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Abstract: In this study, the identification of thermoelastic mass diffusion was examined on a homo-
geneous isotropic microstretch thermoelastic diffusion (HIMTD) solid due to normal force on the
surface of half space. In the framework of Cartesian symmetry, the components of displacement,
stresses, temperature change, and microstretch as well as couple stress were investigated with and
without microstretch and diffusion. The expression of the field functions was obtained using the
Laplace and Fourier transforms. So as to estimate the nature of the components of displacement,
stresses, temperature change, and microstretch as well as couple stress in the physical domain, an
efficient approximate numerical inverse Laplace and Fourier transform technique and Romberg’s
integration technique was adopted. It was meticulously considered and graphically illustrated how
mass diffusion and microstretch affect thermoelastic deformation. Our objective was to address the
inquiry regarding the impact of thermoelastic mass diffusion and microstretch on the field func-
tions in the presence of a mass concentration source within the medium. Specifically, we aimed to
investigate how these phenomena amplify the aforementioned effect.

Keywords: isotropic; microstretch thermoelastic solid; mass concentration source; Laplace and
Fourier transform; diffusion

1. Introduction

New synthetic materials with microdeformations and microrotations cannot be rep-
resented via the classical elastic theory. A micropolar thermoelasticity theory is suitable
for describing these types of materials. A micropolar continuum consists of an array of
integrated particles that are capable of undergoing rotational and translational motion
as well as supporting body and surface couplings. Furthermore, the micropolar elastic
thermoelasticity theory provides a more accurate explanation of a material’s response to
external stimulation than the classical elastic theory.

According to the micropolar continuum theory, a continuous material’s displacement
and rotation vectors are equal in magnitude. In 1966, Eringen and Suhubi [1,2] developed
the microelastic nonlinear theory. For materials that undergo microdeformations and
microrotations and are not covered via the classical thermoelasticity theory, Eringen [3,4]
developed and introduced the “Theory of micropolar elasticity”. The thermo-microstretch
elastic materials with contractions and expansions of their microstructure were established
by Eringen [5]. Using vibrations to study thermo-diffusion, Nowacki [6] examined the
effects of vibrations. A micropolar thermoelasticity theory based on heat flux was developed
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by Chandrasekharaiah [7]. In his book, Eringen [8] provides a complete explanation of the
microelastic theory.

Microrotations can occur without macrodisplacements. Singh and Kumar [9] deliber-
ated the propagation of waves in thermo-microstretch elastic (TME) material. Kumar and
Partap [10] exhibited the Rayleigh–Lamb waves in a TME plate. Kumar and Kansal [11] de-
veloped a method for the theory of TME diffusive solids using differential equations. Using
Green and Lindsay’s thermoelasticity theory, Boschi and Ieşan [12] developed the micropo-
lar theory. According to Mindlin [13], high-frequency vibrating crystal plates are coupled
mechanically, electrically, and thermally via a two-dimensional problem. A micropolar ther-
moelasticity theory based on the GN theory was developed by Ciarletta [14]. Micropolar
piezoelectric coupling was studied by Aouadi [15], and micropolar thermoelastic coupling
was studied by Aouadi [16,17]. Using the hyperbolic heat equation, El-Karamany and
Ezzat [18] established the micropolar electromagnetic thermoelastic theory for modeling
issues involving extreme heat fluxes or extremely short time intervals. Among their numer-
ous accomplishments, Marin and Baleanu [19] solved a time-harmonic problem for load
dissipation in a cylinder by developing a theory of micropolar thermoelasticity without
energy dissipation. Chirila et al. [20] obtained solutions to boundary value problems based
on properties of homogeneous and anisotropic micropolar thermoelasticity. In addition,
several other researchers have formulated diverse theories pertaining to thermoelasticity,
including, Marin [21–23], Alzahrani et al. [24], Malik et al. [25], Trivedi et al. [26], Kumar
et al. [27], Gupta et al. [28], Zhu et al. [29], Marin and Florea [30], Chen et al. [31], Kaur and
Singh [32,33], Jafari et al. [34], Marin et al. [35,36], and Kuang et al. [37].

In this study, the identification of thermoelastic mass diffusion was examined on
a HIMTD solid due to normal force on the surface of half space. Our objective was to
address the inquiry regarding the impact of thermoelastic mass diffusion and microstretch
on the field functions (components of displacement, stresses, temperature change, and mi-
crostretch as well as couple stress components, etc.) in the presence of a mass concentration
source within the medium. Displacement refers to the change in position or shape of mate-
rial under various forces, while stresses are the internal resistance that materials exhibit
against deformation. Temperature change plays a crucial role in affecting the material’s
properties and its ability to withstand external stresses. Microstretch is a measure of the
minute deformation within the microstructure of a material and contributes significantly to
its overall behavior and performance. Couple stresses represent the moment per unit area in
a material and have a significant impact on its mechanical response under complex loading
conditions. To evaluate the nature of the components of displacement, stresses, temperature
change, and microstretch as well as couple stress in the physical domain, the Laplace and
Fourier inverse transform technique and Romberg’s integration technique were adopted.
The influence of mass diffusion and microstretch on the thermoelastic deformation was
meticulously analyzed and has been depicted graphically in various quantities.

2. Basic Equations

The equations governing the motion and constitutive relations in an isotropic mi-
crostretch thermoelastic diffusion solid without external heat sources, body forces, stretch
force, and body couples, can be expressed as follows [5,11]:

(λ + 2µ + k)∇(∇.u)− (µ + k)∇×∇× u + k∇×ϕ+ λ0∇ϕ*− β1

(
1 + τ1

∂

∂t

)
∇T −β2

(
1 + τ1 ∂

∂t

)
∇C = ρ

∂2u
∂t2 , (1)

(α + β + γ)∇(∇.ϕ)− γ ∇× (∇×ϕ) + k ∇× u− 2kϕ = ρj
∂2ϕ

∂t2 , (2)

(
α0∇2 − λ1

)
ϕ*− λ0∇.u + v1

(
1 + τ1

∂

∂t

)
T + v2

(
1 + τ1 ∂

∂t

)
C =

ρj0
2

∂2 ϕ∗
∂t2 , (3)
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β1T0

(
1 +

∂

∂t

)
∇.u + v1T0

(
1 +

∂

∂t

)
.
ϕ ∗+ρC ∗

(
1 + τ0

∂

∂t

)
.
T + aT0

(
1 + τ0 ∂

∂t

)
.
C= K*∇2T, (4)

Dβ2∇2(∇.u) + Dv2∇2 ϕ ∗+Da∇2
(

T + τ1
.
T
)
+

.
C− Db∇2

(
C + τ1

.
C
)
= 0. (5)

The constitutive relations are:

tij = λur,rδij + µ
(
ui,j + uj,i

)
+ K

(
uj,i − εijr ϕr

)
+ λ0δij ϕ ∗ −β1

(
1 + τ1

∂

∂t

)
Tδij−β2

(
1 + τ1 ∂

∂t

)
Cδij, (6)

mij = αϕr,rδi,j + βϕi,j + γϕj,i + b0εmji ϕ
∗
,m, (7)

λ∗i = α0 ϕ∗,i+ b0εijm ϕj,m (8)

where λ, µ, α, β, γ, K, λ0, α0, and β0 denote material constants, and T0 was chosen such that∣∣∣ T
T0

∣∣∣ is ≤ 1.
β1 = (3λ + 2µ + K)αt1,v1 = (3λ + 2µ + K)αt2,

β2 = (3λ + 2µ + K)αc1,v2 = (3λ + 2µ + K)αc2,

The variable u denotes displacement, while ϕ is a local dilatation variable that repre-
sents a change in volume fraction. It is important to note that ϕ, as a scalar, is not related
to the local rotation vector, ϕk, in Cosserat elasticity. In terms of elastic constants, λ and µ
are considered traditional elastic moduli, while α, β, and γ are Cosserat elastic constants
that offer sensitivity to rotation gradient. Additionally, K is a Cosserat elastic constant
that measures the coupling between macro rotation fields and micro rotation fields. The
constants α0 and β0 provide sensitivity to the gradient of local dilatation. This means that
they determine how sensitive the model is to changes in the amount of local expansion or
contraction. The other constant λ0 denotes a micro-stretch modulus that couples dilatation
variable change to stress and dilatation to equilibrated body force. In other words, it relates
how changes in the amount of stretch or compression on a microscopic level impact the
stress within a material, and how that stretch or compression balances out the internal
forces within the material.

3. Formulation of the Problem

We considered a HIMTD half space x1 ≥ 0 initially at uniform temperature, T0. It is
important to note that the various functions under consideration are contingent upon both
the temporal variable t and the coordinates x1 and x3. Thus, we assumed the displacement
vector, microrotation vector, temperature change, mass concentration, and microstretch
function were of the form:

u(x1, x3, t) = (u1, 0, u3),ϕ = (0, ϕ2, 0), ϕ∗ = ϕ ∗ (x1, x3, t),T = T(x1, x3, t), C = C(x1, x3, t). (9)

Using Equation (9) in the system of Equations (1)–(5) yields the following:

(λ + µ)
∂e

∂x1
+ (µ + K)∇2u1 − K

∂ϕ2

∂x3
+ λ0

∂ϕ*
∂x1
− β1τ1

t
∂T
∂x1
− β2τ1

c
∂C
∂x1

= ρ
∂2u1

∂t2 , (10)

(λ + µ)
∂e

∂x3
+ (µ + K)∇2u3 + K

∂ϕ2

∂x1
+ λ0

∂ϕ*
∂x3
− β1τ1

t
∂T
∂x3
− β2a3τ1

c
∂C
∂x3

= ρ
∂2u3

∂t2 , (11)

γ∇2 ϕ2 + K
(

∂u1

∂x3
− ∂u3

∂x1

)
− 2Kϕ2 = jρ

∂2 ϕ2

∂t2 , (12)

(α0∇ 2 − λ1)ϕ* + v1τ1
t T + v2τ1

c C− λ0e = ρj0
∂2 ϕ*
∂t2 , (13)
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β1T0e + v1T0
∂ϕ*
∂t

+ ρC*τ0
t

∂T
∂t

+ aT0τ0
c

∂C
∂t

= K*∇2T, (14)

Dβ2∇2e + Dv2∇2 ϕ* + Daτ1
t ∇2T +

∂C
∂t
− Dbτ1

c∇2C = 0, (15)

where

τ1
t = 1 + τ1

∂

∂t
, τ1

c = 1 + τ1 ∂

∂t
, τ0

t = 1 + τ0
∂

∂t
, τ0

c = 1 + τ0 ∂

∂t
, e =

∂u1

∂x1
+

∂u3

∂x3
∇2 =

∂2

∂x2
1
+

∂2

∂x2
3

.

The dimensionless quantities we considered were:(
x′1, x′3

)
= ω*

c1
(x1,x3),

(
u′1, u′3

)
=

ρc1ω*
β1T0

(u1,u3), t′ij =
tij

β1T0
, t′ = ω*t, τ′0 = ω*τ0, τ0′ = ω*τ0, τ′1 = ω*τ1,

τ1′ = ω*τ1, ϕ*′ = ρc2
1

β1T0
ϕ*, λ*′

i =
λ*

i ω*
c1β1T0

, ϕ′2 =
ρc2

1
β1T0

ϕ2, C′ = Cβ2
ρc2

1
, m′ij =

ω*
c1β1T0

mij,
(16)

where ω* = ρC*c2
1

K* , c2
1 = λ+2µ+K

ρ .
Utilizing the given quantities provided by Equation (16) in Equations (10)–(15) and

eliminating the primes, we obtained the following:

δ2 ∂e
∂x1

+
(

1− δ2
)
∇2u1 − a1

∂ϕ2

∂x3
+ a2

∂ϕ*
∂x1
− τ1

t
∂T
∂x1
− a3τ1

c
∂C
∂x1

=
∂2u1

∂t2 , (17)

δ2 ∂e
∂x3

+
(

1− δ2
)
∇2u3 + a1

∂ϕ2

∂x1
+ a2

∂ϕ*
∂x3
− τ1

t
∂T
∂x3
− a3τ1

c
∂C
∂x3

=
∂2u3

∂t2 , (18)

a4∇2 ϕ2 + a5

(
∂u1

∂x3
− ∂u3

∂x1

)
− a6 ϕ2 =

∂2 ϕ2

∂t2 , (19)

(δ 2
1∇

2 − a7)ϕ*− a8e + a9τ1
t T + a10τ1

c C =
∂2 ϕ*

∂t2 , (20)

a11e + a12
∂ϕ*
∂t

+ τ0
t

∂T
∂t

+ a13τ0
c

∂C
∂t

= ∇2T, (21)

a14∇2e + a21∇2 ϕ* + a15τ1
t ∇2T +

∂C
∂t
− a16τ1

c∇2C = 0, (22)

where

(a1, a2) =
1

ρc2
1
(K, λ0), a3 =

ρc2
1

β1T0
, (a4, a5, a6) =

1
jρ

(
γ

c2
1
, K

ω*2 , 2K
ω*2

)
,

(a7, a8, a9, a10) =
2

j0ω*2

(
λ1
ρ , λ0

ρ , v1c2
1

β1
, v2ρc4

1
β1β2T0

)
, (a11, a12, a13) =

1
K*ω*

(
T0β2

1
ρ , T0β1v1

ρ , ρc4
1a

β2

)
,

(a14, a15, a16) =
Dω*

c2
0

(
β2

2
ρc2

1
, β2a

β1
, b
)

, a21 = Dv2β2ω*
ρc4

1
, δ2

1=
c2

2
c2

1
, c2

2 = 2α0
j0

.

Introducing potential functions defined by:

u1 =
∂Φ
∂x1

+
∂ψ

∂x3
and u3 =

∂Φ
∂x3
− ∂ψ

∂x1
(23)

In Equations (17)–(22), where Φ(x1, x3, t), and ψ(x1, x3, t), are scalar potential functions,
we obtained:

∇2Φ + a2 ϕ*− τ1
t T − a3τ1

c C =
∂2Φ
∂t2 , (24)

(
1− δ2

)
∇2ψ− a1 ϕ2 =

∂2ψ

∂t2 , (25)
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a4

(
∂2 ϕ2

∂x2
1
+

∂2 ϕ2

∂x2
3

)
+ a5∇2ψ− a6 ϕ2 =

∂2 ϕ2

∂t2 , (26)

δ2
1

(
∂2 ϕ*
∂x2

1
+

∂2 ϕ*
∂x2

3

)
− a7 ϕ*− a8

∂2Φ
∂x2

1
− a8

∂2Φ
∂x2

3
+ a9τ1

t T + a10τ1
c C =

∂2 ϕ*
∂t2 , (27)

a11

(
∂2Φ
∂x2

1
+

∂2Φ
∂x2

3

)
+ a12

∂ϕ*
∂t

+ τ0
t

∂T
∂t

+ a13τ0
c

∂C
∂t

=
∂2T
∂x2

1
+

∂2T
∂x2

3
, (28)

a14∇2

(
∂2Φ
∂x2

1
+

∂2Φ
∂x2

3

)
+ a21

(
∂2 ϕ*
∂x2

1
+

∂2 ϕ*
∂x2

3

)
+ a15τ1

t

(
∂2T
∂x2

1
+

∂2T
∂x2

3

)
+

∂C
∂t
− a16τ1

c

(
∂2C
∂x2

1
+

∂2C
∂x2

3

)
= 0. (29)

We utilized the Laplace and Fourier transforms, as defined by:

f (x1, x3, s) =
∫ ∞

0
f (x1, x3, t)e−stdt, (30)

f̂ (ξ, x3, s) =
∫ ∞

−∞
f (x1, x3, s)eiξx1dx1. (31)

From Equations (24)–(29), we obtained a set of homogeneous equations in terms of
Φ, ϕ*, T, C and ϕ2, ψ. We eliminated these variables to find a non-trivial solution as:(

D8 + ζ1D6 + ζ2D4 + ζ3D2 + ζ4

)(
Φ, ϕ*, T, C

)
= 0, (32)(

D4 + ζ5D2 + ζ6

)(
ϕ2, ψ

)
= 0, (33)

where

ζ1 =
(−4a*ξ2+b*)

a* , ζ2 =
(6a*ξ4−3ξ2b*+c)

a* , ζ3 =
−(4a*ξ6+3b*ξ4−2ξ2c+d)

a* , ζ4 =
(ξ8a*−ξ6b*+ξ4c−ξ2d+e′)

a* ,

ζ5 =

(
−2a′ξ

2
+b′

)
a′ , ζ6 =

(
a′ξ4−b′ξ2+c′

)
a′ , d

dx3
≡ D,

a′ =
(
1− δ2)a4

b′ = −
(
1− δ2)(s2a4 + a6 + s2)+ a1a5, c′ =

(
1− δ2)s2(a6 + s2),

a* = δ2
1s*

b* = a16s*(−δ
2
1s0s− a7 − s2 − s2δ2

1 + a2a8 − sδ2
1

)
− sδ2

1
(
1 + a13a15s*γ

′
1 − a15ss*s*

)
+ s*(a10 − a8 − δ2

1 a14
)
,

c = ss*s*{−a16a2a9 + (a15 + a16)
(
a7 + s2)+ a9 − a10 − a15a10a2

}
+ss*γ′1(a 13a9 − a13a8+

a13a15s3δ2
1 − a13sa14δ2

1 + a13a15s
(
a7 + s2))+ s*s*{ (a 9 − a8)a12a16 + a12a5(a8 − a10)}+

ss*s0
{

a8 − a10 + δ2
1 a14 + a16

(
a7 + s2)+ δ2

1s2a16 − a8a16a2
}
+ s*s2{δ2

1 − a10 + a16
(
a7 + s2)}+

s*{a4
(
a7 + s2)− δ2

1 a10a2
}
− s
{

a2a8 −
(
a7 + s2)− δ2

1s2 − δ2
1ss0

}
,

d = −s*s*{a12s2a16 + a10a12a15s2 + a12a14(a10 − a9)
}
+ s*s0

(
s3a10 + a10a2sδ2

1 − s3a16
)
+

ss*γ
′
1
{
−a2a9a14a13 + a13

(
a7 + s2)a14 − a13a9s2 − a13a15s2(a7 + s2)}+ss*

{
a12(a8 − a9)−s

(
a7 + s2)}

+s*(a9a2s2 +
(
a7 + s2)a2a10

)
+
(
a7 + s2)(−s0s2 − s3 − s0s4δ2

1 + s0s2a2a8
)
,

e′ =
(
a7 + s2)s0

(
s4 − sa2a10s*)+ a12s3a2s*,

s* = 1 + τ1s, s* = 1 + τ1s, γ′1 = 1 + τ0s, s0 = 1 + τ0s.

The roots of Equation (32) are ±mi (i = 1, 2, 3, 4 ), and the roots of Equation (33) are
±mi (i = 5, 6).
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With the use of the radiation conditions that Φ, ϕ*, T, C → 0 and ψ, ϕ2 → 0 as
x3 → ∞, the solutions to Equations (37) and (38) can be expressed as:

Φ = A1e−m1x3 + A2e−m2x3 + A3e−m3x3 + A4e−m4x3 , (34)

ϕ* = d1 A1e−m1x3 + d2 A2e−m2x3 + d3 A3e−m3x3 + d4 A4e−m4x3 , (35)

T = d1
* A1e−m1x3 + d2

* A2e−m2x3 + d3
* A3e−m3x3 + d4

* A4e−m4x3 , (36)

C = d1
** A1e−m1x3 + d2

** A2e−m2x3 + d3
** A3e−m3x3 + d4

** A4e−m4x3 , (37)

ψ = A5e−m5x3+A6e−m6x3 , (38)

ϕ2 = d5 A5e−m5x3 + d6 A6e−m6x3 , (39)

where

di =
a′2m6

i +
(
−3a′2ξ

2 + b′2
)

m4
i −

(
3a′2ξ

4 − 2b′2ξ
2 + c′2

)
m2

i +
(
−a′2ξ

6 + ξ4b′2 − ξ2c′2
)

a′1m6
i +

(
−3a′1ξ

2 + b′1
)

m4
i −

(
3a′1ξ

4 − 2ξ2b′1 + c′1
)

m2
i +

(
−a′1ξ

6 + ξ4b′1 − ξ2c′1 + e′1
) i = 1, 2, 3, 4,

d*
i=

a′3m6
i +

(
−3a′3ξ

2 + b′3
)

m4
i +

(
3a′3ξ

4 − 2ξ2b′3 + c′3
)

m2
i +

(
−a′3ξ

6 + ξ4b′3 + ξ2c′3
)

a′1m6
i +

(
−3a′1ξ

2 + b′1
)

m4
i −

(
3a′1ξ

4 − 2ξ2b′1 + c′1
)

m2
i +

(
−a′1ξ

6 + ξ4b′1 − ξ2c′1 + e′1
) i = 1, 2, 3, 4,

d**
i =

a′4m6
i +

(
−3a′4ξ

2 + b′4
)

m4
i +

(
3a′4ξ

4 − 2ξ2b′4 + c′4
)

m2
i +

(
−a′4ξ

6 + ξ4b′4 + ξ2c′4
)

a′1m6
i +

(
−3a′1ξ

2 + b′1
)

m4
i −

(
3a′1ξ

4 − 2ξ2b′1 + c′1
)

m2
i +

(
−a′1ξ

6 + ξ4b′1 − ξ2c′1 + e′1
) i = 1, 2, 3, 4,

di =
a4m2

i −(a4ξ
2+a6+s2)

a5m2
i −a5ξ

2 i = 5, 6,

a′2= −a16a8s*,

b′2 = s*s*s(a 8a16 + a16a9 + a10a15)+a13a15a8sγ′1s* + a14a10s* + a8s,

c′2= s*
(
−a8s2 − a9s2 + a13sγ′1a14a9

)
− s0sa14a10s*,

a′1 = s*a16δ2
1 ,

b′1 = −
(
a16s*ss0 + a13sγ′1

)
δ2

1 − a16s*
(

a7 + s2
)
+ a10s*a14,

c′1 =
(

a7 + s2
)
(s*s0a16s + s) + δ2

1s0s2 + a16a12s*s*a9 + a14a13sγ′1s*a9 + a10a12s*− a10s*s*a14,

e′1 = −a9s*sa12 −
(
a7 + s2)s2s0, s* = 1 + τ1s, s* = 1 + τ1s, s0 = 1 + τ0s

a′3 = a16sa16s*δ2
1 ,

b′3 = a16s*a12a8 + a13sγ′1a8 +
(

a7 + s2
)

a16ss*− δ2
1

(
s2 − a13sγ′1a14

)
+ a10s*s,

c′3 = −a8a12s +
(
a7 + s2)(s2 − a13sγ′1a14

)
− a10a12a14s*,

a′4 = −a8−δ2
1s(s*a15 + s0a14),
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b′4= a12a8a15(s0s− s*)− s0sa14
(
δ2

1 − 1
)
+ s*s

{
a15
(
a7 + s2)+ a9

}
,

c′4 = −
(
a7 + s2)s0sa14 − a9a12a14s*.

4. Boundary Conditions

On the half space x3 = 0, normal force was applied. The boundary conditions in this
particular scenario were as follows:

τ33(x1, x3, t) = −F1ψ1(x)δ(t), (40)

τ31(x1, x3, t) = 0, (41)

m32 = 0, (42)

λ*
3 = 0, (43)

∂T
∂x3

+ h1T = 0, (44)

∂C
∂x3

+ h2C = 0. (45)

where h1 → 0 for an insulated boundary, h1 → ∞ for an isothermal boundary, h2 → 0 for
an impermeable boundary, and h2 → ∞ for a concentrated boundary.

5. Applications

To synthesize the Green function, i.e., as a result of concentrated normal force on the
half space, the solution can be obtained by setting:

ψ1(x) = δ(x).

Using the Fourier transform defined via Equation (31), we obtain:

ψ1
(
ξ̂
)
= 1. (46)

Making use of the quantities defined via Equation (16) on the boundary conditions (40)–
(45), along with F′1 = F1

β1T0
, the boundary conditions were obtained in a non-dimensional

form using primes. After eliminating the primes and applying the transformation defined
by Equations (30) and (31), substituting the values from radiation conditions (34)–(39), and
making use of Equations (6)–(8), (16), and (46), we derived the expressions for displace-
ment components, stresses, microrotation, temperature change, microstretch, and mass
concentration as follows:

û1 = F1ψ1
(
ξ̂
){

iξ
(

∆′1
∆

)
e−m1x3 + iξ

(
∆′2
∆

)
e−m2x3 + iξ

(
∆′3
∆

)
e−m3x3 + iξ

(
∆′4
∆

)
e−m4x3−m5

(
∆′5
∆

)
e−m5x3

−m6

(
∆′6
∆

)
e−m6x3

} (47)

û3 = F1ψ1
(
ξ̂
){
−m1

(
∆′1
∆

)
e−m1x3 −m2

(
∆′2
∆

)
e−m2x3 −m3

(
∆′3
∆

)
e−m3x3 −m4

(
∆′4
∆

)
e−m4x3 + iξ

(
∆′5
∆

)
e−m5x3

+iξ
(

∆′6
∆

)
e−m6x3

} (48)

ˆτ33 = F1ψ1
(
ξ̂
)[

g1
∆′1
∆ e−m1x3 + g2

(
∆′2
∆

)
e−m2x3 + g3

(
∆′3
∆

)
e−m3x3 + g4

(
∆′4
∆

)
e−m4x3 + g5

(
∆′5
∆

)
e−m5x3

+g6

(
∆′6
∆

)
e−m6x3

] (49)



Symmetry 2023, 15, 2095 8 of 17

ˆτ31 = F1ψ1
(
ξ̂
){

g′1
∆′1
∆ e−m1x3 + g′2

(
∆′2
∆

)
e−m2x3 + g′3

(
∆′3
∆

)
e−m3x3 + g′4

(
∆′4
∆

)
e−m4x3 + g′5

(
∆′5
∆

)
e−m5x3 +

g′6
(

∆′6
∆

)
e−m6x3

} (50)

m̂32 = F1ψ1
(
ξ̂
){

b0iξd1

(
∆′1
∆

)
e−m1x3 + b0iξd2

(
∆′2
∆

)
e−m2x3 +b0iξd3

(
∆′3
∆

)
e−m3x3+b0iξd4

(
∆′4
∆

)
e−m4x3−

βd5m5

(
∆′5
∆

)
e−m5x3 − βd6m6

(
∆′6
∆

)
e−m6x3

} (51)

λ̂*
3 = F1ψ1

(
ξ̂
)[
−α0d1m1

(
∆′1
∆

)
e−m1x3 − α0d2m2

(
∆′2
∆

)
e−m2x3 − α0d3m3

(
∆′3
∆

)
e−m3x3 − α0d4m4

(
∆′4
∆

)
e−m4x3

−b0iξd5

(
∆′5
∆

)
e−m5x3 − b0iξd6

(
∆′6
∆

)
e−m6x3

] (52)

T̂ = F1ψ1
(
ξ̂
)[

d*
1

(
∆′1
∆

)
e−m1x3 + d*

2

(
∆′2
∆

)
e−m2x3 + d*

3

(
∆′3
∆

)
e−m3x3 + d*

4

(
∆′4
∆

)
e−m4x3

]
(53)

Ĉ = F1ψ1
(
ξ̂
){

d**
1

(
∆′1
∆

)
e−m1x3 + d**

2

(
∆′2
∆

)
e−m2x3 + d**

3

(
∆′3
∆

)
e−m3x3 + d**

4

(
∆′4
∆

)
e−m4x3

}
(54)

where

gi =
{
−λξ2 + (λ + 2µ + k)m2

i + λ0di − β1s*d*
i − β2s*d**

i

}
i = 1, 2, 3, 4

gi = −λiξmi + (λ + 2µ + k)λiξmi, i = 5, 6

g′ i = −µiξmi − (µ + k)iξmi, i = 1, 2, 3, 4 g′ i = µξ2 + (µ + k)m2
i − kdi, i = 5, 6

∆′1 = [s *
6{−s1g22 + s6(g25) + s8(−g26)}+s*

10{s1(−g24) + s2(g25) + s3(−g26)}
+s*

9{s1(−g23) + s4(g25) + s5(−g26)}

∆′2 = [s *
14{s1(−g24) + s2(g25) + s3(−g26)}

+s*
13{s1(−g23) + s4(g25) + s5(−g26)}

+s*
6{s1g21 + s6s′12 + s11g25 + s12g26}

]
∆′3 =

[
s*

15{ s1(−g24) + s2(g25) + s3(−g13))}+ s*
13{s7(−g25) + s8(g26)}

+s*
9{ s1g21) + s11(−g25) + s12(g26)}

]
+ s*

13s1s′9

∆′4 =
[
s*

15{s1(g23) + s4(−g25) + s5(g26)}
+s*

10{s1(g21) + s11(g25)+s12(−g26))}
]
+ s*

14

∆′5 =
[
(g24)

(
s4s*

15 + s7s*
14 + s11s*

10
)
+ (−g22)

(
s4s*

13 + s2s*
14 + s11s*

6
)

+(g26)
(
s9s*

14 + s10s*
15 + s13s*

10 − s15s*
6
)

+(−g21)
(
s4s*

9 + s2s*
10 + s7s*

6
)]

∆′6 =
[
(g24)

(
s4s*

15 + s7s*
14 + s11s*

10
)
+ (−g22)

(
s4s*

13 + s2s*
14 + s11s*

6
)

+(g26)
(
s9s*

14 + s10s*
15 + s13s*

10 − s15s*
6
)

+(−g21)
(
s4s*

9 + s2s*
10 + s7s*

6
)]
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∆ = s*
15
{

s1s′6 + s2s′5 + s3s′4 + s4s′3 + s5s′2 + s6s′1
}

+s*
14
{

s3s′7+s1s′9 + s2s′3 ++s7s′3 + s8s′2 + s9s′1
}

+s*
13
{

s1s′10 + s4s′8 + s5s′7 + s7s′5 + s8s′4 + s10s′1
}

+s*
6
{

s1s′15 + s6s′12 + s8s′11 + s11s′8 + s12s′7 + s15s′1
}

+s*
10
{

s1s′13 + s2s′12 + s3s′11 + s11s′3 + s12s′2 + s13s′1
}

+s*
9
{

s1s′14 + s4s′12 + s5s′11 + s11s′5 + s12s′4 + s14s′1
}

Where s1 = g35g46 − g36g45, s2 = g34g46 − g44g36, s3 = g34g45 − g44g35,

s4 = g33g46 − g36g43, s5 = g33g45 − g35g43, s6 = g33g44 − g34g43

s7 = g32g46 − g42g36, s8 = g32g45 − g35g42, s9 = g32g44 − g42g34,

s10 = g32g43 − g42g33, s11 = g31g46 − g41g36, s12 = g31g45 − g41g35

s13 = g31g44 − g41g34, s14 = g31g43 − g41g33, s15 = g31g42 − g32g41

s′1 = g15g26 − g16g25, s′2 = g14g26 − g24g16, s′3 = g14g25 − g24g15,

s′4 = g13g26 − g16g23, s′5 = g13g25 − g23g15, s′6 = g13g24 − g14g23

s′7 = g12g26 − g22g16, s′8 = g12g25 − g15g22, s′9 = g12g24 − g22g14,

s′10 = g12g23 − g22g13, s′11 = g11g26 − g21g16, s′12 = g11g25 − g21g15

s′13 = g11g24 − g21g14, s′14 = g11g23 − g21g13, s′15 = g11g22 − g12g21

s*
1 = g55g66 − g56g65, s*

2 = g54g66 − g64g56, s*
3 = g54g65 − g64g55,

s*
4 = g53g66 − g56g63, s*

5 = g53g65 − g63g55, s*
6 = g53g64 − g54g63

s*
7 = g52g66 − g62g56, s*

8 = g52g65 − g55g62, s*
9 = g52g64 − g62g54,

s*
10 = g52g63 − g62g53, s*

11 = g51g66 − g61g56, s*
12 = g51g65 − g61g55

s*
13 = g51g64 − g61g54, s*

14 = g51g63 − g61g53, s*
15 = g51g62 − g52g61

where

g1i = −b1ξ2 + m2
i + a2 − a3s*d**

i − s*d**
i i = 1, 2, 3, 4 and = −(b1 + 1)iξmi, i = 5, 6

g2i = −mib3iξ− imi, i = 1, 2, 3, 4 and = b3ξ2 + iξm2
i − a1di, i = 5, 6

g3i = −b6midi, i = 1, 2, 3, 4 and = −b5iξdi, i = 5, 6

g4i = −b5iξmidi, i = 1, 2, 3, 4 and = −b4midi, i = 5, 6

g5i = −d*
i mi, i = 1, 2, 3, 4 and = 0, i = 5, 6

g6i = −d**
i mi, i = 1, 2, 3, 4 and = 0, i = 5, 6

6. Particular Cases

If we remove the diffusion effect using β2, a, and b = 0 in Equations (47)–(54), the
expressions for the displacement components, temperature distribution, stress compo-
nents, and mass concentration in the generalized thermoelastic microstretch half space can
be derived.

If the stretch effect (i.e., α0, λ0, λ1, and K = 0) is disregarded in Equations (47)–(54), the
expressions for the displacement components, temperature distribution, stress components,
and mass concentration in a generalized thermoelastic diffusive half space can be derived.

7. Inversion of the Transformation

The transformed stresses and temperature distribution are dependent upon ξ, x3,
and s, which serve as the parameters for the Laplace and Fourier transforms. To derive the
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expressions of (47)–(54) in the physical domain, we must first perform an inversion of the
Fourier transform:

f (x1, x3, s)=
1

2π

∫ ∞

−∞
e−iξx1 f̂ (ξ, x3, s)dξ =

1
2π

∫ ∞

−∞
|cos(ξx1) fe − isin(ξx1)fo|dξ (55)

where fo andfe denote the odd and even parts of f̂ (ξ, x3, s), respectively. Hence, Equation
(55) provides the Laplace transform f ( x1, x3, s) of the function f (x1, x3, t). According to the
findings of Honig and Hirdes [38], it is possible to inverse the Laplace transform f ( x1, x3, s)
to obtain f (x1, x3, t). The final stage in the computation of Equation (55) entails a method
for assessing the integral, as expanded upon in Press et al. [39]. This approach employs
Romberg’s integration technique, which incorporates an adaptive step size. Additionally, it
leverages the outcomes derived from successive enhancements of the extended trapezoidal
rule, culminating in the extrapolation of the outcome to the point where the step size
approaches zero.

8. Numerical Results and Discussion

To demonstrate our theoretical results and the effect of diffusion and micro-stretching,
physical data for magnesium material wad chosen from Eringen [40] as follows:

λ = 9.4× 1010Nm−2,µ = 4.0× 1010Nm−2, K = 1.0× 1010Nm−2, ρ = 1.74× 103Kgm−3,

γ = 0.779× 10−9N, j = 0.2× 10−19m2, C* = 1.04× 103 JKg−1K−1, K* = 1.7× 106 Jm−1s−1K−1,

αt1 = 2.33× 10−5K−1, αt2 = 2.48× 10−5K−1, αc1 = 2.65× 10−4m3Kg−1, αc2 = 2.83× 10−4m3Kg−1,

T0 = 0.298× 103K, a = 2.9× 104m2s−2K−1, b = 32× 105Kg−1m5s−2, D = 0.85× 10−8Kgm−3s,

τ0 = 0.02s, τ1 = 0.01s, τ0 = 0.03s, τ1 = 0.04s, j0 = 0.19× 10−19m2, α0 = 0.779× 10−9N, b0 = 0.5× 10−9N,

λ0 = 0.5× 1010Nm−2, and λ1 = 0.5× 1010Nm−2.

In Figures 1–8,
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Figure 1 shows the variation in the displacement component u1 with respect to distance
x from the applied source with and without micro-stretching and mass diffusion. It was
found that the displacement component u1 decreases as the distance from the applied
source increases. In the case of microstretch elastic solids with microstretch and diffusion,
the variation of u1 was less pronounced. This means that the displacement of particles or
elements in the material is relatively uniform, indicating a higher level of homogeneity. On
the other hand, in generalized thermoelastic microstretch half spaces without diffusion,
the variation in u1 was at its maximum. This implies that the displacement can vary
significantly within the material, showing a lower level of uniformity. Understanding these
variations in displacement is crucial for analyzing the behavior of different materials under
various conditions and for designing efficient structures and systems.

Figure 2 demonstrates the variation in the displacement component u3 with respect
to distance x from the applied source with and without micro-stretching and mass diffu-
sion. The displacement component u3 decreases as the distance from the applied source
increases in microstretch elastic solids with microstretch and diffusion. On the other hand,
the variation in the displacement component u3 is at its maximum in generalized thermoe-
lastic half spaces without microstretch. This suggests that the behavior of u3 is influenced
by the material properties and conditions present. Further exploration and analyses are
required to understand the underlying mechanisms and implications of these findings.
Figures 3 and 4 exhibit the variation in the stress components t33 and t31 with respect to
distance x from the applied source with and without micro-stretching and mass diffusion.
The study of stress components in microstretch elastic solids reveals a noteworthy relation-
ship between the distribution of these components and the distance from an applied source.
As observed, both t33 and t31 experience a reduction in their values as they move further
away from this source. This fascinating behavior accentuates the crucial roles played by the
microstretch and diffusion mechanisms in influencing the variation of the stress component
t33. In addition, the analysis of t31 demonstrated that its maximum fluctuation occurs in a
generalized thermoelastic half space without microstretch involvement.
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Figure 5 exhibits the variation in the tangential couple stress component m32 with
respect to distance x from the applied source with and without micro-stretching and
mass diffusion. It was found that the stress components t33 and t31 decrease as the
distance from the applied source increases and exhibits an oscillatory pattern. These results
indicate that variation in the tangential couple stress component m32 arises more under
microstretch elastic solids with microstretch and diffusion, and variation in the tangential
couple stress component m32 occurs less under generalized thermoelastic half spaces
without microstretch.

Figure 6 exhibits the variations in the microstretch component with respect to distance
x from the applied source with and without micro-stretching and mass diffusion. It was
found that the microstretch component decreases as the distance from the applied source
increases and exhibits an oscillatory pattern. These results indicate that variation in the
microstretch component arises more under microstretch elastic solids with diffusion, and
that variation in the microstretch component occurs less under generalized thermoelastic
half spaces without microstretch.

Figures 7 and 8 exhibit the variations in temperature change, T, and mass concentration,
C, respectively, with respect to distance x from the applied source with and without micro-
stretching and mass diffusion. It was found that the temperature change, T, and mass
concentration, C, decrease as the distance from the applied source increases and exhibits
an oscillatory pattern. These results indicate that variations in temperature change, T,
and mass concentration, C, arise more in microstretch elastic solids with microstretch and
diffusion, and that variations in temperature change, T, and mass concentration, C, occur
less in generalized thermoelastic half spaces without microstretch.

9. Conclusions

The present research provides a complete investigation of mass diffusion and mi-
crostretch impact on the thermoelastic disturbances in a homogeneous isotropic microstretch
thermoelastic solid. In this framework, the components of displacement, stresses, tempera-
ture change, and microstretch as well as couple stress components have been distinguished
with and without microstretch and diffusion.

• To estimate the nature of the components of displacement, stresses, temperature
change, and microstretch as well as couple stress in the physical domain, an effi-
cient approximate numerical inverse Laplace and Fourier transform technique and
Romberg’s integration technique were adopted.

• A comprehensive graphical representation has been provided for a range of vari-
ables, detailing the precise effects of mass diffusion and microstretch on thermoelastic
deformation through meticulous analysis.

• In the thermo-microstretch theory, the combined effect of microstretch and diffusion is
the dominating factor over a single parameter, i.e., microstretch or diffusion.

• It was observed that stress components increase in the microstretch elastic solid with
the combined effect of microstretch and diffusion.

• Theoretical analysis and computational findings have substantiated that the impact of
mass diffusion and microstretch can amplify the perturbations in the thermoelastic
domain.

• The outcome of this problem holds significant value in the realm of two-dimensional
dynamic responses, particularly with diverse sources of thermo-diffusion. This phe-
nomenon has numerous applications in both geophysical and industrial domains.
The exploration of thermoelasticity is instrumental in enhancing the efficacy of oil
extraction processes.
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Nomenclature

δij Kronecker delta C∗ Specific heat at constant strain
T0 Reference temperature ρ Medium density
cijkl Elastic parameters K∗ Thermal conductivity
ϕ Microrotation vector C Concentration of the diffusion

material
eij Strain tensors a Coefficients of measure of

thermo-diffusion effect
ϕ∗ Scalar microstretch function b Coefficients of mass-diffusion

effect
βij Thermal elastic coupling tensor j Micro-inertia
D Thermoelastic diffusion constant mij Couple stress tensors
CE Specific heat j0 Micro-inertia of micro

elements
αij Linear thermal expansion coefficient αt1, Coefficients of linear thermal

αt2 expansion
αc1 The coefficients of linear diffusion
αc2 expansion σij Components of stress
aij Two-temperature parameter T Temperature change
τ0, τ1 Diffusion relaxation times ui Displacement components
T Time λ Microstress tensor
F1 Force δ(t) Dirac delta function
h2 Mass transfer coefficient ekk Dilatation
eij Components of strain w Lateral deflection of the beam
ω∗ The characteristic frequency of the medium ψ1(x) source distribution function

along the x-axis
h1 Heat transfer coefficient λ∗i Microstress tensor
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