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Abstract: Statistical process control (SPC) is used for monitoring and detecting anomalies in processes
in the areas of manufacturing, environmental studies, economics, and healthcare, among others.
Herein, we introduce an innovative SPC approach via mathematical modeling and report on its
application via simulation studies to examine its suitability for monitoring processes involving
correlated data running on advanced control charts. Specifically, an approach for detecting small
to moderate shifts in the mean of a process running on a homogenously weighted moving average
(HWMA) control chart, which is symmetric about the center line with upper and lower control
limits, is of particular interest. A mathematical model for the average run length (ARL) of a moving
average process with exogenous variables (MAX) focused only on the zero-state performance of the
HWMA control chart is derived based on explicit formulas. The performance of our approach was
investigated in terms of the ARL, the standard deviation of the run length (SDRL), and the median
run length (MRL). Numerical examples are given to illustrate the efficacy of the proposed method. A
detailed comparative analysis of our method for processes on HWMA and cumulative sum (CUSUM)
control charts was conducted for process mean shifts in many situations. For several values of the
design parameters, the performances of these two control charts are also compared in terms of the
expected ARL (EARL), expected SDRL (ESDRL), and expected MRL (EMRL). It was found that
the performance of the HWMA control chart was superior to that of the CUSUM control chart for
several process mean shift sizes. Finally, the applicability of our method on a HWMA control chart is
provided based on a real-world economic process.

Keywords: average run length; integral equation; moving average; exogenous variable; zero state

1. Introduction

One aspect of statistical process control (SPC), the control chart, is a graphical tool
used in quality control and process management to monitor quality, reduce variability,
continually improve operability, etc. It is used for operations in many fields, such as the
natural sciences, engineering, finance, and medicine. The main objective of a control chart
is to detect the occurrence of an out-of-control situation as quickly as possible. There
are several types of control charts, each of which can be used to monitor and analyze
different parts of a process. In general, the selection of a control chart depends on the
type of process and the purpose of the process monitoring. For instance, the Shewhart
control chart can track and display large variations in a process parameter over time,
whereas the exponentially weighted moving average (EWMA) control chart [1], in which
more weight is placed on recent data points, is responsive to small to medium changes in
a process parameter. Page [2] proposed the cumulative sum (CUSUM) control chart that
can also detect small to moderate shifts in a process parameter by cumulatively summing
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deviations from the target value over time. Abbas [3] proposed the homogeneously
weighted moving average (HWMA) control chart in which specific weights are applied to
the current and previous samples. After studying the performance of the HWMA control
chart for non-normal processes, they determined that the parameters of the chart could
be modified to make it more robust to non-normality. Additionally, recent research by
Abbas [3] examined that the relative efficacy of the HWMA control chart was superior to
that of the CUSUM and EWMA control charts. Recently, Knoth et al. [4] focused attention
on several concerns regarding the HWMA control chart by stating, “In steady-state, the
HWMA chart loses performance relative to the EWMA chart”. In order to address these
concerns, the performance of the HWMA control chart has been reinvestigated under
steady and zero conditions at various shifts and smoothing parameters, Riaz et al. [5]. It
has been found that the HWMA control chart is superior to the EWMA control chart for
several shift sizes under zero state. Consequently, the authors aimed to provide an explicit
formula for the average run length of the HWMA control chart in order to compare how
well the control charts identified process changes. We have assumed that a change in the
process occurs at the very beginning, the so-called zero-state.

Usually, control charts such as EWMA, CUSUM, and HWMA control charts are
designed with symmetric two-sided upper and lower control limits. However, some real
applications might require a one-sided approach involving either the upper or the lower
limit. Usually, control charts have been conceptualized to monitor and analyze processes
involving independent and identically distributed (i.i.d) data. However, in some cases,
processes can exhibit autocorrelation in which previous data points can influence the
current data point. Autocorrelation can lead to non-random patterns in the data that may
affect the effectiveness of traditional control charts. In such situations, specialized control
charts or adjustments to deal with autocorrelation are needed.

The most popular model for autocorrelated processes is the autoregressive (AR) mov-
ing average (MA) model comprising AR and MA components, which has been shown to
provide relatively high forecasting accuracy. Autocorrelated processes can be influenced by
internal and external factors that can influence the time series being modeled. Thus, the
MA and ARMA models with exogenous variables (MAX(q,r) and ARMAX, respectively)
have been developed. This combination allows for a more comprehensive approach to time
series forecasting by considering both the inherent dynamics of the time series and the
impact of external factors. An explanatory variable is used to support better the accuracy
of the forecast. For example, the autoregressive integrated moving average model with
exogenous variables has been found to be a valuable tool for energy traders and other
market participants seeking to enhance their decision-making capabilities in the intraday
market, Lucic and Xydis [6]. As a result, this study focuses on the MAX model due to its
usefulness to real-world data.

The average run length (ARL) commonly used to measure the performance of a control
chart comprises two components. ARL0 is the expected number of observations when
the process is in control before the control chart signals that it is out of control, and its
value should be as large as possible. On the other hand, ARL1 is the expected number of
observations when the process is out of control before the control chart signals that it is out
of control, and its value should be as small as possible.

Several approaches have been used to estimate the ARL, including the Markov Chain
approach (MCA), Monte Carlo simulation, numerical integral equation (NIE), and explicit
formulas. Each has its merits. MCA provides a structured framework to model the control
chart’s behavior and state transitions [7], while Monte Carlo simulation can handle complex
interactions and variability [8]. The NIE method provides a mathematical framework for
analyzing the control chart properties [9] and obtaining analytical expressions for the ARL
under certain conditions.

The explicit formula method provides direct analytical solutions for the ARL under
specific assumptions. Several researchers have used this approach and checked the accuracy
of their solutions. For instance, Chananet and Phanyaem [10] proposed a solution for the
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ARL using explicit formulas for detecting changes in the mean of a seasonal autoregressive
model with exogenous variables running on a CUSUM control chart. Phanyaem [11] used
explicit formulas to derive the ARL for detecting changes in the mean of an AR-integrated
MA (ARIMA(p,d,q)) model running on an EWMA control chart. Supharakonsakun [12]
used explicit formulas to derive the ARL for detecting changes in the mean of a seasonal
MA of order q (SMA(q)) process running on a modified EWMA control chart. Recently,
Petcharat [13] provided explicit formulas for the ARL for detecting changes in the mean of a
stationary seasonal autocorrelated process with a trend running on a CUSUM control chart.
Peerajit [14] solved explicit formulas for the ARL for monitoring changes in the mean of a
long memory seasonal fractionally integrated MAX model running on a CUSUM control
chart. Petcharat [15] studied the performance of a seasonal MA process with exogenous
variables running on an EWMA control chart. Recently, Suriyakat and Petcharat [16]
proposed explicit formulas and numerical integral equation (NIE) approaches for the ARL
to detect changes in the mean of a stationary MA process with exogenous variables running
on an EWMA control chart and compare their performances.

The aim of the present study is to derive explicit formulas for the ARL to detect
changes in the mean of a MAX(q,r) model with exponential white noise running on an
HWMA control chart, which, to the best of our knowledge, has not yet been reported. We
also conducted a simulation study to compare the performance of our method to detect
changes in the mean of a MAX(q,r) model with exponential white noise running on HWMA
and CUSUM control charts.

2. Materials and Methods

The characteristics of the MAX(q,r) process and HWMA and CUSUM control charts
are presented here.

2.1. Control Charts
2.1.1. Homogenously Weighted Moving Average (HWMA) Control Chart

The HWMA statistic is considered under the assumption {Ht; t = 1, 2, 3, . . .}, as a
sequence of i.i.d continuous random variables with a common probability density function.
The HWMA statistic (Ht) is an upper HWMA statistic based on the MAX(q,r) process Ht.
The recursive formula can express it as in (1)

Ht = λYt + (1− λ)Yt−1, for t = 1, 2, . . . , (1)

where Yt is a sequence of the MAX(q,r) process with exponential white noise, the starting
value Y0 = u is an initial value, and u ∈ [0, b] where b is a control limit of the HWMA chart.

The control limits of the HWMA control chart consist of

Uppercontrollimit: UCLt =


µ + L

√
σ2λ2

n , t = 1

µ + L
√

σ2

n [λ2 + (1−λ)2

(t−1) ], t > 1

CenterLine: CL = µ

Lowercontrollimit: LCLt =


µ− L

√
σ2λ2

n , t = 1

µ− L
√

σ2

n [λ2 + (1−λ)2

(t−1) ], t > 1

where L is the width of the control limits.
The HWMA stopping time (τb) with a predetermined threshold b is defined as
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τb = inf{t > 0 ; Ht ≥ b}, for b > u.

2.1.2. Cumulative Sum (CUSUM) Control Chart

Page [2] proposed the CUSUM control chart for quality control, which can be used
to spot minor differences in process mean. The CUSUM statistics based on the MAX(q,r)
process can be expressed using the algorithm in (2) as follows:

Ct = Ct−1 + Yt − a for t = 1, 2, . . . , (2)

where Ct is a sequence of the MAX(q,r) process with exponential white noise where h is a
control limit and a usually called the CUSUM control chart’s reference value.

The CUSUM stopping time (τh) with a predetermined threshold h is defined

τh = inf{t > 0 ; Ct ≥ h}, for h > u.

2.2. Characteristics of Average Run Length

Let, {εt, t = 1, 2, 3, . . .} be a sequence of independent and identically distributed
random variables with a probability density function f (x) with the parameter α = α0,
which is before a change-point time θ ≤ ∞; the parameters α1 > α0 are after the change-
point time. Generally, the change-point times are considered. The expectation Eθ(.) for
fixed θ under probability density function f (x) with parameter α1 is that the change-point
occurs at a point θ. In statistical process control (SPC), it is generally desirable to have an
appropriate control chart that provides a large Average Run Length (ARL) at the change
point time for θ = ∞. A large ARL means that, under normal operating conditions (when
the process is in control), the control chart will typically require a long sequence of data
points before signaling a false alarm or indicating a shift in the process. This is the behavior
of the in-control state of ARL, denoted by ARL0, or the state of no change (α = α0). The
expectation of the run length τb for the in-control state can be defined as

ARL0 = Eθ(τb).

Meanwhile, if θ = 1, in the case of the change-point time from α0 to α1, then the ARL
is evaluated as the out-of-control state of ARL, denoted by ARL1, which can be defined as

ARL1 = Eθ(τb|τb ≥ 1).

3. Average Run Length for MAX(q,r) Process
3.1. The Explicit Formula Method

Theorem 1. The explicit formula of G(u) the ARL of MAX(q,r) process with an exponential
white noise

For the in-control process (α = α0), the ARL of the HWMA control chart can be expressed
as follows:

ARL0 = 1− [e
−b
α0λ − 1]e

(1−λ)u+λ(µ−θ1e−
q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1)

α0λ

1 + e

λ(µ−θ1e−
q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1)

α0λ

λ (e
−b
α0 − 1)

. (3)

Meanwhile, the out-of-control process (α = α1), as well as α1 = (1 + δ)α0, the ARL of
the HWMA control chart, can be expressed as follows:
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ARL1 = 1− [e
−b
α1λ − 1]e

(1−λ)u+λ(µ−θ1e−
q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1)

α1λ

1 + e

λ(µ−θ1e−
q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1)

α1λ

λ (e
−b
α1 − 1)

. (4)

Proof of Theorem 1 is shown in Appendix A.

3.2. Numerical Integral Equation Method

After the explicit formula of the ARL is proved, we will use the NIE method to
check the accuracy of the results. Numerical Integral Equations were first proposed by
Crowder [17] to approximate ARL for Gaussian distributions. Afterward, Champ and
Rigdon [18] thoroughly investigated them by comparing the run length distributions
derived from the MCA and the Integral Equation approach for the case of a Gaussian
distribution. Extensive investigations of the Integral Equation have been conducted by
Srivastava and Wu [19] for continuous-time systems and by Srivastava and Wu [20] for
discrete processes. The advantage of using the NIE method with quadrature rules is that
it provides a computationally efficient and accurate way to estimate the ARL. The ARL
estimated via the NIE method derived with quadrature rules denoted G̃(u) is a well-known
technique as given in Appendix B that can verify the ARL via the explicit formula. Different
quadrature rules can be employed to obtain similar ARL estimates, and the results obtained
from these rules are generally very close [21].

The approximation of the numerical integral for the function G(u) is,

G̃(u) = 1 +
1
λ

n

∑
k=1

wkG(ak) f (

ak − (1− λ)u− µ + θ1e +
q
∑

i=2
θiε1−i −

r
∑

j=1
β jXj1

λ
). (5)

3.3. Existence and Uniqueness of ARL

Banach’s Fixed-point Theorem provides theoretical support for the ARL equation’s
validity, ensuring a unique solution to the integral equation for explicit formulas. Let T be
an operation on the class of all continuous functions defined by

T(G(u)) = 1 + 1
λ

b∫
0

G(W) f (
W−(1−λ)u−µ+θ1e+

q
∑

i=2
θiε1−i−

r
∑

j=1
β jXj1

λ )dW (6)

According to Banach’s Fixed-point Theorem, if an operator T is a contraction, the
fixed-point equation T(G(u)) = G(u) has a unique solution. The theorem can be used as
follows below to show that the equation in (6) exists and has a unique solution.

Theorem 2. Banach’s Fixed-point Theorem
Let (X, d) be defined on a complete metric space and T : X → X satisfy the conditions of

a contraction mapping with contraction constant 0 ≤ r < 1 such that ‖T(G1)− T(G2)‖ ≤
r‖G1 − G2‖, ∀G1, G2 ∈ X. There exists a unique G(·) ∈ X such that T(G(u)) = G(u), i.e., a
unique fixed-point in X [22].

Proof of Theorem 2. Let T, defined in (6), be a contraction mapping for G1, G2 ∈ F[0, b],
such that ‖T(G1)− T(G2)‖ ≤ r‖G1 − G2‖,∀G1, G2∈ F[0, b] with 0 ≤ r < 1 under the norm
‖G‖∞ = sup

u∈[0,b]
|G(u)|, so
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‖T(G1)− T(G2)‖∞ = sup
u∈[0,b]

∣∣∣∣∣∣∣ 1
αλ e

(1−λ)u+µ−θ1e−
q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1

αλ

b∫
0
(G1(W)− G2(W))e−

W
αλ dW

∣∣∣∣∣∣∣
≤ sup

u∈[0,b]

∣∣∣∣∣∣∣‖G1 − G2‖ 1
αλ e

(1−λ)u+µ−θ1e−
q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1

αλ (−αλ)
(

e−
b

αλ − 1
)∣∣∣∣∣∣∣

= ‖G1 − G2‖∞ sup
u∈[0,b]

∣∣∣∣∣∣∣e
(1−λ)u+µ−θ1e−

q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1

αλ

∣∣∣∣∣∣∣
∣∣∣1− e−

b
αλ

∣∣∣ ≤ r‖G1 − G2‖∞

where r = sup
u∈[0,b]

∣∣∣∣∣∣∣e
(1−λ)u+µ−θ1e−

q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1

αλ

∣∣∣∣∣∣∣
∣∣∣1− e−

b
αλ

∣∣∣; 0 ≤ r < 1. �

4. Numerical Results

We conducted a simulation study to compare the efficacies of the explicit formulas
(G(u)) and NIE (G̃(u)) methods for the ARL of an MAX(q,r) process running on an HWMA
control chart via the following steps.

Step 1: Setting up the control limit for the MAX(q,r) process:

i Determine the exponential white noise (α0) and smoothing parameters for the in-
control process.

ii Determine the initial values for the MAX(q,r) process and the HWMA statistic.
iii Select acceptable values for ARL0 and the shift sizes (δ).
iv Compute the upper control limit (b) that yields the desired ARL for the control process

using (3).

Step 2: For the in-control ARL:

i Compute ARL0 using (3) when given the upper control limit (b) from Step 1.
ii Approximate the value of ARL0 via the NIE method by using (5).
iii If necessary, change the value of b according to the desired ARL0 value.

Step 3: For the out-of-control ARL:

i Compute ARL1 for various shift sizes and α1 = (1 + δ)α0 by using (4) and the value
of b from Step 1.

ii Approximate ARL1 via the NIE method by using (5).
iii Compare the ARL values obtained using the explicit formulas and NIE methods.

To compare these, the absolute relative change (ARC) is computed as follows:

ARC(%) =

∣∣∣G(u)− G̃(u)
∣∣∣

G(u)
× 100 (7)

Next, the efficiency of the HWMA control chart is compared with that of the CUSUM
control chart. Several performance measures are commonly used to assess a control chart’s
ability to detect process variations. First, the relative mean index (RMI) [23] is a statistical
metric used to assess which control chart more efficiently detects shifts or changes in the
process mean. A lower RMI indicates a more efficient control chart. The RMI is calculated
as follows:

RMI =
1
n

n

∑
i=1

[
ARLi(r)− ARLi(s)

ARLi(s)

]
, (8)

where ARLi(r) is the ARL value for each control chart for the determined shift size i,
ARLi(s) and is the lowest ARL for i obtained by each of the control charts.
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The standard deviation run length (SDRL) and median run length (MRL) are tools for
assessing the performance of control charts in maintaining process stability and quickly
detecting an out-of-control situation [24]. For the in-control process, th7e SDRL and MRL
are calculated as follows:

ARL0 =
1
ς

, SDRL0 =

√
1− ς

ς2 , MRL0 =
log(0.5)

log(1− ς)
, (9)

where ς represents a type I error. In this study, ARL0 was fixed at 370, and it can be
calculated as SDRL0 and MRL0 by (9) at approximately 370 and 256, respectively. On the
other hand, for out-of-control situations, SDRL1 and MRL1 are calculated by

ARL1 =
1

1− ψ
, SDRL1 =

√
ψ

(1− ψ)2 , MRL1 =
log(0.5)

log ψ
, (10)

where ψ represents type II error.
The control chart’s effectiveness in detecting various types of process variations can

be evaluated by considering the values of SDRL1, MRL1, and ARL1, after which informed
decisions about its performance can be made. Lower values of these measurements indicate
better performance in terms of sensitivity and efficiency. Furthermore, the comparison of
the performances of the HWMA and CUSUM control charts in terms of the expected ARL
(EARL), expected SDRL (ESDRL), and expected MRL (EMRL) is calculated as follows:

EARL =
1
∆

δmax

∑
δ=δmin

ARL(δ), ESDRL =
1
∆

δmax

∑
δ=δmin

SDRL(δ), EMRL =
1
∆

δmax

∑
δ=δmin

MRL(δ). (11)

For the results, a simulation of the in-control process is given with ARL0 = 370, and then
the initial parameter value was studied α0 = 1. The out-of-control process α1 = (1 + δ)α0
is computed by determining shift sizes (δ) to be 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3,
and 0.5. The control limits for the HWMA control chart running a MAX(q,r) process when
ARL0 = 370 are provided in Table 1. For example, for a MAX(2,1) process with parameter
values δ = 1, θ1 = 0.1, θ2 = 0.2, β1 = 0.2, the control limit is 0.00179. In Tables 2 and 3, the
ARL values obtained using the explicit formulas and NIE methods for the MAX(1,1) and
MAX(2,3) models running on an HWMA control chart for λ = 0.1 or 0.2 are presented. It
can be seen that the ARL values from both methods are similar. This was confirmed by the
ARC values being very low.

Table 1. Control limits of HEWMA control chart with MAX processes.

Models
Coefficients

δ θ1 θ2 θ3 β1 β2 β3 λ = 0.1 λ = 0.2 λ = 0.3

MAX(1,1) 1 0.1 0.2 0.0014638 0.06065 0.10252
MAX(1,2) 1 0.1 0.2 0.3 0.0010800 0.04440 0.074865
MAX(1,3) 1 0.1 0.2 0.3 0.4 0.0007230 0.02944 0.049523
MAX(2,1) 1 0.1 0.2 0.2 0.0017900 0.07483 0.12679
MAX(2,2) 1 0.1 0.2 0.2 0.3 0.0013220 0.05464 0.09227
MAX(2,3) 1 0.1 0.2 0.2 0.3 0.4 0.0008850 0.03614 0.060845
MAX(3,1) 1 0.1 0.2 0.3 0.2 0.0024200 0.10300 0.17547
MAX(3,2) 1 0.1 0.2 0.3 0.2 0.3 0.0017900 0.07483 0.12679
MAX(3,3) 1 0.1 0.2 0.3 0.2 0.3 0.4 0.0011950 0.04925 0.08309
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Table 2. The ARL of HWMA control chart for MAX(1,1) using explicit formula against NIE method
is given β1 = 0.2, δ = 1, and α0 = 1.

θ1 δ

λ = 0.1
b = 0.001195

ARC(%)

λ = 0.2
b = 0.04925

ARC(%)
Explicit
Formula NIE Explicit

Formula NIE

−0.1

0 370.3770885 370.377 2.390 × 10−5 370.5593435 370.559 9.270 × 10−5

0.001 366.1943273 366.194 8.938 × 10−5 362.1715955 362.172 0.00011677
0.003 357.9938367 357.994 4.560 × 10−5 346.3219822 346.322 5.133 × 10−6

0.005 350.0079350 350.008 1.858 × 10−5 331.600544 331.60 1.641 × 10−5

0.01 330.9408108 330.941 5.718 × 10−5 299.0211502 299.021 5.023 × 10−5

0.03 265.9258522 265.926 5.558 × 10−5 209.3451951 209.345 9.320 × 10−5

0.05 215.4434020 215.443 0.00018659 156.1001736 156.100 0.00011124
0.1 131.5709136 131.571 6.564 × 10−5 87.70901617 87.7090 1.844 × 10−5

0.3 26.90378287 26.9038 6.368 × 10−5 21.56693573 21.5669 0.00016565
0.5 8.762648041 8.76265 2.236 × 10−5 9.417738995 9.41774 1.067 × 10−5

1.0 2.039095587 2.03910 0.00021643 3.137729377 3.13773 1.984 × 10−5

3.0 1.039333882 1.03933 0.00037350 1.245405834 1.24541 0.00033454
5.0 1.011101932 1.01110 0.00019107 1.102469633 1.10247 3.333 × 10−5

θ1 δ

λ = 0.1
b = 0.001463

ARC(%)

λ = 0.2
b = 0.06065

ARC(%)
Explicit
Formula NIE Explicit

Formula NIE

0.1

0.00 370.7863113 370.786 8.395 × 10−5 370.6764977 370.676 0.00013428
0.001 366.6757192 366.676 7.658 × 10−5 362.7898379 362.790 4.467 × 10−5

0.003 358.6141296 358.614 3.614 × 10−5 347.8319481 347.832 1.493 × 10−5

0.005 350.7601349 350.760 3.845 × 10−5 333.8731750 333.873 5.240 × 10−5

0.01 331.9940916 331.994 2.760 × 10−5 302.7570590 302.757 1.948 × 10−5

0.03 267.8441508 267.844 5.630 × 10−5 215.4444901 215.444 0.0002275
0.05 217.8316782 217.832 0.00014800 162.3849054 162.385 5.823 × 10−5

0.10 134.2173814 134.217 0.00028400 92.75953887 92.7595 4.190 × 10−5

0.30 28.19757214 28.1976 9.881 × 10−5 23.43661469 23.4366 6.269 × 10−5

0.50 9.321311662 9.32131 1.783 × 10−5 10.33587079 10.3359 0.00028256
1.0 2.151737413 2.15174 0.00012000 3.431153045 3.43115 8.875 × 10−5

3.0 1.045822609 1.04582 0.00024900 1.290008218 1.29001 0.00013814
5.0 1.013149215 1.01315 7.748 × 10−5 1.122724333 1.12272 0.00038594

A comparison of the ARL1 results for MAX(1,1) and MAX(2,3) processes running
on HWMA and CUSUM control charts is provided in Tables 4 and 5. In this case, the
parameter values were set as ARL0 = 370, λ = 0.1, 0.2, or 0.3, and the reference value (a) = 4.
The ARL values derived by using the explicit formulas were lower for the HWMA control
chart than for the CUSUM control chart for all shift sizes and all values of λ. In addition, as
λ. was increased, the ARL1 values decreased accordingly. Moreover, the SDRL and MRL
values were the same as the ARL values. Subsequently, the ARL values obtained from each
control chart using the explicit formulas method in Tables 4–6 were used to calculate the
EARL, ESDRL, and EMRL values. It was found that the proposed method for the HWMA
control chart provided the best performed the best because it obtained the lowest EARL,
ESDRL, and EMRL values. Therefore, it can be concluded that the HWMA control chart
performs better than the CUSUM control chart for this scenario, where the results of the
performance comparison are consistent with Abbas [3].
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Table 3. The ARL of HWMA control chart for MAX(2,3) using explicit formula against NIE method
given θ1 = 0.1, β1 = 0.1, β2 = 0.15, β3 = 0.2, µ = 1 and α0 = 1.

θ2 δ

λ = 0.1
b = 0.00093

ARC (%)

λ = 0.2
b = 0.03805

ARC (%)
Explicit
Formula NIE Explicit

Formula NIE

−0.2

0.00 370.5910199 370.591 5.373 × 10−6 370.8965713 370.897 0.00011557
0.001 366.3099585 366.310 1.133 × 10−5 361.8637773 361.864 6.154 × 10−5

0.003 357.9201174 357.920 3.281 × 10−5 344.8749336 344.875 1.924 × 10−5

0.005 349.7541889 349.754 5.401 × 10−5 329.1876507 329.188 0.00010610
0.01 330.2752321 330.275 7.026 × 10−5 294.7876499 294.788 0.00011877
0.03 264.0649507 264.065 1.868 × 10−5 202.3095739 202.310 0.00021061
0.05 212.9132635 212.913 0.000123736 148.9225782 148.923 0.00028323
0.10 128.5909253 128.591 5.811 × 10−5 82.05570162 82.0557 1.969 × 10−6

0.30 25.42355065 25.4236 0.000194101 19.53869351 19.5387 3.320 × 10−5

0.5 8.132070895 8.13207 1.100 × 10−5 8.434958529 8.43496 1.744 × 10−5

1.0 1.915696782 1.91570 0.000167977 2.829546229 2.82955 0.00013327
3.0 1.032573160 1.03257 0.000306078 1.199966562 1.19997 0.00028652
5.0 1.009005379 1.00901 0.000457928 1.082068426 1.08207 0.00014546

θ2 δ

λ = 0.1
b = 0.00000003275

ARC (%)

λ = 0.2
b = 0.05756

ARC (%)
Explicit
Formula NIE Explicit

Formula NIE

0.2

0.00 370.4632642 370.463 7.133 × 10−5 370.4063980 370.406 0.00010745
0.001 366.3370877 366.337 2.395 × 10−5 362.4032052 362.403 5.661 × 10−5

0.003 358.2455837 358.246 0.00011600 347.2378814 347.238 3.416 × 10−5

0.005 350.3632872 350.363 8.197 × 10−5 333.1015864 333.102 0.00012416
0.01 331.5330963 331.533 2.904 × 10−5 301.6456317 301.646 0.00012209
0.03 267.2044272 267.204 0.000160 213.7943893 213.794 0.00018209
0.05 217.1032216 217.103 0.000102 160.7119670 160.712 2.054 × 10−5

0.10 133.4717712 133.472 0.000171 91.42614601 91.4261 5.032 × 10−5

0.30 27.85211472 27.8521 5.287 × 10−5 22.94278370 22.9428 7.104 × 10−5

0.50 9.173071617 9.17307 1.762 × 10−5 10.09279629 10.0928 3.672 × 10−5

1.0 2.121802777 2.12180 0.000131 3.353117041 3.35312 8.826 × 10−5

3.0 1.044079725 1.04408 2.634 × 10−5 1.278045727 1.27805 0.00033430
5.0 1.012596861 1.01260 0.00031 1.117274099 1.11727 0.00036684

Table 4. The ARL of HWMA control chart for MAX(1,1) using explicit formula against CUSUM
control chart given θ1 = −0.1, β1 = 0.2, µ = 1 and α0 = 1.

λ λ = 0.1 λ = 0.2 λ = 0.3

δ
Control Chart HWMA CUSUM HWMA CUSUM HWMA CUSUM

UCL 0.001195 2.249 0.04925 2.249 0.08309 2.249

0.00
ARL0 370.3770885 370.531000 370.5593435 370.531000 370.0709468 370.531000

SDRL0 369.8767506 370.030662 370.0590057 370.030662 369.5706086 370.030662
MRL0 256.3791049 256.485788 256.5054345 256.485788 256.1669035 256.485788

0.001
ARL1 366.1943273 368.30800 362.1715955 368.308000 338.4953143 368.30800

SDRL1 365.6939855 367.80766 361.6712499 367.807660 337.9949445 367.80766
MRL1 253.479834 254.944921 250.6914870 254.944921 234.2803282 254.944921

0.003
ARL1 357.9938367 363.91300 346.3219822 363.913000 288.8651605 363.91300

SDRL1 357.4934871 363.412656 345.8216208 363.412656 288.3647271 363.412656
MRL1 247.7956834 251.898537 239.7053649 251.898537 199.8792977 251.898537
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Table 4. Cont.

λ λ = 0.1 λ = 0.2 λ = 0.3

δ
Control Chart HWMA CUSUM HWMA CUSUM HWMA CUSUM

UCL 0.001195 2.249 0.04925 2.249 0.08309 2.249

0.005
ARL1 350.007935 359.588000 331.6000544 359.588000 251.6370603 359.588000

SDRL1 349.5075773 359.087652 331.0996769 359.087652 251.1365626 359.087652
MRL1 242.2602744 248.900674 229.5008948 248.900674 174.0747153 248.900674

0.01
ARL1 330.9408108 349.070000 299.0211502 349.070000 189.5958457 349.070000

SDRL1 330.4404325 348.569641 298.5207315 348.569641 189.0951846 348.569641
MRL1 229.0439415 241.610147 206.9189001 241.610147 131.0709468 241.610147

0.03
ARL1 265.9258522 310.873000 209.3451951 310.873000 92.93583386 310.873000

SDRL1 265.4253813 310.372597 208.8445966 310.372597 92.43448156 310.372597
MRL1 183.9789635 215.133984 144.7601816 215.133984 64.07101272 215.133984

0.05
ARL1 215.443402 278.070000 156.1001736 278.070000 59.89936967 278.070000

SDRL1 214.9428204 277.569550 155.5993703 277.569550 59.39726524 277.569550
MRL1 148.9871443 192.396655 107.8534504 192.396655 41.17153316 192.396655

0.10
ARL1 131.5709136 214.156000 87.70901617 214.156000 29.91698008 214.156000

SDRL1 131.0699599 213.655415 87.20758282 213.655415 29.41273053 213.655415
MRL1 90.85099354 148.094784 60.44802133 148.094784 20.38833309 148.094784

0.30
ARL1 26.90378287 92.0224000 21.56693573 92.0224000 8.151352721 92.0224000

SDRL1 26.39904827 91.5210342 21.06100142 91.5210342 7.634998262 91.5210342
MRL1 18.29951979 63.4378624 14.59974484 63.4378624 5.295955662 63.4378624

0.50
ARL1 8.762648041 49.5367000 9.417738995 49.5367000 4.318200765 49.5367000

SDRL1 8.247505844 49.0341508 8.903710956 49.0341508 3.785321265 49.0341508
MRL1 5.720233585 33.9884724 6.174822970 33.9884724 2.63137715 33.9884724

RMI 0 0.918 0 1.173 0 3.836

EARL 228.194 265.06 202.584 265.06 140.424 265.06

ESDRL 227.69 264.559 202.08 264.559 139.92 264.559

EMRL 157.824 183.378 140.073 183.378 96.985 183.378

Table 5. The ARL of HWMA control chart for MAX(2,3) using explicit formula against CUSUM
control chart given θ1 = 0.1, θ2 = 0.2, β1 = 0.1, β2 = 0.15, β3 = 0.2, µ = 1 and α0 = 1.

λ λ = 0.1 λ = 0.2 λ = 0.3

δ
Control Charts HWMA CUSUM HWMA CUSUM HWMA CUSUM

UCL 0.00139 2.0899 0.05756 2.0899 0.09725 2.0899

0.00
ARL0 370.4632642 370.086000 370.4063980 370.086000 370.1734101 370.086000

SDRL0 369.9629264 369.585662 369.9060601 369.585662 369.673072 369.585662
MRL0 256.4388374 256.177338 256.3994207 256.177338 256.2379257 256.177338

0.001
ARL1 366.3370877 367.874000 362.4032052 367.874000 340.1548137 367.874000

SDRL1 365.8367461 367.373660 361.9028598 367.373660 339.6544456 367.373660
MRL1 253.578788 254.644095 250.8520267 254.644095 235.4306064 254.644095

0.003
ARL1 358.2455837 363.501000 347.2378814 363.501000 292.4145378 363.501000

SDRL1 357.7452343 363.000656 346.7375209 363.000656 291.9141096 363.000656
MRL1 247.9701813 251.612961 240.3402183 251.612961 202.3395410 251.612961

0.005
ARL1 350.3632872 359.198000 333.1015864 359.198000 256.1488957 359.198000

SDRL1 349.8629299 358.697652 332.6012106 358.697652 255.6484068 358.697652
MRL1 242.5065860 248.630346 230.5416782 248.630346 177.2020854 248.630346

0.01
ARL1 331.5330963 348.733000 301.6456317 348.733000 194.8249504 348.733000

SDRL1 331.0327187 348.232641 301.1452166 348.232641 194.3243071 348.232641
MRL1 229.4544829 241.376556 208.7380538 241.376556 134.6954942 241.376556
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Table 5. Cont.

λ λ = 0.1 λ = 0.2 λ = 0.3

δ
Control Charts HWMA CUSUM HWMA CUSUM HWMA CUSUM

UCL 0.00139 2.0899 0.05756 2.0899 0.09725 2.0899

0.03
ARL1 267.2044272 310.716000 213.7943893 310.716000 97.00143645 310.716000

SDRL1 266.7039585 310.215597 213.2938032 310.215597 96.50014113 310.215597
MRL1 184.8652052 215.025160 147.8441338 215.025160 66.88910003 215.025160

0.05
ARL1 217.1032216 278.054000 160.7119670 278.054000 62.90341186 278.054000

SDRL1 216.6026445 277.553550 160.2111868 277.553550 62.40140873 277.553550
MRL1 150.1376457 192.385564 111.0501127 192.385564 43.25382335 192.385564

0.10
ARL1 133.4717712 214.370000 91.42614601 214.370000 31.63968451 214.370000

SDRL1 132.9708311 213.869416 90.92477126 213.869416 31.13567008 213.869416
MRL1 92.16857389 148.243117 63.02456647 148.243117 21.58252945 148.243117

0.30
ARL1 27.85211472 92.4299000 22.94278370 92.4299000 8.695418863 92.4299000

SDRL1 27.34754431 91.9285403 22.43721329 91.9285403 8.180152220 91.9285403
MRL1 18.95692921 63.7203227 15.55357815 63.7203227 5.673576353 63.7203227

0.50
ARL1 9.173071617 49.8698000 10.09279629 49.8698000 4.606655310 49.8698000

SDRL1 8.658647196 49.3672680 9.579756821 49.3672680 4.076103266 49.3672680
MRL1 6.005049270 34.2193677 6.643193915 34.2193677 2.832394987 34.2193677

RMI 0 0.878 0 1.088 0 3.597

EARL 229.031 264.972 204.817 264.972 143.154 264.972

ESDRL 228.53 264.471 204.31 264.471 142.65 264.471

EMRL 158.405 183.318 141.6201 183.318 98.8777 183.318

Table 6. Comparison of the ARL values for a MAX(3,1) process running on HWMA and CUSUM
control charts when ARL0 = 370, θ1 = −1.085, θ2 = −0.765, θ3 = −0.435, β1 = 24.40, and
α0 = 29.42908.

λ λ = 0.1 λ = 0.2 λ = 0.3

δ
Control Chart HWMA CUSUM HWMA CUSUM HWMA CUSUM

UCL 1.28909 8.9 2.63636 8.9 4.04585 8.9

0.00
ARL0 370.1444170 370.020000 370.5206530 370.020000 370.0740739 370.020000

SDRL0 369.6440789 369.519662 370.0203152 369.519662 369.5737357 369.519662
MRL0 256.2178292 256.131590 256.4786163 256.131590 256.169071 256.131590

0.001
ARL1 362.8410891 369.946000 362.1731457 369.946000 361.5464713 369.946000

SDRL1 362.3407441 369.445662 361.6728001 369.445662 361.0461250 369.445662
MRL1 251.1555449 256.080297 250.6925615 256.080297 250.2581836 256.080297

0.003
ARL1 349.0679755 369.797000 346.5604091 369.797000 345.6210733 369.797000

SDRL1 348.5676169 369.296662 346.0600479 369.296662 345.1207111 369.296662
MRL1 241.6087437 255.977018 239.8706300 255.977018 239.2195315 255.977018

0.005
ARL1 336.3044216 369.648000 332.2412574 369.648000 331.0428014 369.648000

SDRL1 335.8040493 369.147661 331.7408806 369.147661 330.5424232 369.147661
MRL1 232.7617160 255.873739 229.9453431 255.873739 229.1146361 255.873739

0.01
ARL1 308.1450636 369.277000 301.1467802 369.277000 299.4763387 369.277000

SDRL1 307.6446573 368.776661 300.6463644 368.776661 298.9759207 368.776661
MRL1 213.2431207 255.616581 208.3922759 255.616581 207.2344131 255.616581

0.03
ARL1 230.8967203 367.798000 219.2027893 367.798000 216.8787189 367.798000

SDRL1 230.3961777 367.297660 218.7022177 367.297660 216.3781412 367.297660
MRL1 159.6985864 254.591416 151.5929576 254.591416 149.9820320 254.591416
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Table 6. Cont.

λ λ = 0.1 λ = 0.2 λ = 0.3

δ
Control Chart HWMA CUSUM HWMA CUSUM HWMA CUSUM

UCL 1.28909 8.9 2.63636 8.9 4.04585 8.9

0.05
ARL1 184.6809502 366.327000 172.3987162 366.327000 170.0814255 366.327000

SDRL1 184.1802715 365.826658 171.8979890 365.826658 169.5806884 365.826658
MRL1 127.6641927 253.571796 119.1507744 253.571796 117.5445464 253.571796

0.10
ARL1 123.2147895 362.683000 112.5553949 362.683000 110.6446094 362.683000

SDRL1 122.7137709 362.182655 112.0542794 362.182655 110.1434746 362.182655
MRL1 85.05893965 251.045966 77.67036555 251.045966 76.34590106 251.045966

0.30
ARL1 53.18429732 348.583000 47.51179380 348.583000 46.54370778 348.583000

SDRL1 52.68192464 348.082641 47.00913482 348.082641 46.04099289 348.082641
MRL1 36.51687573 241.272584 32.58486361 241.272584 31.91381168 241.272584

0.50
ARL1 34.12578910 335.208000 30.35834753 335.208000 29.72494727 335.208000

SDRL1 33.62207151 334.707627 29.85416080 334.707627 29.22066979 334.707627
MRL1 23.30590301 232.001734 20.69429472 232.001734 20.25521318 232.001734

RMI 0 3.396 0 3.858 0 3. 948

EARL 200.072 356.393 194.040 356.393 192.748 356.393

ESDRL 199.570 355.892 193.5379 355.892 192.246 355.892

EMRL 138.332 246.686 134.151 246.686 133.255 246.686

5. Practical Applications with Real Data

In this section, the ARL formula has been applied to real data with the following steps.

1. To estimate parameters from interesting data such as stock price, which must include
a MAX model.

2. To estimate the parameter of exponentially distributed residuals.
3. Using the parameter values from 1 and 2, determine the ARL value in Equations (3)

and (4).
4. To compare the performance using the ARL value calculated from 3 and other control

charts.
5. To detect changes in the process mean, determine the UCL value using the equation

in (3) and use actual data to compute control chart statistics before plotting the control
chart statistics on a graph.

In the application to a real problem, the S&P 500 index was gathered as the observa-
tions for the MAX(q,r) process, and the AAPL stock price was collected as the exogenous
variable (X).

The explicit formulas for the ARL of a MAX(q,r) process on the HWMA control chart
are applied and compared with the performance with the CUSUM control chart using
41 real-world data observations of the S&P 500. The exogenous variable is Apple Inc.
(AAPL) stock price from April 2023 to May 2023.

Time series model MAX in the practical real data S&P 500 with exogenous AAPL
stock price decomposes the actual series into fitted values and residuals. The parameters
of the practical time series model MAX are estimated using the Kolmogorov–Smirnov
test. Then, the exponential distribution of residuals behaving as white noise was subse-
quently determined.

The model has an improvement pattern with three MAX processes, i.e., MAX(1,1),
MAX(2,1), and MAX(3,1), so these models should be included in the model estimation as
shown in Table 7. Consequently, the MAX(3,1) has the lowest RMSE, MAPE, and MAE,
implying that the MAX(3,1) is the best model, as shown in Table 8. Based on the final result
of the coefficient parameter in Table 9, the MAX(3,1) coefficient parameters are obtained as
follows: θ̂1 =−1.085, θ̂2 =−0.765, θ̂3 =−0.435, β̂ = 24.40. The in-control parameter is equal



Symmetry 2023, 15, 2112 13 of 20

to 29.42908, as shown in Table 9. The parameters of this prediction model can be assigned
as follows:

Ŷt = 1.085εt−1 + 0.765εt−2 + 0.435εt−3 + 24.40Xt.

Table 7. MAX estimate for S&P 500 with Apple Inc. (AAPL) stock price as exogenous variable.

Process Variable Coefficient Std. Error t Sig.

MAX(1,1) MA(1) (θ̂) −0.846 0.103 −8.227 0.00
Apple Inc. stock price (β̂) 24.429 0.098 250.237 0.00

MAX(2,1)
MA(1)

(
θ̂1
)

−1.222 0.126 −9.695 0.00
MA(2)

(
θ̂2
)

−0.667 0.128 −5.204 0.00
Apple Inc. stock price (β̂) 24.417 0.117 207.912 0.00

MAX(3,1)

MA(1)
(
θ̂1
)

−1.085 0.158 −6.850 0.00
MA(2)

(
θ̂2
)

−0.765 0.211 −3.627 0.00
MA(3)

(
θ̂3
)

−0.435 0.165 −2.647 0.01
Apple Inc. stock price (β̂) 24.400 0.131 186.435 0.00

Table 8. Model fit.

Process RMSE MAPE MAE

MAX(1,1) 58.951 1.120 46.329
MAX(2,1) 46.407 0.856 35.411
MAX(3,1) 45.571 0.794 32.829

Table 9. Exponential white noise of residual using the Kolmogorov–Smirnov goodness of fit test.

Process Mean (α0) Kolmogorov–Smirnov Sig.

MAX(3,1) 29.42908 0.679 0.745

The ARL values for MAX(3,1) on the HWMA and CUSUM control charts were com-
pared using the explicit formula method, the results of which are summarized in Table 6; it
can be seen that the results are obviously in agreement with those in Tables 4 and 5. The
table shows that the HWMA control chart has the lowest RMI, EARL, ESDRL, and EMRL
of all λ levels, as shown in Figure 1. To sum up, the explicit formula approach is a good
alternative for practical applications in detecting mean process changes on the HWMA
control chart. In addition, the HWMA (Ht) and CUSUM (Ct) statistics for the S&P 500 with
Apple Inc. (AAPL) stock price as an exogenous variable fitted to the MAX(3,1) model are
presented in Figure 2. These results indicate that the HWMA control chart can detect a shift
at the first time at the fifth observation, while the CUSUM scheme is found the first time
at the sixth observation. That is to say, the first hitting time for the HWMA control chart
for the S&P 500 dataset fitted to the MAX(3,1) process with exogenous (AAPL) stock price
takes a smaller hitting time than for the CUSUM control chart.

Hence, the results show that the HWMA control chart for the S&P 500 dataset fitted
to the MAX(3,1) process with exogenous (AAPL) stock price is more effective than the
CUSUM control chart.
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Figure 1. The RMI, EARL, ESDRL, and EMRL values on the control charts for MAX(3,1) when (a) 

   = 0.1, (b)     = 0.2, and (c)     = 0.3. 
Figure 1. The RMI, EARL, ESDRL, and EMRL values on the control charts for MAX(3,1) when
(a) λ = 0.1, (b) λ = 0.2, and (c) λ = 0.3.
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Figure 2. The S&P 500 dataset fitted to MAX(3,1) process running on (a) HWMA control chart and
(b) CUSUM control chart.

6. Discussion and Conclusions

The zero-stated ARL derivations based on the explicit formulas and NIE methods for
an MAX process with exponential white noise running on an HWMA control chart with a
symmetric one-sided control limit were derived and evaluated. The control charts, such
as EWMA and DEWMA control charts, which have similar characteristics to the HWMA
control chart, were reviewed in the literature. However, the HWMA control chart, a recent
control chart between EWMA and DEWMA control charts, was selected to compare the
results with the CUSUM control chart. The efficiencies of the proposed method for MAX
processes running on HWMA and CUSUM control charts were compared considering the
differences between their parameters (the smoothing parameter for the HWMA control
chart and the reference value for the CUSUM control chart). Consequently, the fixed
parameter values for the HWMA and CUSUM control charts were independently selected.
We will consider optimal parameters for the HWMA and CUSUM control charts in future
research. Although only exponential white noise was considered in the present research, it
is representative of real data with events occurring randomly with nonlinear noise. Thus,
this supports the applicability of our approach to real situations, such as the S&P 500
index with the AAPL stock price as an exogenous variable. The ARL values obtained by
using the explicit formulas and NIE methods were similar. Furthermore, the existence and
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uniqueness of the ARL derivation based on the explicit formulas were proved. The ARL,
SDRL, and MRL values obtained using the proposed method for MAX processes running
on HWMA and CUSUM control charts were used to compare their performances. While
varying the value of λ, the ARL, SDRL, and MRL values for the HWMA control chart were
less than those for the CUSUM control chart. When applying the proposed method to real
data from the S&P 500 index with the AAPL stock price as an exogenous variable, the ARL
values for the HWMA control chart were less than those for the CUSUM control chart.
Furthermore, the first out-of-control value detected by the HWMA control chart was sooner
than that detected by the CUSUM control chart. The advantage of this research is that it
brings these concepts and results for making strategies to detect the change in stock price
level based on control limits of the proposed control charts. The detected change in the
movement of stock price can generate the buying and selling signals for the investor.

In summary, the results indicate that the HWMA control chart performed better than
the CUSUM control chart for all magnitudes of changes. In addition, the results obtained
for a real-world scenario involving S&P 500 stock price datasets were consistent with those
obtained in the simulation study. Although the proposed explicit formula derivation for
the ARL can be applied to other scenarios, it is limited to cases involving exponential
white noise and to the MAX model only. If the examined data contains further white noise
patterns, determining the ARL value could require the use of alternative techniques, such
as the NIE or Markov Chain approach, etc. For future research, explicit formulations for
the ARL will be developed for other models relevant to real-world situations. (e.g., ARX,
ARMAX, and ARIMAX) running on a HWMA control chart.
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Appendix A

Proof of Theorem 1. From the recursion of HWMA statistics in (1),

Ht = λYt + (1− λ)Yt−1.

Therefore, the HWMA control chart for the MAX process can be written as,

Ht = λ(µ + εt −
q

∑
i=1

θiεt−i +
r

∑
j=1

β jXjt) + (1− λ)Yt−1.

For t = 1,

H1 = λ(µ− θ1ε0 −
q

∑
i=2

θiε1−i +
r

∑
j=1

β jXj1) + λε1 + (1− λ)u.

https://www.investing.com/indices/us-spx-500-futures
https://www.investing.com/indices/us-spx-500-futures
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Let,

M = λ(µ− θ1ε0 −
q

∑
i=2

θiε1−i +
r

∑
j=1

β jXj1).

Consider the in-control process, given LCL = 0, UCL = b and the initial value Y0 = u,
ε0 = e that is

0 < Ht < b

0 < λM + (1− λ)Yt−1 < b.

The change-point time at t = 1 is studied, and then we set Y0 = v. According to the
approach proposed by Champ and Rigdon [18], the integral equation representing the ARL
of the HWMA control chart (G(u)) can be expressed by Fredholm integral equation of the
second kind as follows,

G(u) = 1 +

b−(1−λ)u−M
λ∫

0

G(M + λy + (1− λ)u) f (y)dy. (A1)

Let, W = M + λy + (1− λ)u, then dy = 1
λ dw.

After changing the variable in (3), it can be rewritten as

G(u) = 1 +
1
λ

b∫
0

G(W)
1
α

e−
1
α [

W−(1−λ)u−M
λ ]dW.

Since, we determine ε1 ∼ Exp(α) then f (x) = 1
α e−

x
α . Thus,

G(u) = 1 +
e
(1−λ)u+M

αλ

αλ

b∫
0

G(W)
1
α

e−
W
αλ dW.

Let

Q(u) =
e
(1−λ)u+M

αλ

αλ
, R =

b∫
0

G(W)
1
α

e−
W
αλ dW.

So that
G(u) = 1 + Q(u)R. (A2)

Consider R =
b∫

0
G(W) 1

α e−
W
αλ dW, we have

=
b∫

0
(1 + Q(W)R)e

−W
αλ dW

=
b∫

0
e
−W
αλ dW + R

αλ

b∫
0

e
W−λW+M−W

αλ dW

=
b∫

0
e
−W
αλ dW + Re

M
αλ

αλ

b∫
0

e
−λW

αλ dW.

Then,

R =
−αλ[e

−b
αλ − 1]

[1 + e
M
αλ

λ (e
−b
α − 1)]

.
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Substituting R in (A2), we have

G(u) = 1− [e
−b
αλ −1]e

(1−λ)u+M
αλ

1+ e
M
αλ
λ (e

−b
α −1)

= 1− [e
−b
αλ −1]e

(1−λ)u+λ(µ−θ1e−
q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1)

αλ

1+ e

λ(µ−θ1e−
q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1)

αλ
λ (e

−b
α −1)

= 1−

[
e
−b
αλ −1

]
e

(1−λ)u+λ(µ−θ1e−
q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1)

αλ

1+ e

λ(µ−θ1e−
q
∑

i=2
θi ε1−i+

r
∑

j=1
βjXj1)

αλ
λ (e

−b
α −1)

.

�

Appendix B

In this study, we use the Gauss–Legendre rule to evaluate the ARL

G(u) = 1 +
1
λ

b∫
0

G(W) f (

W − (1− λ)u− µ + θ1e +
q
∑

i=2
θiε1−i −

r
∑

j=1
β jXj1

λ
)dW.

The approximation for an integral is evaluated by the quadrature rule as follows;

b∫
0

f (x)dx ≈
n

∑
k=1

wk f (ak)

where ak is a point and wk is a weight that is determined by the different rules.
Using the quadrature formula, the system of n linear equations is as follows;

G̃(ab) = 1 +
1
λ

n

∑
k=1

wkG(ak) f (

W − (1− λ)u− µ + θ1e +
q
∑

i=2
θiε1−i −

r
∑

j=1
β jXj1

λ
), b = 1, 2, . . . , n

G̃(a1) = 1 +
1
λ

n

∑
k=1

wkG(ak) f (

ak − (1− λ)u− µ + θ1e +
q
∑

i=2
θiε1−i −

r
∑

j=1
β jXj1

λ
)

G̃(a2) = 1 +
1
λ

n

∑
k=1

wkG(ak) f (

ak − (1− λ)u− µ + θ1e +
q
∑

i=2
θiε1−i −

r
∑

j=1
β jXj1

λ
)

G̃(an) = 1 +
1
λ

n

∑
k=1

wkG(ak) f (

ak − (1− λ)u− µ + θ1e +
q
∑

i=2
θiε1−i −

r
∑

j=1
β jXj1

λ
).

This system can be shown as

Gn×1 = 1n×1 + Rn×nLn×1 or In − Rn×n = 1n×1 or Mn×1 = (In − Rn×n)
−11n×1,

where Gn×1 =


G̃(a1)

G̃(a2)
...

G̃(an)

, In = diag(1, 1, . . . , 1) and 1n×1 =


1
1
...
1

.
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Let Rn×n is a matrix and define the n to nth as an element of the matrix R as follows;

[Rbk] ≈
1
λ

wk f (

W − (1− λ)u− µ + θ1e +
q
∑

i=2
θiε1−i −

r
∑

j=1
β jXj1

λ
).

If (I− R)−1 exists, the numerical approximation for the integral equation is the term
of the matrix,

Gn×1 = (In×1 − Rn×n)
−11n×1.

Finally, we substitute ab by u in G̃(ab), the approximation of numerical integral for the
function G(u) is,

G̃(u) = 1 +
1
λ

n

∑
k=1

wkG(ak) f (

ak − (1− λ)u− µ + θ1e +
q
∑

i=2
θiε1−i −

r
∑

j=1
β jXj1

λ
).
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