
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(a) (b)

Figure 9. Polynomials corresponding to PIS(G(Zn)). (a) 3D−surf. of M(Zp3q; x, y); (b) 3D−surf. of
CoM(Zp3q; x, y).

Theorem 6. Let p, q, and r be distinct prime integers. Then, the M-polynomial and CoM-
polynomial of Zp2qr have the forms

M(Zp2qr; x, y) = 5x4y4 + 14x4y6 + 5x6y6,
CoM(Zp2qr; x, y) = 16x4y4 + 7x4y6 − 2x6y6.

Proof. Let us consider the ideals u1 = pZn, u2 = qZn, u3 = rZn, u4 = p2Zn,
u5 = pqZn, u6 = prZn, u7 = p2qZn, u8 = p2rZn, u9 = qrZn, u10 = pqrZn, where u1, u2,
and u3 are the prime ones and n = p2qr. Then, PIS(Zp2qr) is as follows (see Figure 10):

It can be seen from the PIS-graph structure of Z
p2qr

that d(u1) = 6, d(u2) = 4,
d(u3) = 4, d(u4) = 4, d(u5) = 6, d(u6) = 6, d(u7) = 4, d(u8) = 4, d(u9) = 6, d(u10) = 4.
Here, we obtain n4 = 6, n6 = 4 using the vertex partition technique. In addition, we obtain
from Lemma 1 that:

m44 = 5, m44 = 7×6
2 − 5 = 16

m46 = 14, m46 = 7× 3− 14 = 7
m66 = 5, m66 = 3×2

2 − 5 = −2

by the edge-partition technique.
Hence, M(Zp2qr; x, y) = ∑i≤j mijxiyj = 5x4y4 + 14x4y6 + 5x6y6 and CoM(Zp2qr;

x, y) = ∑i≤j mijxiyj = 16x4y4 + 7x4y6 − 2x6y6 are obtained.

10

CoM(Zp2qr; x, y) = 16x4y4 + 7x4y6 − 2x6y6.208

Proof. Let us consider the ideals209

u1 = pZn, u2 = qZn, u3 = rZn, u4 = p2Zn, u5 = pqZn, u6 = prZn, u7 = p2qZn, u8 = p2rZn, u9 =210

qrZn, u10 = pqrZn, where u1, u2, and u3 are the prime ones and n = p2qr. Then, PIS(Zp2qr) is as211

follows (see Figure 10):212

u1

u2u3

u4

u5

u6

u7

u8

u9

u10

Figure 10. Prime ideal sum graph of Zp2qr.

It can be seen from the PIS-graph structure of Z
p2qr

that d(u1) = 6, d(u2) = 4, d(u3) = 4,213

d(u4) = 4, d(u5) = 6, d(u6) = 6, d(u7) = 4, d(u8) = 4, d(u9) = 6, d(u10) = 4. Here we obtain n4 = 6,214

n6 = 4 using the vertex partition technique. Also, we obtain from Lemma 1 that:215

m44 = 5, m44 = 7×6
2 − 5 = 16

m46 = 14, m46 = 7× 3− 14 = 7
m66 = 5, m66 = 3×2

2 − 5 = −2

by the edge-partition technique.216

Hence, M(Zp2qr; x, y) = ∑i≤j mijxiyj = 5x4y4 + 14x4y6 + 5x6y6 and217

CoM(Zp2qr; x, y) = ∑i≤j mijxiyj = 16x4y4 + 7x4y6 − 2x6y6 are obtained.218

(a) 3D-surf. of M(Zp2qr; x, y) (b) 3D-surf. of CoM(Zp2qr; x, y)
Figure 11. Polynomials corresponding to PIS(G(Zn)).

219

Figure 10. Prime ideal sum graph of Zp2qr.
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In Figure 11, we give the 3D−surface representations of the M-polynomial and CoM-
polynomial forms of PIS(G(Zn)), respectively.

(a) (b)

Figure 11. Polynomials corresponding to PIS(G(Zn)). (a) 3D−surf. of M(Zp2qr; x, y); (b) 3D−surf.
of CoM(Zp2qr; x, y).

Theorem 7. Let p, q, r, and s be distinct prime integers. Then, the M-polynomial and CoM-
polynomial of Zpqrs have the forms

M(Zpqrs; x, y) = 11x6y6 + 25x6y8 + 12x8y8,
CoM(Zpqrs; x, y) = 17x6y6 + 23x6y8 + 3x8y8.

Proof. Let us consider the ideals u1 = pZn, u2 = qZn, u3 = rZn, u4 = pqZn, u5 = sZn,
u6 = prZn, u7 = psZn, u8 = qrZn, u9 = qsZn, u10 = pqrZn, u11 = rsZn, u12 = pqsZn,
u13 = prsZn, u14 = qrsZn where u1, u2, u3, and u5 are the prime ones and n = pqrs. Then,
PIS(Zpqrs) is given in Figure 12.

From the PIS-graph structure of Zpqrs, we have d(u1) = d(u2) = d(u3) = d(u5) =
d(u10) = d(u12) = d(u13) = d(u14) = 6 and d(u4) = d(u6) = d(u7) = d(u8) = d(u9) =
d(u11) = 8. Usingthe vertex partition technique, we have n6 = 8 and n8 = 6. By edge
partition and using Lemma 1, we obtain:

m66 = 11, m66 = 8×7
2 − 11 = 17,

m68 = 25, m68 = 8× 6− 25 = 23,
m88 = 12, m88 = 6×5

2 − 12 = 3.

Hence, M(Zpqrs; x, y) = 11x6y6 + 25x6y8 + 12x8y8, and CoM(Zpqrs; x, y) = 17x6y6 +
23x6y8 + 3x8y8 are obtained.

11

Theorem 7. Let p, q, r, and s be distinct prime integers. Then, the M-polynomial and CoM-polynomial220

of Zpqrs have the forms221

M(Zpqrs; x, y) = 11x6y6 + 25x6y8 + 12x8y8,222

CoM(Zpqrs; x, y) = 17x6y6 + 23x6y8 + 3x8y8.223

Proof. Let us consider the ideals224

u1 = pZn, u2 = qZn, u3 = rZn, u4 = pqZn, u5 = sZn, u6 = prZn, u7 = psZn, u8 = qrZn,225

u9 = qsZn, u10 = pqrZn, u11 = rsZn, u12 = pqsZn, u13 = prsZn, u14 = qrsZn226

where u1, u2, u3, and u5 are the prime ones and n = pqrs. Then, PIS(Zpqrs) is given in Figure 12.227

u1

u2
u3

u4u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

Figure 12. Prime ideal sum graph of Zpqrs.

From the PIS-graph structure of Zpqrs, we have228

d(u1) = d(u2) = d(u3) = d(u5) = d(u10) = d(u12) = d(u13) = d(u14) = 6 and d(u4) = d(u6) =229

d(u7) = d(u8) = d(u9) = d(u11) = 8.230

Using vertex partition technique, we have n6 = 8 and n8 = 6. By edge partition and using231

Lemma 1, we obtain:232

m66 = 11, m66 = 8×7
2 − 11 = 17,

m68 = 25, m68 = 8× 6− 25 = 23,
m88 = 12, m88 = 6×5

2 − 12 = 3.
233

Hence,234

M(Zpqrs; x, y) = 11x6y6 + 25x6y8 + 12x8y8, and235

CoM(Zpqrs; x, y) = 17x6y6 + 23x6y8 + 3x8y8.236

237

Figure 12. Prime ideal sum graph of Zpqrs.

In Figure 13, we give the 3D−surface representations of the M-polynomial and CoM-
polynomial forms of PIS(G(Zn)), respectively.
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(a) (b)

Figure 13. Polynomials corresponding to PIS(G(Zn)). (a) 3D−surf. of M(Zpqrs; x, y); (b) 3D−surf.
of CoM(Zpqrs; x, y).

5.2. Computing Various Topological Indices and Topological Coindices of Some Commutative Rings

Since the proofs of the theorems in this section are similar to each other, only a few
of them are discussed. The others can be proven by the same technique with necessary
variations via the related M-polynomials and CoM-polynomials of Zn.

5.2.1. Topological Indices

Theorem 8. Let G be the PIS graph of Zpα for α ≥ 2. Then,

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

α2 − 3α + 2 (α− 2)2 1 α3 − 5α2 + 8α− 4 α3 − 6α2 + 10α− 4 α2 − 4α + 5 2α−4
α−1

(α−2)2

α−1
(α−2)4

(α−3)3

Proof. Since M(Zpα ; x, y) = (α− 2)xyα−2 and α ≥ 2 from Theorem 1, we have the follow-
ing results from Table 1.

Dx = (α− 2)xyα−2, Dy = (α− 2)2xyα−2

Sx = (α− 2)xyα−2, Sy = xyα−2,

Dx + Dy = (α2 − 3α + 2)xyα−2,

DxDy = (α− 2)2xyα−2,

SxSy = xyα−2,

DxDy(Dx + Dy) = (α3 − 5α2 + 8α− 4)xyα−2,

D2
x = (α− 2)xyα−2, D2

y = (α− 2)3xyα−2,

D2
x + D2

y = (α3 − 6α2 + 10α− 4)xyα−2,

DxSy + SxDy = (α2 − 4α + 5)xyα−2,

2Sx J =
2α− 4
α− 1

xα−1,

Sx JDxDy =
(α− 2)2

α− 1
xα−1,

S3
xQ−2 JD3

xD3
y =

(α− 2)4

(α− 3)3 xα−3.

Hence, we obtain M1 = (α2− 3α+ 2), M2 = (α− 2)2, mM2 = 1, RezG3 = α3− 5α2 + 8α− 4,

F = α3 − 6α2 + 10α− 4, SDD = (α2 − 4α + 5), H = 2α−4
α−1 , I = (α−2)2

α−1 , and A = (α−2)4

(α−3)3 for
x = y = 1.
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Theorem 9. Let G be the PIS graph of Zp2q. Then,

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

18 19 0.916 88 32 21.666 1.8 4.15 4.877

Proof. Taking into account M(Zp2q; x, y) = xy3 + x2y2 + 2x2y3 from Theorem 2, we have
the following results.

Dx = xy3 + 2x2y2 + 4x2y3, Dy = 3xy3 + 2x2y2 + 6x2y3

Sx = xy3 +
1
2

x2y2 + x2y3, Sy =
1
3

xy3 +
1
2

x2y2 +
2
3

x2y3,

Dx + Dy = 4xy3 + 4x2y2 + 10x2y3,

DxDy = 3xy3 + 4x2y2 + 12x2y3,

SxSy =
1
3

xy3 +
1
4

x2y2 +
1
3

x2y3,

DxDy(Dx + Dy) = 12xy3 + 16x2y2 + 60x2y3,

D2
x = xy3 + 4x2y2 + 8x2y3, D2

y = 3xy3 + 4x2y2 + 12x2y3,

D2
x + D2

y = 4xy3 + 8x2y2 + 20x2y3,

DxSy + SxDy =
10
3

xy3 + 5x2y2 +
40
3

x2y3,

2Sx J = x4 +
4
5

x5,

Sx JDxDy =
7
4

x4 +
12
5

x5,

S3
xQ−2 JD3

xD3
y =

91
64

x4 +
432
125

x5.

Hence, we obtain from Table 1 M1 = 18, M2 = 19, mM2 = 0.916, RezG3 = 88, F = 32,
SDD = 21.666, H = 1.8, I = 4.15, and A = 4.877.

The proofs of Theorems 10–14 are similar to the proof of Theorem 9.

Theorem 10. Let G be the PIS graph of Zp2q2 . Then,

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

84 146 0.626 1036 300 24.666 3.452 20.714 159.909

Theorem 11. Let G be the PIS graph of Zpqr. Then,

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

60 96 0.937 480 168 21 2.75 14 104.888

Theorem 12. Let G be the PIS graph of Zp3q. Then,

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

48 68 1.062 432 160 19 2.75 11 17.240

Theorem 13. Let G be the PIS graph of Zp2qr. Then,

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

240 596 1.034 6160 1248 50.333 4.883 58.6 706.094
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Theorem 14. Let G be the PIS graph of Zpqrs. Then,

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

674 2364 1.013 33,840 4824 98.083 6.904 166.714 3259.618

5.2.2. Topological Coindices

Theorem 15. Let G be the PIS graph of Zpα for α ≥ 2. Then,

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

0 0 0 0 0 0 0 0 0

Proof. Since CoM(Zpα ; x, y) = 0, then it is a clear fact that all coindices are equal to
zero.

Theorem 16. Let G be the PIS graph of Zp2q. Then,

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

0 0 0 0 0 0 0 0 0

Proof. Since CoM(Zp2q; x, y) = 0, then it is a clear fact that all coindices are equal to
zero.

Theorem 17. Let G be the PIS graph of Zp2q2 . Then,

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

60 100 0.840 377 204 18.333 2.726 14.857 119.821

Proof. Taking into account the form of the CoM-polynomial CoM(Z
p2q2

; x, y) = 4x3y3 +

4x3y4 + x4y4 from Theorem 3, we have the following results.

Dx = 12x3y3 + 12x3y4 + 4x4y4, Dy = 12x3y3 + 16x3y4 + 4x4y4

Sx =
4
3

x3y3 +
4
3

x3y4 +
1
4

x4y4, Sy =
4
3

x3y3 + x3y4 +
1
4

x4y4,

Dx + Dy = 24x3y3 + 28x3y4 + 8x4y4,

DxDy = 36x3y3 + 48x3y4 + 16x4y4,

SxSy =
4
9

x3y3 +
1
3

x3y4 +
1

16
x4y4,

DxDy(Dx + Dy) = 216x3y3 + 336x3y4 + 128x4y4,

D2
x = 36x3y3 + 36x3y4 + 16x4y4, D2

y = 36x3y3 + 64x3y4 + 16x4y4,

D2
x + D2

y = 72x3y3 + 100x3y4 + 32x4y4,

DxSy + SxDy = 8x3y3 +
25
3

x3y4 + 2x4y4,

2Sx J =
4
3

x6 +
8
7

x7 +
1
4

x8,

Sx JDxDy = 6x6 +
48
7

x7 + 2x8,

S3
xQ−2 JD3

xD3
y =

2916
64

x6 +
6912
125

x7 +
4096
216

x8.
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Hence, we obtain from Table 2 that M1 = 60, M2 = 100, mM2 = 0.840, RezG3 = 377,
F = 204, SDD = 18.333, H = 2.726, I = 14.857, and A = 119.821.

The proofs of Theorems 18–21 are similar to the proof of Theorem 17.

Theorem 18. The topological coindices of PIS graph G(Zpqr) are computed as follows:

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

18 24 0.375 144 60 7.5 1 4 24

Theorem 19. The topological coindices of PIS graph G(Zp3q) are computed as follows:

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

56 68 2 368 160 25 4.5 13 88

Theorem 20. The topological coindices of PIS graph G(Zp2qr) are computed as follows:

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

174 224 0.986 2864 732 43.166 5.066 −6.8 399.095

Theorem 21. The topological coindices of PIS graph G(Zpqrs) are computed as follows:

M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

674 2364 1.013 33,840 4824 98.083 6.904 166.714 2551.752

5.3. Comparison

In this part of the study, considering each M-polynomial and CoM-polynomial de-
signed for algebraic graph structures studied in previous sections, we give the table
(Figure 14) of computed values of topological descriptors in order to shed a visual light on
its physical and topological features.

Figure 14. Numerical and graphical comparison of topological indices and coindices.
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6. Applications in Chemistry

In the present section, we discuss applications of algebraic graph theory in chemistry.
We aim to present a chemical application to emphasize the positive impact of degree-based
topological (co)indices on QSAR analysis. Our statistical analysis verifies that the study’s
topological descriptors are good predictors of various bioactivity properties of the seven
anti-Alzheimer drug candidates.

Significant contributions have been made in the field of investigating the predictive
potential of different classes of graph-theoretic indices. The first study combining topologi-
cal descriptors with QSAR analysis was carried out in [51]. Another study was undertaken
by Gutman and Tošovic [52], who initiated a comprehensive examination to evaluate the
efficacy of degree-based topological indices in predicting the physicochemical properties
of isomeric octanes. In [53], Malik et al. broadened their research scope, moving beyond
isomeric octanes to encompass benzenoid hydrocarbons, in order to establish correlations
between various physicochemical properties. Furthermore, Hayat et al. [54] extended their
study to lower polycyclic aromatic hydrocarbons for correlating the π-electron energy.
Hayat and Asmat [55] discovered the optimal value of α that yields the strongest correla-
tion between the generalized first Zagreb index M1

α and the π-electron energy of lower
benzenoid hydrocarbons. Arif et al. [56] explored the predictive capacity of degree-based
irregularity indices concerning the physicochemical characteristics of monocarboxylic acids.
In [57,58], the authors expanded upon previous research, investigating the predictive po-
tential of topological indices, shifting the focus from degree-based indices to distance-based
indices. References [59–63] can also be cited for eigenvalues-based indices and their ability
to predict various properties. In this part of the study, we harnessed QSAR modeling to
perform an elaborate regression analysis, showcasing its predictive power in relation to
our degree-based topological descriptors.

With this aim, we chose seven compounds (Compound 1, Compound 2, Compound 3,
Compound I, Compound III, Compound IV, and Compound VI) that were claimed as
effective Alzheimer’s disease drug candidates by testing limited experimental methods
in [64,65]. Now, we will explain in detail, for one of the compounds (Compound 3),
that the calculations we made for algebraic graphs are similar for chemical graphs. Let
G = (V(G), E(G)) be the chemical graph of Compound 3 taken from [64]. The compound’s
molecular graph contains 39 vertices and 41 edges as follows (see Table 3 below):

Table 3. Graph representation of molecular structure.

Chemical Structure Graph Structure

V1 = {u ∈ V(G) : d(u) = 1}, n1 = |V1| = 6; V2 = {u ∈ V(G) : d(u) = 2}, n2 = |V2| = 22
V3 = {u ∈ V(G) : d(u) = 3}, n3 = |V3| = 10; V4 = {u ∈ V(G) : d(u) = 4}, n4 = |V4| = 1

Since the vertex partition of the chemical compound is as above, we have n1 = |V1| = 6,
n2 = |V2| = 22, n3 = |V3| = 10, n4 = |V4| = 1.

Additionally, if Eij = {uv = eij ∈ E(G) : d(u) = i ∧ d(v) = j} and
∣∣Eij
∣∣ = mij, then

the coefficients of the M-polynomial and also the coefficients of the CoM-polynomial of the
chemical compound can be determined as follows using the edge-partition technique.
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|E13| = m13 = 4; m13 = n1n3 −m13 = 6× 10− 4 = 56

|E23| = m23 = 24; m23 = n2n3 −m23 = 22× 10− 24 = 196

|E14| = m14 = 2; m22 = n1n4 −m14 = 6× 1− 2 = 4

|E22| = m22 = 9; m14 =
n2(n2 − 1)

2
−m22 =

22(22− 1)
2

− 9 = 222

|E34| = m34 = 2; m34 = n3n4 −m34 = 10× 1− 2 = 8

Hence, the polynomials are obtained as follows:

M(x, y) = ∑
i≤j

mijxiyj = 4xy3 + 2xy4 + 9x2y2 + 24x2y3 + 2x3y4

CoM(x, y) = ∑
i≤j

mijxiyj = 56xy3 + 4xy4 + 222x2y2 + 196x2y3 + 8x3y4.

When similar processes are applied to the remaining molecules in order to calculate the
topological indices, we obtain the results given in Table 4 below.

Table 4. The values of topological indices calculated with respect to the graph structure of
the compounds.

Compounds M1(G) M2(G) mM2(G) RezG3(G) F(G) SDD(G) H(G) I(G) A(G)

Compound 1 186.00 208.00 8.17 956.00 458.00 89.67 17.4 43.2 301.50

Compound 2 186.00 208.00 8.17 956.00 458.00 89.67 17.4 43.2 301.50

Compound 3 284.00 416.00 8.25 1744.00 716.00 97.33 17.47 81.49 309.89

Compound I 182.00 212.00 7.67 1064.00 466.00 87.00 16.2 43.1 296.59

Compound III 196.00 232.00 8.00 1212.00 408.00 95.33 16.77 45.73 312.98

Compound IV 186.00 210.00 8.22 1182.00 458.00 89.00 17.47 44.4 308.28

Compound VI 200.00 230.00 8.56 1156.00 516.00 97.3 18.04 47.03 650.61

Table 5. pMIC (µg/mL) values of the compounds.

Compound E. coli P. aeruginosa K. pneumoniae E. faecalis B. cereus S. aureus

Compound 1 2.71 3.01 2.71 2.71 2.71 2.71

Compound 2 2.11 2.41 2.41 2.11 2.11 2.11

Compound 3 1.81 2.11 1.81 1.81 1.81 1.81

Compound I 3.01 3.01 3.01 3.01 3.01 3.01

Compound III 2.41 2.41 2.41 2.41 2.41 2.41

Compound IV 2.71 3.01 2.71 2.71 2.71 2.11

Compound VI 2.71 3.01 3.01 2.71 2.71 2.71

The following equations give the mathematical connection between features and
topological indices that are well correlated in predicting bioactivity properties (see Table 5),
with curvilinear regression analysis in exponential form (obtained by SPSS (21.0.)). The
fitted curves summarizing this situation are given in Figure 15. The notations R and SE
given in the equations state the correlation coefficient and standard error, respectively.

E. coli = 5.29× (e−0.04×M1); R = 0.777, SE = 0.122

P. aeruginosa = 3.81× (e−0.001×M2); R = 0.727, SE = 0.112
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K. pneumoniae = 4.12× (e−0.002×M2); R = 0.848, SE = 0.102

E. faecalis = 5.298× (e−0.004×M1); R = 0.777, SE = 0.122

Figure 15. Fitted curves obtained with curvilinear regression analysis in exponential form.

7. Conclusions

Studying algebraic graph theory has high significance in view of combining representa-
tion and number theory via combinatoric applications. Applications of finite rings and other
fields provide a solid background to cryptology and coding theory. Computing different
types of topological indices of algebraic graphs gives an idea about the physical properties
of related finite commutative rings. Investigating their different polynomial forms also
enables designing new and stronger physical structures in mechanics for robotics. When
combining this graph-theoretic-based mathematical modeling with artificial intelligence
and mechanic science, it is possible to provide time and budget savings while producing
solutions for various computer-network problems. Studying zero-divisor graphs over Zn is
now a trending field for understanding the physical properties of algebraic structures and
is also important for the spectral branch of graph theory.

In this study, we computed some topological indices and coindices that are related
to the graph complement of the PIS graph of Zn, where n = pα, p2q, p2q2, pqr, p3q, and
p2qr, pqrs for different prime integers p, q, r, and s, to simplify the process of computing
and also obtain an idea of the physical structures of commutative rings. Additionally, we
handled some algebraic polynomials called M-polynomials and CoM-polynomials. Both
polynomials can be used by researchers in the future, for example, by using QSPR/QSAR
analysis in chemistry and in other applied sciences such as cryptology, code theory, and
mechanics. Finally, we discussed the applicability of algebraic graphs to chemical graph
theory. Studying QSPR/QSAR analysis might be attractive for further studies in the
near future. We conclude this section with the following open problem based on the
reviewers’ comments:
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Problem 1. How can we construct the M-polynomials and CoM-polynomials to compute the
degree-based topological (co)indices of the PIS graph of Zn, where n = pαqαrαsα for the different
prime integers p, q, r, s, and α ≥ 1?
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