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Abstract

:

A   ( 2 , 6 )  -fullerene F is a 2-connected cubic planar graph whose faces are only   2  -length and   6  -length. Furthermore, it consists of exactly three   2  -length faces by Euler’s formula. The   ( 2 , 6 )  -fullerene comes from Došlić’s   ( k , 6 )  -fullerene, a 2-connected 3-regular plane graph with only   k  -length faces and hexagons. Došlić showed that the   ( k , 6 )  -fullerenes only exist for   k = 2  , 3, 4, or 5, and some of the structural properties of   ( k , 6 )  -fullerene for   k = 3  , 4, or 5 were studied. The structural properties, such as connectivity, extendability, resonance, and anti−Kekulé number, are very useful for studying the number of perfect matchings in a graph, and thus for the study of the stability of the molecular graphs. In this paper, we study the properties of   ( 2 , 6 )  -fullerene. We discover that the edge-connectivity of   ( 2 , 6 )  -fullerenes is 2. Every   ( 2 , 6 )  -fullerene is 1-extendable, but not 2-extendable (F is called   n -    e x t e n d a b l e   (  | V ( F ) | ≥ 2 n + 2  ) if any matching of n edges is contained in a perfect matching of F). F is said to be k-resonant (  k ≥ 1  ) if the deleting of any i (  0 ≤ i ≤ k  ) disjoint even faces of F results in a graph with at least one perfect matching. We have that every   ( 2 , 6 )  -fullerene is 1-resonant. An edge set, S, of F is called an anti−Kekulé set if   F − S   is connected and has no perfect matchings, where   F − S   denotes the subgraph obtained by deleting all edges in S from F. The anti−Kekulé number of F, denoted by   a k ( F )  , is the cardinality of a smallest anti−Kekulé set of F. We have that every   ( 2 , 6 )  -fullerene F with   | V ( F ) | > 6   has anti−Kekulé number 4. Further we mainly prove that there exists a   ( 2 , 6 )  -fullerene F having   f F   hexagonal faces, where   f F   is related to the two parameters n and m.






Keywords:


(2, 6)-fullerene; edge-connectivity; anti-Kekulé number; resonance












1. Introduction


A   ( 2 , 6 )  -fullerene F is a 2-connected cubic planar graph whose faces are only   2  -length and   6  -length. The   ( 2 , 6 )  -fullerene comes from Došlić’s   ( k , 6 )  -fullerene. A   ( k , 6 )  -fullerene is a 2-connected cubic planar graph whose faces are only   k  -length and 6-length. Došlić showed that all   ( k , 6 )  -fullerenes only exist for   k = 2  , 3, 4, or 5, and are 1-extendable [1]. A   ( 5 , 6 )  -fullerene is the usual fullerene as the molecular graph of a sphere carbon fullerene. A   ( 4 , 6 )  -fullerene is the molecular graph of a boron–nitrogen fullerene. The structural properties, such as connectivity, extendability, resonance, and anti−Kekulé number, are very useful for studying the number of perfect matchings in a graph [2,3]. And the number of perfect matchings is closely related to the stability of molecular graphs [4,5,6,7,8]. Therefore, many articles have studied the structural properties of graphs in both mathematics and chemistry [9,10,11]. In 2002, Došlić showed that fullerene graphs are bicritical and 2-extendable [9,12]. At the same time, he showed that every fullerene graph is cyclically 5-edge-connected [1]. In 2008, Kardoš characterized the cyclic edge-cuts of fullerene graphs by means of three operations [13]. For the resonance of fullerene graphs, in 2009, Ye et al. proved that every fullerene graph is 1-resonant and all leapfrog fullerene graphs are 2-resonant [14]. Later, Kaiser showed that the IPR fullerene graphs are also 2-resonant [15]. In 2010, Zhang et al. showed that boron–nitrogen fullerene graphs are bipartite, 3-connected, and 1-extendable [16]. They also proved that every boron–nitrogen fullerene is 2-resonant [16]. In 2011, Jiang et al. proved that boron–nitrogen fullerene graphs have the forcing number at least two [17]. A   ( 3 , 6 )  -fullerene is 1-extendable, and has the connectivity 2 or 3 [18]. In 2012, Yang et al. showed that each hexagon of a   ( 3 , 6 )  -fullerene with connectivity 2 is not resonant, and each hexagon of a   ( 3 , 6 )  -fullerene with connectivity 3 is resonant except for one graph [19]. This paper is mainly concerned with the structural properties of   ( 2 , 6 )  -fullerenes.



A   ( 2 , 6 )  -fullerene F is a cubic planar graph such that every face is either   2  -length or   6  -length. A graph with two vertices and n parallel edges joining them is denoted by   n ×  K 2   . The smallest   ( 2 , 6 )  -fullerene is   3 ×  K 2   . A   p l a n e     g r a p h   is a graph that can be embedded in the plane such that its edges intersect only at their ends. Any such embedding divides the plane into connected regions called   f a c e s  . Two different faces,    f 1  ,  f 2   , are   a d j a c e n t   if their boundaries have an edge in common. A face is said to be   i n c i d e n t     w i t h   the vertices and edges in its boundary, and vice versa. An edge is said to be   i n c i d e n t     w i t h   the ends of the edge, and vice versa. Two vertices that are incident with a common edge are   a d j a c e n t  , and two distinct adjacent vertices are   n e i g h b o r s  . If S is a set of vertices in a graph, F, the set of all neighbors of the vertices in S is denoted by   N ( S )  , and   | N ( S ) |   denotes the number of neighbors of S.



Let F be a   ( 2 , 6 )  -fullerene graph with vertex-set   V ( F )   and edge-set   E ( F )  . We denote the number of vertices and edges in F by   | V ( F ) |   and   | E ( F ) |  . For   H ⊆ H  , we let   F − H   be the subgraph of F obtained from F by removing the elements in H. A   m a t c h i n g   of F is a set of disjoint edges, M, of F. A perfect matching of F is a matching M that covers all vertices of F. A perfect matching of a graph coincides with a Kekulé structure of some molecular graph in organic chemistry. A set,  H , of disjoint even faces of a graph, F, is a   r e s o n a n t     p a t t e r n   if F has a perfect matching M such that the boundary of each face in  H  is an   M  -alternating cycle. F is said to be k-resonant (  k ≥ 1  ) if any i (  0 ≤ i ≤ k  ) disjoint even faces of F form a resonant pattern. Moreover, F is called   n -    e x t e n d a b l e   (  | V ( F ) | ≥ 2 n + 2  ) if any matching of n edges is contained in a perfect matching of F. F is   b i c r i t i c a l   if F contains an edge and   F − u − v   contains a perfect matching, for every pair of distinct vertices   u , v ∈ V ( F )  . In this paper, we show that every   ( 2 , 6 )  -fullerene is 1-extendable, 1-resonant but not 2-extendable, bicritical.



The anti−Kekulé set of a   ( 2 , 6 )  -fullerene F with perfect matchings is an edge set,   S ⊆ E ( F )  , such that   F − S   is connected and has no perfect matchings. The anti−Kekulé number of F, denoted by   a k ( F )  , is the cardinality of a smallest anti−Kekulé set of F. It is NP-complete to find the smallest anti−Kekulé set of a graph. Moreover, it has been shown that the anti−Kekulé set of a graph significantly affects the whole molecule structure by the valence bond theory. We know the   ( 5 , 6 )  ,   ( 4 , 6 )  , and   ( 3 , 6 )  -fullerenes have the anti−Kekulé numbers 4, 4, and 3, respectively. In this paper, We show that every   ( 2 , 6 )  -fullerene F has the anti−Kekulé number 4, with   | V ( F ) | > 6  .




2. Main Results


An edge-cut of F is a subset of edges    E   ′   ⊆ E  ( F )    such that   F −  E   ′     is disconnected. An   k -    e d g e - c u t   is an edge-cut with k edges. The   e d g e - c o n n e c t i v i t y   of F, denoted by    κ ′   ( F )   , is equal to the minimum cardinality of edge-cuts. F is   k -    e d g e - c o n n e c t e d   if F cannot be separated into at least two components by removing fewer than k edges.



Lemma 1.

The   ( 2 , 6 )  -fullerene F has edge-connectivity 2, where   | V ( F ) | > 2  .





Proof. 

Since every edge of F is incident with a 2-length face or a 6-length face, there is no cut edge in F. Therefore, F is 2-edge-connected. For one 2-length face, C, in F, we denote it by   C = x y x  . Then either   F ≅ 3 ×  K 2    or the two edges incident with x and y, respectively, other than   x y   form an 2-edge-cut of F. Therefore,    κ ′   ( F )  = 2  , where   | V ( F ) | > 2  . □





We say an edge, e, is   i n c i d e n t    t o   a subgraph, H, if   | V ( e ) ⋂ V ( H ) | = 1  .



Lemma 2.

Every 2-edge-cut of a   ( 2 , 6 )  -fullerene isolates a 2-length face.





Proof. 

Let F be a   ( 2 , 6 )  -fullerene. If   | V ( F ) | = 2  , then   F ≅ 3 ×  K 2   , and the conclusion holds as F has no 2-edge-cut. So, next we suppose   | V ( F ) | > 2  . By Lemma 1, F has an 2-edge-cut. Let   E = {  e 1  ,  e 2  }   be an 2-edge-cut whose deletion separates F into two components,   F ′   and   F  ″   . Then E is a matching of F, as F is 3-regular and has edge-connectivity 2. Suppose every edge,   e i  , has one endpoint, say   x i  , on   F ′  , and the other endpoint, say   y i  , on   F  ″   ,   i = 1 , 2  . Suppose the outer face of   F  ″    is exactly the outer face of F, thus   F ′   lies in some inner face of   F  ″   . Then, there are two hexagons, denoted by   f 1   and   f 2  , such that both   f 1   and   f 2   are incident with   x 1  ,   x 2  ,   y 1  , and   y 2  . If one of   F ′   and   F  ″    contains a cut edge, without losing generality, assume that   F ′   contains a cut edge,   e = u v  , then    F ′  − e   has two connected components, say   F 1   and   F 2  . Then, both   e 1   and   e 2   cannot be incident to the same component   F i   (  i = 1 , 2  ), otherwise there exists a cut edge, e, in F, which is a contradiction. Then,   V  (  f 1  )  =  { u , v ,  x 1  ,  y 1  ,  x 2  ,  y 2  }   ,   V  (  f 2  )  =  { u , v ,  x 1  ,  y 1  ,  x 2  ,  y 2  }   . That is, all of   F 1  ,   F 2  , and   F  ″    are 2-length faces and we obtain a   ( 2 , 6 )  -fullerene with six vertices, and thus the conclusion holds. If both   F ′   and   F  ″    contain cut edges, then there is a face with length more than 6, which is a contradiction. If neither   F ′   nor   F  ″    has a cut edge, then   F ′   and   F  ″    are 2-edge-connected, and in each of them there is only one face that is not 2-length or 6-length, and we denote these two boundaries of the exceptional faces by   C ′   and   C  ″   , respectively. Let   v ′  ,   e ′  , and   f ′   be the number of vertices, edges, and faces in   F ′  , respectively. Let   l ′   be the length of   C ′  , and   f  2  ′   and   f  6  ′   be the number of 2-length faces and 6-length faces in   F ′  , respectively. By Euler’s formula and the structure of   F ′  , it follows that


      3  v ′  = 2  e ′  + 2        v ′  −  e ′  +  f  2  ′  +  f  6  ′  = 1       2  f  2  ′  + 6  f  6  ′  +  l ′  = 2  e ′  .      



(1)







By (1), we obtain that


   l ′  = 4  f  2  ′  − 2 .  



(2)







Since F has no face with length more than 6, each of the two faces,   f 1   and   f 2  , has at most two additional vertices on   C ′  . Hence,   2 ≤  l ′  ≤ 6  . By (2), we can obtain   1 ≤  f  2  ′  ≤ 2  . If    f  2  ′  = 1  , we have    l ′  = 2  , which means that   F ′   is a 2-length face, and thus the conclusion holds. If    f  2  ′  = 2  , then    l ′  = 6   and there are no additional vertices on   C  ″   , which implies that   F  ″    is a 2-length face, and thus the conclusion holds. Therefore, every 2-edge-cut of a   ( 2 , 6 )  -fullerene isolates a 2-length face. □





In [1], Došlić proved that the   ( k , 6 )  -fullerene is 1-extendable for   k = 3 , 4  , and 5. In fact, we may observe that the conclusions remain valid for   k = 2  .



Lemma 3

([1]). Let F be a   ( 2 , 6 )  -fullerene graph. Then F is 1-extendable.





The resonance of faces of a plane bipartite graph is closely related to a 1-extendable property. It was revealed that every face (including the infinite one) of a plane bipartite graph G is resonant if and only if G is 1-extendable [20]. Combing with Lemma 3, we know that every   ( 2 , 6 )  -fullerene is 1-resonant.



Corollary 1.

Every   ( 2 , 6 )  -fullerene is 1-resonant.





Moreover, we know no   ( 2 , 6 )  -fullerene is 2-extendable.



Theorem 1.

No   ( 2 , 6 )  -fullerene is 2-extendable.





Proof. 

Let F be a   ( 2 , 6 )  -fullerene graph. Let f be a 2-length face of F with the boundary    v 1   v 2   v 1   . By the definition of extendability, we know that   | V ( F ) | ≥ 4  . Then, there exist two vertices,   u 1   and   u 2  , of F, which are different from   v 1   and   v 2   such that    u 1   v 1  ∈ E  ( F )    and    u 2   v 2  ∈ E  ( F )   . Since the four vertices,    u 1  ,  u 2  ,  v 1   , and   v 2  , must be contained in the same hexagon of F, there is a vertex,    u 3  ≠  u 1   ,    u 3  ≠  v 2   , of F such that    u 2   u 3  ∈ E  ( F )   . Obviously,    u 1   v 1  ,  u 2   u 3    is a matching and cannot be contained in a perfect matching of F. Thus, no   ( 2 , 6 )  -fullerene is 2-extendable. □





Similarly, we can show no   ( 2 , 6 )  -fullerene is bicritical.



Theorem 2.

No   ( 2 , 6 )  -fullerene is bicritical.





Proof. 

Let F be a   ( 2 , 6 )  -fullerene graph, and f be a 2-length face of F with the boundary    v 1   v 2   v 1   . If   F ≅ 3 ×  K 2   , then   F −  v 1  −  v 2    has no perfect matchings. If   F ≇ 3 ×  K 2   , then there exists a vertex, u, of F, which is different from   v 2   such that   u  v 1  ∈ E  ( F )   . Then,   F − u −  v 2    has a single vertex,   v 1  , as a component. So,   F − u −  v 2    has no perfect matchings. That is, F is not bicritical. □





Theorem 3

(Tutte’s Theorem [21]). A graph G has a perfect matching if and only if    c o   ( G − U )  ≤  | U |    for any   U ⊆ V ( G )  , where    c o   ( G − U )    is the number of odd components of   G − U  .





Theorem 4

(Hall’s Theorem [21]). Let F be a bipartite graph with bipartition W and B. Then F has a perfect matching if and only if   | W | = | B |   and for any   U ⊆ W  ,   | N ( U ) | ≥ | U |   holds.





For the connected cubic simple bipartite graph, we know its anti−Kekulé number is 4 [22].



Theorem 5

( [22]). If G is a connected cubic simple bipartite graph, then   a k ( F ) = 4  .





The above result can be used to determine the anti−Kekulé numbers of some interesting graphs, such as   ( 4 , 6 )  -fullerenes [22], toroidal fullerenes [22], etc. Theorem 5 is also valid for   ( 2 , 6 )  -fullerene when   | V ( F ) | > 6  .



Theorem 6.

Let F be a   ( 2 , 6 )  -fullerene graph with   | V ( F ) | > 6  . Then   a k ( F ) = 4  .





Proof. 

Let F be a   ( 2 , 6 )  -fullerene. For any vertex, u, in F, if   | N ( u ) | = 1  , then   F ≅ 3 ×  K 2    (see Figure 1a the graph   3 ×  K 2   ). For any vertex, u, in F, if   | N ( u ) | = 2  , then   F ≅  F 6    (see Figure 1b the graph   F 6  ). We can easily see that both   3 ×  K 2    and   F 6   cannot exist the anti−Kekulé set. On the other hand, if we let n and   f 6   be the number of vertices and the hexagons of F, respectively, then, by Euler’s formula and the formula of degree sum, we can obtain   n = 2  f 6  + 2  . Thus, if    f 6  = 0  , then   n = 2   and   F ≅ 3 ×  K 2   . If    f 6  = 1  , then   n = 4  , which is impossible as every hexagonal face must contain six vertices. If    f 6  = 2  , then   n = 6   and   F ≅  F 6    (see Figure 1b the graph   F 6  ). Therefore, when   | V ( F ) | ≤ 6  , there is no anti−Kekulé set in F.



Next, we discuss the anti−Kekulé number of F with   | V ( F ) | > 6  . Then, there is a vertex, u, in F and   | N ( u ) | = 3  . Let x, y, and z be the three neighbors of u. Let   e 1   and   e 2   be two edges incident with x other than   u x  , and let   e 3   and   e 4   be two edges incident with y other than   u y  . Since every face of F is 2-length or 6-length and F is 2-edge-connected, the four edges    e 1  ,  e 2  ,  e 3   , and   e 4   are pairwise different. We claim that   {  e 1  ,  e 2  ,  e 3  ,  e 4  }   is an anti−Kekulé set. It is obvious that   F − {  e 1  ,  e 2  ,  e 3  ,  e 4  }   has no perfect matchings as the two vertices, x, y, cannot be contained in the same perfect matching. If   F − {  e 1  ,  e 2  ,  e 3  ,  e 4  }   is no connected, then we obtain a cut edge,   u z  , in F, contradicting Lemma 1. Then, we find an anti−Kekulé set of size 4, and so   a k ( F ) ≤ 4  .



In the following, we show   a k ( F ) ≥ 3  . Let A be an anti-Kekulé set of size   a k ( F )  . Then    F ′  = F − A   is connected and has no perfect matchings. According to Theorem 3, there exists   S ⊆ V (  F ′  )   such that    c 0   (  F ′  − S )  >  | S |   . If we choose such an S with the maximum size, then    F ′  − S   has no even components. On the contrary, suppose that    F ′  − S   has an even component, H. For any vertex   v ∈ V ( H )  ,    c 0   ( H − v )  ≥ 1  . Let    S ′  = S ∪  { v }   , then    c 0   (  F ′  −  S ′  )  ≥  c 0   (  F ′  − S )   + 1 > | S | + 1 = |   S ′   |   , which is a contradiction to the choice of S.



Since   | V (  F ′  ) |   is even, then    c 0   (  F ′  − S )  ≥  | S |  + 2   by parity. For any edge   e ∈ A  , adding e to    F ′  − S   will connect at most two odd components, then    c o   (  F ′  + e − S )  ≥  c 0   (  F ′  − S )  − 2  . Since A is the smallest anti-Kekulé set of F, then    F ′  + e   has a perfect matching for any edge   e ∈ A  . Hence, by Theorem 3, for the above subset S,    c o   (  F ′  + e − S )  ≤  | S |   . Therefore,    | S |  ≥  c o   (  F ′  + e − S )  ≥  c 0   (  F ′  − S )  − 2 ≥  | S |   . We obtain    c 0   (  F ′  − S )  =  | S |  + 2  , and the edge, e, connects exactly two components of    F ′  − S  .



Let   F i   be the odd components of    F ′  − S  , where   1 ≤ i ≤ | S | + 2  . For    F i  ⊆ F  , let   d (  F i  )   denote the number of the set of edges with one end in   F i   and the other end in   F −  F i   . Denote the number of edges between S and the odd components by N. Since F is cubic, S sends out at most   3 | S |   to N. In addition,    ⋃  i = 1   | S | + 2    F i    sends out exactly    ∑  i = 1   | S | + 2   d  (  F i  )  − 2 a k  ( F )    edges to N. Hence


  N =  ∑  i = 1   | S | + 2   d  (  F i  )  − 2 a k  ( F )  ≤ 3  | S |  .  



(3)







Because F is 2-edge-connected,   d (  F i  ) ≥ 2   for every i. On the other hand,   d  (  F i  )   = 3 | V   (  F i  )   | − 2 | E   (  F i  )   |   , which implies that   d (  F i  )   and   | V (  F i  ) |   are of the same parity. Every   F i   sends odd number edges, hence   d (  F i  ) ≥ 3  . Substituting it into (3), we have


  3  ( | S | + 2 )  − 2 a k  ( F )  ≤  ∑  i = 1   | S | + 2   d  (  F i  )  − 2 a k  ( F )  ≤ 3  | S |  ,  








the above inequality gives   a k ( F ) ≥ 3  .



We find that the anti-Kekulé number of F is either 3 or 4. Suppose, on the contrary, that   a k ( F ) = 3  . Then there exists an anti-Kekulé set,   A = {  e 1  ,  e 2  ,  e 3  }  , of cardinality three in F, such that   F − A   is connected and has no perfect matchings. Assume W and B are the bipartition of F. By Hall’s theorem, there exists   U ⊆ W   such that


   |   N  F − A     ( U )  | ≤ | U | − 1   



(4)




where    N  F − A    ( U )    means   N ( U )   in   F − A  . Moreover, for    e i  ∈ A  , since A is the smallest anti-Kekulé set,   F − A +  e i    has a perfect matching. Immediately, by Theorem 4, for the above subset U,


   | U | ≤ |   N  F − A +  e i      ( U )  |   



(5)




for   i = 1 , 2  , and 3, where    N  F − A +  e i     ( U )    means   N ( U )   in   F − A +  e i   . In addition, the neighbors of U will be increased by at most one if we add an edge,   e i  , to   F − A  . Hence


   |   N  F − A +  e i      ( U )  | ≤ |   N  F − A     ( U )  | + 1 .   



(6)







Combining inequalities (4)–(6), we have    | U | = |   N  F − A     ( U )  | + 1   , and   e i   is incident with the vertices of U and   B −  N  F − A +  e i     ( U )    in   F − A +  e i   . Thus, the edges going out from   U ⊆ V ( F )   either go into A or go into the edges going out from    N  F − A    ( U )   . Then, the number of edges between U and    N  F − A    ( U )    is   3 | U | − 3  . Since    |   N  F − A     ( U )  | = | U | − 1   ,    3 |   N  F − A     ( U )  | = 3 ( |   N  F − A     ( U )  | + 1 ) − 3  =  3 | U | − 3   , that is, there is no edge between    N  F − A    ( U )    and   W − U   in   F − A  . As a result, A is an edge-cut, which is a contradiction to the definition of an anti-Kekulé set. □





In [23], Grünbaum and Motzkin showed that   ( 5 , 6 )  -fullerene and   ( 4 , 6 )  -fullerene having n hexagonal faces exist for every non-negative integer, n, satisfying   n ≠ 1  , and gave a similar result for   ( 3 , 6 )  -fullerene. Therefore, we consider whether   ( 2 , 6 )  -fullerene having n hexagonal faces also exists for any n. We tried to give a positive answer to this question, but we found that the conclusion seems quite elusive. Therefore, in this part, we mainly prove that there exists a   ( 2 , 6 )  -fullerene F having   f F   hexagonal faces, where   f F   is related to the two parameters n and m.



Let F be a   ( 2 , 6 )  -fullerene. A   f r a g m e n t  , H, of F is a subgraph of F consisting of a cycle together with its interior and every inner face of H is also a face of F. We define   ∂ ( H )   as the   b o u n d a r y   of the exterior face of H. A face, f, of F is a   n e i g h b o r i n g     f a c e   of H if f is not a face of H and f has at least one edge in common with H. A path of length k (the number of edges) is called a k-  p a t h  . Denote by   f H   the number of hexagons of H.



Proposition 1.

In all the   ( 2 , 6 )  -fullerenes, there exists a fragment, say   G n  , such that    f  G n   =  n 2  + n  ,   n ∈ Z  .





Proof. 

Let   G 0   be a 2-length face and   f 11   and   f 12   be two neighboring faces of   G 0   (see Figure 2a). Then    f  G 0   = 0  . Suppose that   f 11   and   f 12   are hexagons. Set    G 1  =  G 0  ⋃  {  f 11  ,  f 12  }   , suppose both   f 11   and   f 12   are inner faces of   G 1  , and let    f 21  ,  f 22  ,  f 23   , and   f 24   be four neighboring faces of   G 1   along the clockwise direction, such that   f 21   is incident with the two consecutive 2-degree vertices on   ∂ (  G 1  )   (see Figure 2b). Then    f  G 1   = 2  . Suppose that    f 21  ,  f 22  ,  f 23   , and   f 24   are hexagons, pairwise different, and intersecting if and only if   f  2 i    and   f  2 , i + 1    are intersecting at only one edge for   i = 1 , 2 , 3 , 4  ,    f 25  =  f 21   . Set    G 2  =  G 1  ⋃  {  f 21  ,  f 22  ,  f 23  ,  f 24  }   . Suppose    f 21  ,  f 22  ,  f 23   , and   f 24   are the inner faces of   G 2  , and let    f 31  ,  f 32  ,  f 33  ,  f 34  ,  f 35   , and   f 36   be six neighboring faces of   G 2   along the clockwise direction, such that   f 31   is incident with the two consecutive 2-degree vertices on   ∂ (  G 2  )   (see Figure 2c). Then    f  G 2   = 2 + 4 = 6  .



Suppose that the proposition holds for any integer less than n, where   n > 2  . According to the induction hypothesis,    f  G  n − 1    =  n 2  − n   and    f  n 1   ,  f  n 2   , … ,  f  n , 2 n     are   2 n   neighboring faces of   G  n − 1    along the clockwise direction, such that   f  n 1    is incident with the two consecutive 2-degree vertices on   ∂ (  G  n − 1   )  . Suppose that    f  n 1   , … ,  f  n , 2 n     are hexagons, pairwise different, and intersecting if and only if   f  n i    and   f  n , i + 1    are intersecting at only one edge for   i = 1 , 2 , … , 2 n  ,    f  n , 2 n + 1   =  f  n 1    . Set    G n  =  G  n − 1   ⋃  {  f  n 1   , … ,  f  n , 2 n   }   . Suppose    f  n 1   , … ,  f  n , 2 n     are all inner faces of   G n   (see Figure 3). Then    f  G n   =  n 2  − n + 2 n =  n 2  + n  ,   n ∈ Z  . □





Proposition 2.

In all the   ( 2 , 6 )  -fullerenes, there exists a fragment, say   C n  , such that    f  C n   = n  ,   n ∈ Z  .





Proof. 

Let   C 0   be   3 ×  K 2   , then    f  C 0   = 0  . Let   d 1   and   d 2   be two 2-length faces. Its boundary,   ∂ (  d i  )  , is labelled   v  i 1   ,   v  i 2    (  i = 1 , 2  ). Let   P i   be a path that connects two vertices,   v  1 i    and   v  2 i    (  i = 1 , 2  ), and   V  (  P 1  )  ⋂ V  (  P 2  )  = ∅  . If both   P 1   and   P 2   are 2-paths, then, as F is 2-connected, there is a hexagon, say   f 1  , such that   f 1   contains the paths   P 1   and   P 2   and the edges    v 11   v 12    and    v 21   v 22   . Set    C 1  =  d 1  ⋃  d 2  ⋃  f 1   , without loss of generality, suppose   f 1   is the inner face of   C 1   (see Figure 4a). Thus,    f  C 1   = 1  . If both   P 1   and   P 2   are 4-paths, then all whose internal vertices are denoted by    x 1  ,  x 2  ,  x 3    and    y 1  ,  y 2  ,  y 3   , respectively, such that    P 1  =  v 11   x 1   x 2   x 3   v 21    and    P 2  =  v 12   y 1   y 2   y 3   v 22   . Let    x 2   y 2  ∈ E  ( F )   , then there are 2 hexagons, denoted by   f 1   and   f 2  , such that   ∂  (  f 1  )  =  v 11   v 12   y 1   y 2   x 2   x 1   v 11    and   ∂  (  f 2  )  =  v 21   x 3   x 2   y 2   y 3   v 22   v 21   . Set    C 2  =  d 1  ⋃  d 2  ⋃  f 1  ⋃  f 2   , also suppose   f 1   and   f 2   are two inner faces of   C 2   (see Figure 4b), then    f  C 2   = 2  . Suppose   P 1   and   P 2   are   2 n  -paths,   n ∈  N +   . Let    P 1  =  v 11   x 1  …  x  2 n − 1    v 21    and    P 2  =  v 12   y 1  …  y  2 n − 1    v 22   . Suppose that    x i   y i  ∈ E  ( F )    (  i = 2 , 4 , … , 2 n − 2  ), then there are n hexagons between   P 1   and   P 2  , denoted by    f 1  ,  f 2  …  f n   . Set    C n  =  d 1  ⋃  d 2   ⋃  i = 1  n   f i   , such that    f 1  ,  f 2  …  f n    are the inner faces of   C n   (see Figure 4c). Therefore,   C n   is a fragment and    f  C n   = n  ,   n ∈  N +   . Thus, there exists a fragment,   C n  , such that    f  C n   = n  ,   n ∈ Z  . □





Proposition 3.

In all the   ( 2 , 6 )  -fullerenes, there exists a fragment, say   L  n  m  , such that    f  L  n  m   = 2  n 2  +  ( m + 3 )  n  ,   n ∈  N +   ,   m ∈ Z  .





Proof. 

Let   G  n    ′    and   G  n     ′ ′     be two fragments, as indicated in Figure 3. By Proposition 1, we know that   G  n    ′    and   G  n     ′ ′     both have    n 2  + n   hexagons. Suppose n is a positive integer. Since there are   2 n + 2   2-degree vertices on   ∂ (  G  n    ′   )  , we can record them clockwise as    u 1  ,  u 2  , … ,  u  2 n + 2    , such that   u 1   and   u  2 n + 2    are adjacent. Similarly,   2 n + 2   2-degree vertices on   ∂ (  G  n     ′ ′    )   are denoted by    v 1  ,  v 2  , … ,  v  2 n + 2     along the anticlockwise direction of   G  n     ′ ′    , such that   v 1   and   v  2 n + 2    are adjacent. For   G  1    ′    and   G  1     ′ ′    . Let    e 1  =  u 1   v 1  ,  e 2  =  u 2   v 2   , then   e 1   and   e 2   are contained in the hexagon, say   f 1  . Set    K 1  =  G  1    ′   ⋃  G  1     ′ ′    ⋃  f 1    (see Figure 5a), then    f  K 1   = 5  . For   G  n    ′    and   G  n     ′ ′    . Let    e i  =  u i   v i   ,   i = 1 , 2 … n + 1  , then   e i   and   e  i + 1    are contained in the hexagon, say   f i  ,   i = 1 , 2 … n  . Set    K n  =  G  n    ′   ⋃  G  n     ′ ′     ⋃  i = 1  n   f i   , suppose all of    f 1  …  f n    are the inner faces of   K n   (see Figure 5b, the embedding of   K n  ), then    f  K n   = 2  (  n 2  + n )  + n = 2  n 2  + 3 n  .



Next, we construct the fragment   L  n  m   from   K n   as follows. We replace each edge,    e i  =  u i   v i   , by a path,   P i  , such that    P i  =  u i   x  i 1    x  i 2   …  x  i , 2 m    v i   ,   i = 1 , 2 … n + 1  ,   m ∈ Z  . Suppose that    x  i 2    x  i + 1 , 1   ,  x  i 4    x  i + 1 , 3   …  x  i , 2 m    x  i + 1 , 2 m − 1     be the edges of F,   i = 1 , 2 … n  . Therefore, there are   m + 1   hexagons between   P i   and   P  i + 1   , denoted by    f  i 1   ,  f  i 2   …  f  i , m + 1    ,   i = 1 , 2 … n  . Set    L  n  m  =  G  n    ′   ⋃  G  n     ′ ′     ⋃  i = 1  n   {  f  i 1   ,  f  i 2   …  f  i , m + 1   }   ,   m ∈ Z   (see Figure 5c, the embedding of   L  n  m  ). Therefore,   L  n  m   is a fragment and    f  L  n  m   = 2  (  n 2  + n )  +  ( m + 1 )  n = 2  n 2  +  ( m + 3 )  n  ,   n ∈  N +   ,   m ∈ Z  . □





Proposition 4.

In all the   ( 2 , 6 )  -fullerenes, there exists a fragment, say   H n  , such that    f  H n   = 2 n + 2  ,   n ∈ Z  .





Proof. 

Let    H 0  ≅  F 6    be the   ( 2 , 6 )  -fullerene with six vertices. Without loss of generality, suppose the exterior face of   H 0   is a 2-length face with the boundary    u 1   v 1   u 1   , and the remaining two 2-length faces are connected by an edge,    u 2   v 2    (see Figure 6a the embedding of   H 0   and the labelling of    u 1  ,  v 1  ,  u 2  ,  v 2   ). Next, we construct the fragment   H n   from   H 0   as follows: we replace the two parallel edges,    u 1   v 1   , and one edge,    u 2   v 2   , by two paths,   P 1   and   P 3  , and one path,   P 2  , such that    P i  =  u i   x  i 1    x  i 2   …  x  i , 2 n    v i   ,   i = 1 , 2  , and    P 3  =  u 1   x 31   x 32  …  x  3 , 2 n    v 1   ,   n ∈  N +   . Suppose that    x  i 2    x  i + 1 , 1   ,  x  i 4    x  i + 1 , 3   …  x  i , 2 n    x  i + 1 , 2 n − 1     be the edges of F,   i = 1 , 2  . We construct   n + 1   hexagons between   P i   and   P  i + 1   , denoted by    f  i 1   ,  f  i 2   …  f  i , n + 1    ,   i = 1 , 2  . Set    H n  =  H 0  −  {  u 1   v 1  ,  u 2   v 2  }   ⋃  i = 1  2   {  f  i 1   ,  f  i 2   …  f  i , n + 1   }   , such that    f  i 1   ,  f  i 2   …  f  i , n + 1     are the inner faces of   H n  ,   n ∈  N +    (see Figure 6b). Therefore,   H n   is a fragment and    f  H n   = 2  ( n + 1 )  = 2 n + 2  ,   n ∈  N +   . Thus, there exists a fragment,   H n  , such that    f  H n   = 2 n + 2  ,   n ∈ Z  . □





By Propositions 1–4, we can find a   ( 2 , 6 )  -fullerene F having   f F   hexagonal faces that relates to the parameters n and m.



Theorem 7.

There exists a   ( 2 , 6 )  -fullerene F such that    f F  =  n 2  + 2 n  ,   n ∈ Z  .





Proof. 

Let   G n   be a fragment of F, as shown in Figure 3. Its boundary,   ∂ (  G n  )  , is labelled    u 1  ,  u 2  , … ,  u  4 n + 2     along the clockwise direction, where   u 1   and   u 2   are two consecutive 2-degree vertices. Let   C n   be a fragment of F, as shown in Figure 4c. Its boundary,   ∂ (  C n  )  , is labelled    v 1  ,  v 2  , … ,  v  4 n + 2     along the clockwise direction, where   v 1   and   v 2   are two consecutive 3-degree vertices. Next, we assume each of the graphs   G n   and   C n   drawn on a hemisphere, with the boundary as equator. If   ∂  (  G n  )  = ∂  (  C n  )   , then set   F =  G n  ⋃  C n   . By Propositions 1 and 2, then    f F  =  f  G n   +  f  C n   =  n 2  + 2 n  ,   n ∈ Z  . □





Theorem 8.

There exists a   ( 2 , 6 )  -fullerene F such that    f F  = 3  n 2  +  m 2  + 3 m n + 6 n + 3 m + 2  ,   n ∈  N +   ,   m ∈ Z  .





Proof. 

Let   G  m + n + 1    be a fragment of F, as shown in Figure 3. Its boundary,   ∂ (  G  m + n + 1   )  , is labelled    u 1  ,  u 2  , … ,  u  4 m + 4 n + 6     along the clockwise direction, where   u 1   and   u 2   are two consecutive 2-degree vertices. Let   L  n  m   be a fragment of F, as shown in Figure 5c. Its boundary,   ∂ (  L  n  m  )  , is labelled    v 1  ,  v 2  , … ,  v  4 m + 4 n + 6     along the clockwise direction, where   v 1   and   v 2   are two consecutive 3-degree vertices. Next, we assume each of the graphs   G  m + n + 1    and   L  n  m   drawn on a hemisphere, with the boundary as equator. If   ∂  (  G  m + n + 1   )  = ∂  (  L  n  m  )   , then set   F =  G  m + n + 1   ⋃  L  n  m   . By Propositions 1 and 3, then    f F  =  f  G  m + n + 1    +  f  L  n  m   = 3  n 2  +  m 2  + 3 m n + 6 n + 3 m + 2  ,   n ∈  N +   ,   m ∈ Z  . □





Theorem 9.

There exists a   ( 2 , 6 )  -fullerene F such that    f F  =  n 2  + 3 n + 2  ,   n ∈ Z  .





Proof. 

Let   G n   be a fragment of F, as shown in Figure 3. Its boundary,   ∂ (  G n  )  , is labelled    u 1  ,  u 2  , … ,  u  4 n + 2     along the clockwise direction, where   u 1   and   u 2   are two consecutive 2-degree vertices. Let   H n   be a fragment of F, as shown in Figure 6b. Its boundary,   ∂ (  H n  )  , is labelled    v 1  ,  v 2  , … ,  v  4 n + 2     along the clockwise direction, where   v 1   and   v 2   are two consecutive 3-degree vertices. Next, we assume each of the graphs   G n   and   H n   drawn on a hemisphere, with the boundary as equator. If   ∂  (  G n  )  = ∂  (  H n  )   , then set   F =  G n  ⋃  H n   . By Propositions 1 and 4, then    f F  =  f  G n   +  f  H n   =  n 2  + 3 n + 2  ,   n ∈ Z  . □






3. Conclusions


In this paper, we characterized the structural properties of   ( 2 , 6 )  -fullerene F. By the conclusion of Došlić on   ( k , 6 )  -fullerenes, we know that every   ( 2 , 6 )  -fullerene is 1-extendable, and then, by means of the relationship between the extendable and resonance, we know that every   ( 2 , 6 )  -fullerene is 1-resonant. But, by the definition of n-extendable, we find that every   ( 2 , 6 )  -fullerene is not 2-extendable, and then not k-extendable (  k ≥ 3  ). Moreover, we find that no   ( 2 , 6 )  -fullerene is bicritical. On the other hand, for the anti−Kekulé number of   ( 2 , 6 )  -fullerene F, we firstly obtain the upper bound 4 of the anti−Kekulé number of F by the definition of an anti−Kekulé set. Secondly, with the help of Tutte’s Theorem, and combing with the structure of   ( 2 , 6 )  -fullerene, we obtain the lower bound 3 of the anti−Kekulé number of F. Finally, by analyzing that the anti−Kekulé number of F cannot be 3, we find that the anti−Kekulé number of F is 4.



Grünbaum and Motzkin showed that   ( 5 , 6 )  -fullerene and   ( 4 , 6 )  -fullerene having n hexagonal faces exist for every non-negative integer, n, satisfying   n ≠ 1  , and showed a similar result for   ( 3 , 6 )  -fullerene. Therefore, at the end of the paper, we consider whether   ( 2 , 6 )  -fullerene having n hexagonal faces also exists for any n. We try to give a positive answer to this question, but we find that the conclusion seems quite elusive. So, we mainly prove that there exists a   ( 2 , 6 )  -fullerene F having   f F   hexagonal faces, where   f F   is related to the two parameters n and m. There are, however, still several important open questions.



Problem 1.

Whether every   ( 2 , 6 )  -fullerene is k-resonant   ( k ≥ 2 )  ?





Problem 2.

Whether for every   n ≠ 1   there exists a   ( 2 , 6 )  -fullerene F such that    f F  = n  ?
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Figure 1. The   ( 2 , 6 )  -fullerenes   3 ×  K 2    (a),   F 6   (b). 
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Figure 2. The fragments   G 0   (a),   G 1   (b), and   G 2   (c). 
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Figure 3. The fragment   G n  . 
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Figure 4. The fragments   C 1   (a),   C 2   (b), and   C n   (c). 






Figure 4. The fragments   C 1   (a),   C 2   (b), and   C n   (c).
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Figure 5. The fragments   K 1   (a),   K n   (b), and   L  n  m   (c). 
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Figure 6. The fragments   H 0   (a) and   H n   (b). 
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