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Abstract: In the last few years, numerous subfamilies of univalent functions, whether directly or
indirectly associated with exponential functions, have been introduced and thoroughly investigated.
Among these, the families S∗e , Ce and Re defined by subordination to ez have been intensively
investigated. While the coefficient problem on the class S∗e and Ce has been solved in many cases,
in this paper, we mainly intend to compute the sharp estimates of some initial coefficients, the
Feketo–Szegö inequality, and the sharp bounds of second- and third-order Hankel determinants for
functions belonging to the classRe. This work has the potential to significantly enrich and enhance
the exploration of univalent functions in conjunction with exponential functions, making the field
more comprehensive and robust.

Keywords: Hankel determinant; bounded turning functions; exponential function

MSC: 30C45; 30C50

1. Introduction and Definitions

Let H(D) represent the family of analytic functions defined in the open unit disc
D := {z ∈ C : |z| < 1}. For f ∈ H(D), the normalized functions taking the form of

f (z) = z +
∞

∑
s=2

bszs, z ∈ D, (1)

belong to the class A. Let S ⊂ A be the set of all univalent functions in D. We denote by P
the set of all analytic functions in D in which the function p(z) ∈ P satisfies the conditions
<(p(z)) > 0 and

p(z) = 1 +
∞

∑
n=1

µnzn, z ∈ D. (2)

Such functions are also known as the Carathéodory functions [1]. A basic relationship
in geometry function theory is subordination. We write g ≺ g̃ to illustrate that g is
subordinate to g̃. It is explained that, for a given two functions g, g̃ ∈ H(D), a Schwarz
function ω exists such that g(z) = g̃(ω(z)) for z ∈ D. Once g̃ is univalent in D, then this
relation is equivalent to saying that
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g(z) ≺ g̃(z), (z ∈ D) ⇐⇒ g(0) = g̃(0) and g(D) ⊂ g̃(D).

In 1916, Bieberbach [2] gave the most prominent conjecture in function theory, known
as the “Bieberbach conjecture”, which states that, for any s ≥ 2, |bs| < s if f ∈ S . He himself
proved this for s = 2. This conjecture remained an unsolved problem for a long time, and,
finally, in 1985, de-Branges [3] proved it for every s ≥ 2 by using hypergeometric functions.
In an effort to resolve this conjecture between 1916 and 1985, several researchers produced
a variety of other exciting results, which ultimately strengthened geometric function theory
research. A number of these included estimating the nth coefficient bounds for a variety of
subfamilies within the family of univalent functions; these include, but are not limited to,
starlike S∗, convex C, bounded turningR, and many more.

In 1992, Ma and Minda [4] constructed a family of univalent analytic functions (say)
q∗(z), which maps D onto the star-shaped domain with respect to q∗(0) = 1 in the right
half-plane and is symmetric about the real axis. The Ma and Minda families of C(q∗),
S∗(q∗) andR(q∗) are defined in set-builder form, respectively, as

C(q∗) =

{
f ∈ A :

(z f ′(z))′

f ′(z)
≺ q∗(z), (z ∈ D)

}
,

S∗(q∗) =

{
f ∈ A :

z f ′(z)
f (z)

≺ q∗(z), (z ∈ D)
}

,

R(q∗) =
{

f ∈ A : f ′(z) ≺ q∗(z), (z ∈ D)
}

.

The researchers concentrated on a few fundamental but significant findings, all of
which were based on the geometrical properties of these functions. A few of these include
covering, growth, and distortion theorems. Moreover, it is to be noted from the literature
that several subfamilies have been intensively investigated recently as particular choices of
the above-defined classes. As is evident, all of these particularly selected functions in the
below-provided classes exhibit a close relationship with the exponential function.

(i). S∗SG ≡ S∗
(

2
1+e−z

)
and CSG ≡ C

(
2

1+e−z

)
[5],RSG ≡ R

(
2

1+e−z

)
[6],

(ii). S∗cos ≡ S∗(cos(z)) [7], S∗car ≡ S∗(1 + zez)) [8], Ccar ≡ C(1 + zez) [9],

(iii). Rcar ≡ R(1 + zez) [10], S∗sin ≡ S∗(1 + sin(z)) [11], S∗pet ≡ S∗
(

1 + sinh−1 z
)

[12].

The determinant Hι,n( f ), where ι, n ∈ N = {1, 2, · · · }, is known as the Hankel
determinant and was contributed by Pommerenke [13,14]. It is formed by the coefficients
of the function f ∈ S and is defined as

Hι,n( f ) =

∣∣∣∣∣∣∣∣∣
bn bn+1 . . . bn+ι−1
bn+1 bn+2 . . . bn+ι
...

... . . .
...

bn+ι−1 bn+q . . . bn+2ι−2

∣∣∣∣∣∣∣∣∣. (3)

The significance of the Hankel determinant is evident in the field of singularity theory,
and it was shown in [15] to be an efficient approach for the examination of power series
with integral coefficients. There are relatively few publications in the literature that give
the bounds of the Hankel determinant for functions of general class S . The best estimate
for f ∈ S was determined by Hayman in [16] and is |H2,n( f )| ≤ |η|, where η is a constant.
Additionally, for f ∈ S , it was shown in [17] that the second-order Hankel determinant
|H2,2( f )| ≤ η for 0 ≤ η ≤ 11/3. The two determinants H2,1( f ) and H2,2( f ) have been
extensively studied in the literature for various subfamilies of univalent functions. The
work done by the authors [18–21], where they determined sharp bounds for the second
determinant, is particularly noteworthy.

In comparison to the sharp bound of the second-order Hankel determinant, the sharp
bound of the third-order Hankel determinant H3,1( f ) for any analytic or univalent function
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is much more difficult to find. This is why there are, in the literature, very few articles in
which sharp bounds of the determinant H3,1( f ) have been obtained. The sharp bounds
of this determinant were obtained recently for the classical classes C, S∗, and R in the
articles [22], [23], and [24], respectively. These sharp bounds are

|H3,1( f )| ≤


4

135 , for f ∈ C,
4
9 , for f ∈ S∗,
1
4 , for f ∈ R.

These were not easy tasks, as the articles [25,26] show that there have been many
attempts before. Moreover, by using a simple technique, Lecko et al. [27] and Kowalczyk
et al. [28] determined the sharp bounds of H3,1( f ) for functions belonging to the families
S∗(1/2) and C(−1/2), respectively. Furthermore, in Table 1, we give more sharp bounds
for this determinant for some specific subfamilies of S .

Table 1. Sharp bounds on |H3,1( f )| for some subfamilies of S .

Author/s Class Sharp Bound Year Reference

Barukab et al. Rpet 1/16 2021 [29]
Riaz et al. S∗SG 1/36 2022 [9]
Shi et al. S∗sin 1/9 2022 [30]

Riaz et al. CSG 1/576 2022 [9]
Shi et al. Rsin 1/16 2022 [30]
Arif et al. RSG 1/64 2022 [6]

Wang et al. S∗pet 1/9 2023 [31]
Neha and Kumar S∗car 1/9 2023 [32]

Shi et al. Rcar 1/16 2023 [10]

In 2015, Mendiratta et al. [33] considered the exponential function and observed
that the function q∗(z) = ez has a positive real part. Using this particular function, they
introduced the classes S∗e ≡ S∗(ez) and Ce ≡ C(ez). The structural formula, inclusion
relations, coefficient estimates, growth and distortion results, subordination theorems, and
various radii constants for functions in the class S∗e were obtained in the same article. Later,
in 2022, Shi et al. [34] introduced and studied a subfamily of bounded turning functions
Re defined by

Re =
{

f ∈ S : f ′(z) ≺ ez, z ∈ D
}

.

The goal of the present article is to compute the sharp bounds of the third-order
Hankel determinant H3,1( f ) for the family Re of bounded turning functions associated
with an exponential function. In addition to this, we also obtain sharp bounds for certain
coefficient-related problems that include the first four initial coefficients, Fekete–Szegö type
inequality, and the second-order Hankel determinant for such a class.

2. A Set of Lemmas

We use the following lemmas to obtain our main results.

Lemma 1 ([35]). Assume p ∈ P as the form of (2). Then

2µ2 = µ2
1 + κ

(
4− µ2

1

)
, (4)

4µ3 = µ3
1 + 2

(
4− µ2

1

)
µ1κ − µ1

(
4− µ2

1

)
κ2 + 2

(
4− µ2

1

)(
1− |κ|2

)
δ, (5)

8µ4 = µ4
1 +

(
4− µ2

1

)
κ
[
c2

1

(
κ2 − 3κ + 3

)
+ 4κ

]
− 4
(

4− µ2
1

)(
1− |κ|2

)
[
µ1(κ − 1)δ + κδ2 −

(
1− |δ|2

)
$
]
, (6)

for some κ, δ, $ ∈ D := {z ∈ C : |z| ≤ 1}.
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Lemma 2 ([1]). If p belongs to class P and has the form (2), then

|µn| ≤ 2 for n ≥ 1. (7)

Lemma 3 ([36]). Let p ∈ P . If τ ∈ [0, 1] and τ(2τ − 1) ≤ υ ≤ τ, we have∣∣∣µ3 − 2τµ1µ2 + υµ3
1

∣∣∣ ≤ 2. (8)

Lemma 4 ([37]). If p ∈ P is taking the form of (2), then∣∣∣∣γµ4
1 + aµ2

2 + 2αµ1µ3 −
3
2

βµ2
1µ2 − µ4

∣∣∣∣ ≤ 2

for all α, β, γ, and a fulfilling the conditions that 0 < α < 1, 0 < a < 1 and

8a(1− a)
(
(αβ− 2γ)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 ≤ 4aα2(1− α)2(1− a). (9)

Lemma 5 ([38]). If p belongs to class P and of the form (2), we obtain

|µn+k − νµnµk| ≤ 2 max{1, |2ν− 1|} =
{

2 f or 0 ≤ ν ≤ 1;
2|2ν− 1| otherwise.

. (10)

3. Main Results

We begin by finding the bounds on the first four coefficients for functions belonging
to classRe.

Theorem 1. Let f ∈ Re and has the form (1). Then,

|b2| ≤
1
2

, |b3| ≤
1
3

, |b4| ≤
1
4

, |b5| ≤
1
5

.

These bounds are best possible.

Proof. Let f ∈ Re. Then, by definition, there exists a Schwarz function such as

f ′(z) = eω(z), z ∈ D.

Suppose that

q(z) =
1 + ω(z)
1−ω(z)

= 1 + µ1z + µ2z2 + µ3z3 + · · · , (11)

which is equivalent to

ω(z) =
q(z)− 1
q(z) + 1

=
µ1z + µ2z2 + µ3z3 + µ4z4 + · · ·

2 + µ1z + µ2z2 + µ3z3 + µ4z4 + · · · , (12)

and it is known that q ∈ P . Based on (1), we see that

f ′(z) = 1 + 2b2z + 3b3z2 + 4b4z3 + 5b5z4 + · · · . (13)

By simplification and using the series expansion of (12), it is found that

eω(z) = 1 +
(

1
2 µ1

)
z +

(
1
2 µ2 − 1

8 µ2
1

)
z2 +

(
1
2 µ3 +

1
48 µ3

1 −
1
4 µ1µ2

)
z3

+
(

1
2 µ4 − 1

8 µ2
2 +

1
384 µ4

1 +
1

16 µ2
1µ2 − 1

4 µ1µ3

)
z4 + · · · .

(14)
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Comparing the coefficients in (13) and (14) leads to

b2 =
1
4

µ1, (15)

b3 =
1
3

(
1
2

µ2 −
1
8

µ2
1

)
, (16)

b4 =
1
4

(
1
2

µ3 +
1

48
µ3

1 −
1
4

µ1µ2

)
, (17)

b5 =
1
5

(
1
2

µ4 −
1
8

µ2
2 +

1
384

µ4
1 +

1
16

µ2
1µ2 −

1
4

µ1µ3

)
. (18)

For b2, implementing Lemma 2, we obtain

|b2| ≤
1
2

.

For b3, reordering (16), we obtain

b3 =
1
6

(
µ2 −

1
4

µ1µ1

)
.

Using Lemma 5, we have

|b3| ≤
1
3

.

For b4, we can write (17) as

|b4| =
1
8

∣∣∣∣(µ3 − 2
(

1
4

)
µ1µ2 +

1
24

µ3
1

)∣∣∣∣.
From (8), we have

0 ≤ τ =
1
4
≤ 1, τ ≥ υ =

1
24

,

and
τ(2τ − 1) = −1

8
≤ υ.

Thus, by applying Lemma 3, we obtain

|b4| ≤
1
4

.

For b5, we can rewrite (18) as

b5 = − 1
10

(
− 1

192
µ4

1 +

(
1
4

)
µ2

2 + 2
(

1
4

)
µ1µ3 −

3
2

(
1
12

)
µ2

1µ2 − µ4

)
.

=
1

10

(
γµ4

1 + aµ2
2 + 2αµ1µ3 −

3
2

βµ2
1µ2 − µ4

)
, (19)

where
γ = − 1

192
, a =

1
4

, α =
1
4

, β =
1

12
,

are such that

8a(1− a)
(
(αβ− 2γ)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 ≤ 4aα2(1− α)2(1− a),

with 0 < α < 1, 0 < a < 1. Hence, by using Lemma 4 in (19), we have

|b5| ≤
1
5

.
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On the sharpness, it is noted that the equalities can be achieved by the following
function:

f ′n(z) = e(z
n),

where n = 1, 2, 3, 4. Thus, we have

f1(z) = ez − 1 = z +
1
2

z2 +
1
6

z3 + · · · , (20)

f2(z) =
∫ z

0
et2

dt = z +
1
3

z3 +
1
10

z5 + · · · , (21)

f3(z) =
∫ z

0
et3

dt = z +
1
4

z4 +
1
14

z7 + · · · , (22)

f4(z) =
∫ z

0
et4

dt = z +
1
5

z5 +
1
18

z9 + · · · . (23)

Now, we consider the Fekete–Szegö inequality for f ∈ Re.

Theorem 2. Suppose that ν is a constant complex number. Then, for f ∈ Re, we have∣∣∣b3 − νb2
2

∣∣∣ ≤ max
{

1
3

,
3|ν| − 2

12

}
.

The equality is attained on the function defined by (20) and (21).

Proof. Making use of (15) and (16), it is found that

∣∣∣b3 − νb2
2

∣∣∣ = ∣∣∣∣∣µ2

6
−

µ2
1

24
− ν

µ2
1

16

∣∣∣∣∣.
By rearranging, it yields∣∣∣b3 − νb2

2

∣∣∣ = 1
6

∣∣∣∣µ2 −
(

3ν + 2
8

)
µ2

1

∣∣∣∣.
The application of Lemma 5 leads us to∣∣∣b3 − νb2

2

∣∣∣ ≤ 2
6

max
{

1,
∣∣∣∣(3ν− 2

4

)∣∣∣∣}.

After the simplification, we obtain∣∣∣b3 − νb2
2

∣∣∣ ≤ max
{

1
3

,
3|ν| − 2

12

}
.

The required proof is accomplished.

Placing ν = 1 in Theorem 2, we deduce the following corollary.

Corollary 1. Let f ∈ Re. Then, ∣∣∣b3 − b2
2

∣∣∣ ≤ 1
3

.

This inequality is sharp for the function f2 given in (21).
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On the class of univalent functions S , a coefficient problem was proposed by Zalcman
in 1960. It is conjectured that, for f ∈ S , we have∣∣∣b2

n − b2n−1

∣∣∣ ≤ (n− 1)2, n ≥ 2. (24)

The generalized form of the Zalcman inequality is

|bn+m−1 − bnbm| ≤ (n− 1)(m− 1), m, n ∈ N, m ≥ 2, n ≥ 2. (25)

We intend to consider the cases of Zalcman inequalities for a special choice of m and n
with respect to f ∈ Re in the following.

Theorem 3. Assume that f ∈ Re and has the series expansion (1). Then,

|b2b3 − b4| ≤
1
4

.

This equality is attained with the extremal function defined in (22).

Proof. Using (15)–(17), we have

|b2b3 − b4| =
1
8

∣∣∣∣µ3 − 2
(

5
12

)
µ1µ2 +

1
8

µ3
1

∣∣∣∣.
From Lemma 3, we have

0 ≤ τ =
5

12
≤ 1, τ ≥ υ =

1
8

,

and
τ(2τ − 1) = − 5

72
≤ υ.

Applying triangle inequality along with Lemma 3 leads us to

|b2b3 − b4| ≤
1
4

.

Thus, the required proof is completed.

Theorem 4. Let f ∈ Re be the series expansion (1). Then,

|b5 − b2b4| ≤
1
5

.

This inequality is sharp.

Proof. From (16) and (18), we obtain

|b5 − b2b4| =
∣∣∣∣− 1

1280
µ4

1 −
1

40
µ2

2 −
13

160
µ1µ3 +

9
320

µ2
1µ2 +

1
10

µ4

∣∣∣∣.
After simplifying, we have

|b5 − b2b4| = −
1

10

∣∣∣∣ 1
128

µ4
1 +

1
4

µ2
2 + 2

(
13
32

)
µ1µ3 −

3
2

(
3

16

)
µ2

1µ2 − µ4

∣∣∣∣. (26)

Comparing the right side of (26) with∣∣∣∣γµ4
1 + aµ2

2 + 2αµ1µ3 −
3
2

βµ2
1µ2 − µ4

∣∣∣∣, (27)
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where
γ =

1
128

, a =
1
4

, α =
13
32

, β =
3

16
,

are such that

8a(1− a)
(
(αβ− 2γ)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 ≤ 4aα2(1− α)2(1− a),

with 0 < α < 1, 0 < a < 1. Therefore, by applying Lemma 4 in (27), we have

|b5 − b2b4| ≤
1
5

.

The required inequality is sharp for the function f4 given in (23).

Theorem 5. Let f ∈ Re has the series form (1). Then,∣∣∣b5 − b2
3

∣∣∣ ≤ 1
5

.

This inequality is sharp.

Proof. Using (16) and (18), we obtain∣∣∣b5 − b2
3

∣∣∣ = ∣∣∣∣− 7
5760

µ4
1 −

19
360

µ2
2 −

1
20

µ1µ3 +
19
720

µ2
1µ2 +

1
10

µ4

∣∣∣∣
:=
∣∣∣∣γµ4

1 + aµ2
2 + 2αµ1µ3 −

3
2

βµ2
1µ2 − µ4

∣∣∣∣,
where

γ =
7

576
, a =

19
36

, α =
1
4

, β =
19
108

.

By virtue of

8a(1− a)
(
(αβ− 2γ)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 < 4aα2(1− α)2(1− a),

and by using Lemma 4, we have ∣∣∣b5 − b2
3

∣∣∣ ≤ 1
5

.

The required inequality is sharp for f4 given in (23).

Next, we will give direct proof of the inequality∣∣∣ap
n − ap(n−1)

2

∣∣∣ ≤ 2p(n−1) − np,

over the classRe for the choice of n = 4, p = 1, and for n = 5, p = 1. Krushkal introduced
and proved this inequality for the whole class of univalent functions in [39].

Theorem 6. If f ∈ Re and is of the form (1). Then∣∣∣b4 − b3
2

∣∣∣ ≤ 1
4

.

This outcome is sharp.

Proof. Using (15) and (17), we have∣∣∣b4 − b3
2

∣∣∣ = 1
8

∣∣∣∣µ3 − 2
(

1
4

)
µ1µ2 +

(
− 1

12

)
µ3

1

∣∣∣∣.
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From Lemma 3, we have

0 ≤ τ =
1
4
≤ 1, τ ≥ υ = − 1

12
,

and
τ(2τ − 1) = −1

8
≤ υ.

Now, with the application of the triangle inequality along with (8), we obtain∣∣∣b4 − b3
2

∣∣∣ ≤ 1
4

.

This outcome is sharp for the function f3 given in (22).

Theorem 7. If f ∈ Re and it has the series form (1), then∣∣∣b5 − b4
2

∣∣∣ ≤ 1
5

.

The above outcome is best possible.

Proof. From (15) and (18), we obtain∣∣∣b5 − b4
2

∣∣∣ = ∣∣∣∣− 13
3840

µ4
1 −

1
40

µ2
2 −

1
20

µ1µ3 +
1

80
µ2

1µ2 +
1

10
µ4

∣∣∣∣.
After simplifying, we have∣∣∣b5 − b4

2

∣∣∣ = − 1
10

∣∣∣∣ 13
384

µ4
1 +

1
4

µ2
2 + 2

(
1
4

)
µ1µ3 −

3
2

(
1

12

)
µ2

1µ2 − µ4

∣∣∣∣. (28)

Comparing the right side of (28) with∣∣∣∣γµ4
1 + aµ2

2 + 2αµ1µ3 −
3
2

βµ2
1µ2 − µ4

∣∣∣∣, (29)

where
γ =

13
384

, a =
1
4

, α =
1
4

, β =
1
12

,

are such that

8a(1− a)
(
(αβ− 2γ)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 ≤ 4aα2(1− α)2(1− a),

with 0 < α < 1, 0 < a < 1. Thus, by virtue of Lemma 4 in (29), we have∣∣∣b5 − b4
2

∣∣∣ ≤ 1
5

.

The required inequality is sharp for the function f4 given in (23).

Finally, we determine the bounds of the second and third Hankel determinants for
f ∈ Re.

Theorem 8. Let f ∈ Re have the representation (1). Then,

|H2,2( f )| =
∣∣∣b2b4 − b2

3

∣∣∣ ≤ 1
9

.

The result is sharp and equality obtained by the extremal function defined in (21).
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Proof. From (15)–(17), we have

H2,2( f ) = − 1
2304

µ4
1 −

1
576

µ2
1µ2 +

1
32

µ1µ3 −
1

36
µ2

2.

By the rotation-invariant property for the class Re and the functional |H2,2( f )|, we
can assume that µ1 = µ ∈ [0, 2]. Using Lemma 1 to express µ2 and µ3, we obtain

|H2,2( f )| =
∣∣∣∣− 1

2304
µ4 +

1
1152

µ2
(

4− µ2
)

κ − 1
128

µ2
(

4− µ2
)

κ2 − 1
144

(
4− µ2

)2
κ2

+
1
64

µ
(

4− µ2
)(

1− |κ|2
)

δ

∣∣∣∣.
Using the triangle inequality along with the fact that |δ| ≤ 1 and |κ| = t ≤ 1, we see

|H2,2( f )| ≤ 1
2304

µ4 +
1

128
µ2
(

4− µ2
)

t2 +
1

144

(
4− µ2

)2
t2 +

1
1152

µ2
(

4− µ2
)

t

+
1
64

µ
(

4− µ2
)(

1− t2
)
=: F(µ, t) .

It is easy to show that ∂F
∂t ≥ 0 on [0, 1]; thus, we have F(µ, t) ≤ F(µ, 1). Taking t = 1

gives

|H2,2( f )| ≤ 1
2304

µ4 +
5

576
µ2
(

4− µ2
)
+

1
144

(
4− µ2

)2
=: l(µ).

As l′(µ) < 0, it is known that l is a decreasing function and l(µ) ≤ l(0). Hence,
we have

|H2,2( f )| ≤ 1
9

.

Theorem 9. Let f ∈ Re be given the series form (1). Then

|H2,3( f )| ≤ 1
16

.

This result is the best possible.

Proof. By placing (16)–(18) with µ1 = µ into H2,3( f ) = b3b5 − b2
4, we obtain

H2,3( f ) = 1
552,960

(
−27µ6 + 120µ4µ2 + 9216µ2µ4 − 2304µ3

2 − 432µ2µ2
2

+4032µµ2µ3 − 2304µ2µ4 + 432µ3µ3 − 8640µ2
3
)
.

(30)

Using λ = 4− µ2 in (4)–(6) of Lemma 1, we obtain

H2,3( f ) =
1

552, 960

{
−3µ6 + 288µ4κ3λ− 1296µ4κ2λ + 36µ2κ4λ2 − 72µ2κ3λ2 − 396µ2κ2λ2

+1152µ2κ2λ− 12µ4κλ + 2304κ3λ2 − 288κ3λ3 − 1152µ2λκ
(

1− |κ|2
)

δ

−1152µ3κλ
(

1− |κ|2
)

δ + 216µ3λ
(

1− |κ|2
)

δ− 144µκ2λ2
(

1− |κ|2
)

δ(
1− |κ|2

)
δ2 − 2160λ2

(
1− |κ|2

)2
δ2 − 2304λ2|κ|2

(
1− |κ|2

)
δ2 − 1008µκλ2

+2304κλ2
(

1− |κ|2
)(

1− |δ|2
)

$ + 1152µ2λ
(

1− |κ|2
)(

1− |δ|2
)

$
}

.

Clearly, we can write it in the form of
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H2,3( f ) =
1

552, 960

[
ζ1(µ, κ) + ζ2(µ, κ)δ + ζ3(µ, κ)δ2 + Φ(µ, κ, δ)$

]
.

Here, ρ, κ, δ ∈ D and

ζ1(µ, κ) = −3µ6 +
(

4− µ2
)[(

4− µ2
)(

216µ2κ3 + 36µ2κ4 + 1152κ3 − 396µ2κ2
)

+288µ4κ3 − 396µ4κ2 + 1152µ2κ2 − 12µ4κ
]
,

ζ2(µ, κ) = 72
(

4− µ2
)(

1− |κ|2
)[(

4− µ2
)(
−14µκ − 2µκ2

)
− 16µ3κ + 3µ3

]
,

ζ3(µ, κ) = 144
(

4− µ2
)(

1− |κ|2
)[(

4− µ2
)(
−|κ|2 − 15

)
− 8µ2κ

]
,

Φ(µ, κ, δ) = 576
(

4− µ2
)(

1− |κ|2
)(

1− |δ|2
)[

2µ2 + 4κ
(

4− µ2
)]

.

By making |κ| = x, |δ| = y along with |$| ≤ 1, it is noted that

|H2,3( f )| ≤ 1
552,960

[
|ζ1(µ, x)|+ |ζ2(µ, x)|y + |ζ3(µ, x)|y2 + |Φ(µ, x, δ)|

]
.

≤ 1
552,960 [Γ(µ, x, y)],

(31)

where we set

Γ(µ, x, y) = r1(µ, x) + r2(µ, x)y + r3(µ, x)y2 + r4(µ, x)
(

1− y2
)

,

with

r1(µ, x) = 3µ6 +
(

4− µ2
)[(

4− µ2
)(

216µ2x3 + 36µ2x4 + 1152x3 + 396µ2x2
)

+288µ4x3 + 396µ4x2 + 1152µ2x2 + 12µ4x
]
,

r2(µ, x) = 72
(

4− µ2
)(

1− x2
)[(

4− µ2
)(

14µx + 2µx2
)
+ 16µ3x + 3µ3

]
,

r3(µ, x) = 144
(

4− µ2
)(

1− x2
)[(

4− µ2
)(

x2 + 15
)
+ 8µ2x

]
,

r4(µ, x) = 576
(

4− µ2
)(

1− µ2
)[

2µ2 + 4x
(

4− µ2
)]

.

Then, our task is to find the maximum value of Γ in the closed domain defined by
Θ := [0, 2]× [0, 1]× [0, 1]. In light of Γ(0, 0, 1) = 34, 560, it is seen that

max
(µ,x,y)∈Θ

{Γ(µ, x, y)} ≥ 34, 560. (32)

Now, we aim to illustrate that the maximum value of Γ with (µ, x, y) ∈ Θ is equal
to 34,560.

When x = 1, it reduces to

Γ(µ, 1, y) = 3µ6 +
(

4− µ2
)[(

4− µ2
)(

1152 + 648µ2
)
+ 1152µ2 + 696µ4

]
.

As
∂Γ
∂µ

= −270µ5 − 9600µ3 + 11, 520µ,

placing ∂Γ
∂µ = 0, we obtain the critical point µ ≈ 1.0780; thus, max Γ(µ, 1, y) ≈ 21, 813.93 <

34, 560. If µ = 2, Γ(2, x, y) ≡ 192 < 34, 560. Thus, we also assume µ < 2 and x < 1. Let
(µ, x, y) ∈ [0, 2)× [0, 1)× (0, 1). Then,
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∂Γ
∂y

= 72
(

4− µ2
)
(1− x2)

{
4y(x− 1)

[(
4− µ2

)
(x− 15) + 8µ2

]
+µ
[
2x
(

4− µ2
)
(7 + x) + µ2(16x + 3)

]}
.

Inserting ∂Γ
∂y = 0 yields

y0 =
µ
[
2x
(
4− µ2)(7 + x) + µ2(16x + 3)

]
4(x− 1)[(4− µ2)(15− x)− 8µ2]

.

If y0 ∈ (0, 1), then we must have the following inequalities:

µ3(16x + 3) + 2µx
(

4− µ2
)
(7 + x) + 4(1− x)

(
4− µ2

)
(15− x) < 32µ2(1− x), (33)

µ2 >
4(15− x)

23− x
. (34)

It is not difficult to prove that the inequality in Equation (33) is false for x ∈
[

1
2 , 1
)

.

Therefore, for the existence of a critical point (µ0, x0, y0) with y0 ∈ (0, 1), we have t0 < 1
2 .

Let g(t) = 4(15−t)
23−t . By observing that g is decreasing on (0, 1), we have µ2

0 > g
(

1
2

)
= 116

45 .

As x0 < 1
2 , we know

r1(µ0, x0) ≤ r1

(
µ0,

1
2

)
=: φ1(µ0). (35)

Using 1− x2
0 < 1 and x0 < 1

2 , we obtain

rj(µ0, x0) ≤
4
3

rj

(
µ0,

1
2

)
=: φj(µ0) j = 2, 3, 4. (36)

Therefore, we deduce that

Γ(µ0, x0, y0) ≤ φ1(µ0) + φ4(µ0) + φ2(µ0)y0 + [φ3(µ0)− φ4(µ0)]y2
0 =: Ψ(µ0, y0).

In light of φ3(µ0)− φ4(µ0) = 36
(
4− µ2

0
)(

116− 45µ2
0
)
≤ 0, it follows that ∂2ψ

∂y2
0
≤ 0 for

y0 ∈ (0, 1). Thus, we have

∂Ψ
∂y0
≥ ∂Ψ

∂y0
| y0=1 = φ2(µ0) + 2[φ3(µ0)− φ4(µ0)] ≥ 0, µ0 ∈

(√
116
45

, 2

)
.

This means that

Ψ(µ0, y0) ≤ ψ(µ0, 1) = φ1(µ0) + φ2(µ0) + φ3(µ0) =: φ̃(µ0).

Because φ̃ takes a maximum value 16,368.92, we have Γ(µ0, x0, y0) < 34, 560. Next, we
prove that the maximum value of Γ is less than 34,560 when y = 0. Actually,

Γ(µ, x, 0) = r1(µ, x) + r4(µ, x). (37)

In the case of x < 7
10 , we have

r1(µ, x) ≤ r1

(
µ,

7
10

)
=: τ1(µ) (38)

and

r4(µ, x) ≤ 100
51

r4

(
µ,

7
10

)
=: τ2(µ). (39)
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Then
Γ(µ, x, 0) ≤ τ1(µ) + τ2(µ) =: τ(µ). (40)

By virtue of τ having its maximum value 32,126.98 at µ = 0, we obtain

Γ(µ, x, 0) ≤ max
µ∈[0,2)

{τ(µ)} < 34, 560, x ∈
[

0,
7
10

)
. (41)

If x ≥ 7
10 , then r1(µ, x) ≤ r1(µ, 1). This leads to

Γ(µ, x, 0) ≤ r1(µ, 1) + r4(µ, x) =: v(µ, x). (42)

It is found that ∂v
∂x ≤ 0 for x > 7

10 . Hence,

v(µ, x) ≤ v

(
µ,

7
10

)
. (43)

Combining (42) and (43), we obtain the conclusion that

Γ(µ, x, 0) ≤ v

(
µ,

7
10

)
=: η(µ). (44)

As η achieves its maximum value of about 31,860.76 at µ ≈ 0.5912, we obtain
Γ(µ, x, 0) < 34, 560 on x ∈

[ 7
10 , 1

)
. Based on the above discussion, we see that the maximum

value of Γ on y = 0 is less than 34,560.
At this time, the problem reduces to finding the maximum value of Γ when y = 1.

Indeed,

Γ(µ, x, 1) = 3µ6 +
(

4− µ2
)2[

36
(

µ2 − 4µ− 4
)

x4 + 72
(

3µ2 − 14µ + 16
)

x3

+36
(

11µ2 + 4µ− 60
)

x2 + 1008µx + 2160
]

+
(

4− µ2
)[

288µ2
(

µ2 − 4µ− 4
)

x3 + 36µ2
(

11µ2 − 6µ + 32
)

x2

+12µ2
(

µ2 + 96µ + 96
)

x + 216µ3
]
=: Ω(µ, x).

By observing that µ2 − 4µ− 4 ≤ 0 for µ ∈ [0, 2), we find

Ω(µ, x) ≤ 3µ6 +
(

4− µ2
)2[

72(3µ2 − 14µ + 16)x3 + 36
(

11µ2 + 4µ− 60
)

x2

+1008µx + 2160] +
(

4− µ2
)[

36µ2
(

11µ2 − 6µ + 32
)

x2

+12µ2
(

µ2 + 96µ + 96
)

x + 216µ3
]
=: Q(µ, x).

Furthermore, using 3µ2 − 14µ + 16 ≥ 0, x3 ≤ x2 ≤ x ≤ 1 and some basic calculations,
it leads to

Q(µ, x) ≤ 3µ6 + 36
(

4− µ2
)2[(

17µ2 − 24µ− 28
)

x2 + 28µx + 60
]

+
(

4− µ2
)(

408µ4 + 1152µ3 + 2304µ2
)
=: W(µ, x).

Suppose that

R(µ, x) =
(

17µ2 − 24µ− 28
)

x2 + 28µx + 60

= : Ax2 + Bx + C,
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where A = 17µ2 − 24µ− 28, B = 28µ and C = 60. Clearly, we have A ≤ 0 for µ ∈ [0, 2).
Assuming that

x̃0 = − B
2A

= − 14µ

17µ2 − 24µ− 28
. (45)

Let µ̂0 = 5+
√

501
17 ≈ 1.6108 be the only root of the equation 17µ2 − 10µ− 28 = 0 that

lies in (0, 2). For µ ≥ µ̂0, we have x̃0 ≥ 1. Hence, R(µ, x) ≤ R(µ, 1), which leads to

W(µ, x) ≤ 3µ6 + 36
(

4− µ2
)2

R(µ, 1) +
(

4− µ2
)(

408µ4 + 1152µ3 + 2304µ2
)
=: ϑ(µ).

Since ϑ obtains its maximum of 24,950.52 on µ = µ̂0, we obtain

Γ(µ, x, 1) < 34, 560, (µ, x) ∈ [µ̂0, 2)× [0, 1). (46)

For µ < µ̂0, we see that x̃0 ∈ [0, 1). Then,

R(µ, x) ≤ C− B2

4A
= 60 +

196µ2

28 + 24µ− 17µ2 ≤ 60 +
196

minµ∈[0,µ̂0)
{28 + 24µ− 17µ2}µ2.

As minµ∈[0,µ̂0)
28 + 24µ− 17µ2 ≥ 22, it follows that

R(µ, x) ≤ 60 +
196
22

λ2 ≤ 60 + 9µ2. (47)

Therefore, we obtain

W(µ, x) ≤ 3µ6 +
(

4− cµ2
)2(

2160 + 324µ2
)
+
(

4− µ2
)(

408µ4 + 1152µ3 + 2304µ2
)
=: w̃(c).

It is calculated that w̃ achieves its maximum value of 34,560 at µ = 0 for all µ ∈ [0, µ̂0).
Therefore, we find that Γ(µ, x, y) ≤ 34, 560 on the domain Θ, which leads to

|H2,3( f )| ≤ 1
16

= 0.0625.

It is sharp for the function f3 given in (22).

Theorem 10. Let f ∈ Re have the series representation (1). Then

|H3,1( f )| ≤ 1
16

.

This inequality is sharp.

Proof. From the definition, we see that H3,1( f ) can be written as

H3,1( f ) = 2b2b3b4 − b3
3 − b2

4 + b3b5 − b2
2b5.

By virtue of the rotation invariance for f ∈ Re, we suppose that µ1 = µ ∈ [0, 2]. By
placing (15)–(18) in the above relation, we obtain

H3,1( f ) =
1

552, 960

(
−65µ6 + 168µ4µ2 + 720µ3µ3 − 528µ2µ2

2 − 5760µ2µ4

+9792µµ2µ3 − 4864µ3
2 + 9216µ2µ4 − 8640µ2

3

)
. (48)

Suppose that λ = 4− µ2. Then, by (4)–(6) of Lemma 1, we obtain
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H3,1( f ) =
1

552, 960

{
−µ6 + 2304λ2κ3 − 608λ3κ3 − 576µ2λκ2 − 144µ4λκ3 + 108µ4λκ2

+12µ4λκ + 36c2λ2κ4 − 792µ2λ2κ3 − 2160λ2
(

1− |κ|2
)2

δ2 + 60µ2λ2κ2

−576µ2λ
(

1− |κ|2
)(

1− |δ|2
)

$ + 576µ3λκ
(

1− |κ|2
)

δ + 576µ2λκ
(

1− |κ|2
)

δ2

+72µ3λ
(

1− |κ|2
)

δ− 144µλ2κ2
(

1− |κ|2
)

δ− 2304λ2|κ|2
(

1− |κ|2
)

δ2

+432µλ2κ
(

1− |κ|2
)

δ + 2304λ2κ
(

1− |κ|2
)(

1− |δ|2
)

$
}

.

Now, we can write it as

H3,1( f ) =
1

552, 960

[
d1(µ, κ) + d2(µ, κ)δ + d3(µ, κ)δ2 + χ(µ, κ, δ)$

]
.

Here, $, κ, δ ∈ D and

d1(µ, κ) = −µ6 +
(

4− µ2
)[(

4− µ2
)(
−128κ3 − 184µ2κ3 + 36µ2κ4 + 60µ2κ2

)
−576µ2κ2 − 144µ4κ3 + 108µ4κ2 + 12µ4κ

]
,

d2(µ, κ) = 72
(

4− µ2
)(

1− |κ|2
)[(

4− µ2
)(

6µκ − 2µκ2
)
+ 8µ3κ + µ3

]
,

d3(µ, κ) = 144
(

4− µ2
)(

1− |κ|2
)[(

4− µ2
)(
−|κ|2 − 15

)
+ 4µ2κ

]
,

χ(µ, κ, δ) = 576
(

4− µ2
)(

1− |κ|2
)(

1− |δ|2
)[
−µ2 + 4κ

(
4− µ2

)]
.

Setting |κ| = x, |δ| = y and using |$| ≤ 1, we obtain

|H3,1( f )| ≤ 1
552,960

[
|d1(µ, x)|+ |d2(µ, x)|y + |d3(µ, x)|y2 + |χ(µ, x, δ)|

]
.

≤ 1
552,960 [Λ(µ, x, y)],

(49)

where
Λ(µ, x, y) = υ1(µ, x) + υ2(µ, x)y + υ3(µ, x)y2 + υ4(µ, x)

(
1− y2

)
,

with

υ1(µ, x) = µ6 +
(

4− µ2
)[(

4− µ2
)(

128x3 + 184µ2x3 + 36µ2x4 + 60µ2x2
)

+576µ2x2 + 144µ4x3 + 108µ4x2 + 12µ4x
]
,

υ2(µ, x) = 72
(

4− µ2
)(

1− x2
)[(

4− µ2
)(

6µx + 2µx2
)
+ 8µ3x + µ3

]
,

υ3(µ, x) = 144
(

4− µ2
)(

1− x2
)[(

4− µ2
)(

x2 + 15
)
+ 4µ2x

]
,

υ4(µ, x) = 576
(

4− µ2
)(

1− x2
)[

c2 + 4x
(

4− µ2
)]

.

We are now able to obtain the maximum value of Λ with (µ, x, y) still restricted in Θ.
As it is observed that

υj(µ, x) ≤ rj(µ, x), (j = 1, 2, 3, 4), (50)

a conclusion can be made that Λ(µ, x, y) ≤ Γ(µ, x, y) ≤ 34, 560 on [0, 2] × [0, 1] × [0, 1].
Therefore, according to (49), we obtain

|H3,1( f )| ≤ 1
552, 960

[Λ(µ, x, y)] ≤ 1
16

.

It is sharp for the function f3 given in (22).
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