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Abstract: In this article, the stochastic Riemann wave equation (SRWE) forced by white noise in the
Itô sense is considered. The extended tanh function and mapping methods are applied to obtain
new elliptic, rational, hyperbolic, and trigonometric stochastic solutions. Furthermore, we generalize
some previous studies. The obtained solutions are important in explaining some exciting physical
phenomena, since the SRWE is required for describing wave propagation. We plot numerous 3D
and 2D graphical representations to explain how the multiplicative white noise influences the exact
solutions of the SRWE. We can infer that the introduction of multiplicative white noise disrupts the
symmetry of the solutions and serves to stabilize the solutions of the SRWE.
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1. Introduction

Stochastic nonlinear evolution equations (SNLEEs) play a crucial role in various
fields of science and engineering. These equations take into account both randomness and
nonlinearity, making them essential for modeling complex systems and phenomena [1–3].
SNLEEs are vital for understanding the behavior of dynamic systems. Unlike deterministic
equations, SNLEEs take into account inherent uncertainties and fluctuations, which are
often observed in real-world systems. For instance, in climate modeling, SNLEEs help
incorporate random variations and nonlinearity to model the complex interactions between
various climatic factors accurately. By considering the inherent stochastic nature of these
systems, scientists can obtain more realistic predictions and improve their understanding
of the underlying mechanisms.

Moreover, SNLEEs find applications in physics and chemistry. For instance, in statisti-
cal physics, these equations are employed to understand the behavior of complex systems,
such as turbulent flow or phase transitions. By accounting for the stochastic nature of these
phenomena, scientists can study the emergence of ordered structures from random initial
conditions. In chemical kinetics, SNLEEs are used to model reaction processes involving
random fluctuations, assisting in the design of efficient chemical reactors and optimizing
reaction conditions.

In many practical situations, finding exact solutions to these equations is extremely
challenging due to the presence of both nonlinearity and stochasticity. However, researchers
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have used several techniques and methods to obtain exact solutions for different kinds
of SNLEEs, such as the modified mapping method [4], the φ6-expansion scheme [5], the
(G′/G)-expansion method [6], He’s semi-inverse techniques [7], the new auxiliary equation
method [8], the tanh–coth method [9], etc.

In this paper, we consider the stochastic Riemann wave equation (SRWE) [10]:

Ut + γ1Uxxy + γ2UV x + γ3VU x = σUWt,

Uy = Vx,
(1)

where γ1, γ2, and γ3 are real constants; σ is the intensity of noise; W(t) is the white noise
(Gaussian process); and UWt is a multiplicative white noise in the Itô sense.

The Riemann wave equation (RWE) finds numerous applications in various scientific
disciplines. In acoustics, it helps in the study of sound waves and their propagation in
different media. By solving the Riemann wave equation, one can determine the behavior of
sound waves in air, water, or other materials, aiding in the design of acoustic systems, such
as speakers and musical instruments.

In optics, the RWE is essential for understanding the behavior of light waves. It allows
scientists and engineers to analyze the properties of light, such as refraction, diffraction,
and interference, and enables the design of optical systems, like lenses and cameras.

In quantum mechanics, the RWE plays a central role in describing the behavior of
particles at the quantum level. The equation represents the wave function of a particle,
which provides information about its position, momentum, and energy. The Riemann
wave equation, along with the principles of quantum mechanics, allows us to understand
phenomena such as wave-particle duality and quantum tunneling.

Due to the importance of the RWE, many researchers have obtained the solution of
the Riemann wave equation using different methods, such as the generalized (G′/G)-
expansion method [11], generalized Kudryashov method [12], extended tanh function
technique [13], Wronskian method [14], generalized exponential rational function ap-
proach [15], modified exp(−ϕ(ξ))-function method [16], and new extended direct alge-
braic method [17].

The novelty of this article is to acquire the exact stochastic solutions of the SRWE
(1). To obtain these solutions, we use two different approaches, including the extended
tanh–coth method and the mapping method. Also, we expand upon some earlier research,
such as the results presented in [13]. The solutions that were produced are important in
explaining some exciting physical phenomena since the SRWE is required for describing
wave propagation. Additionally, we explore the impact of noise on the exact solutions of
the SRWE (1) by presenting various figures using the MATLAB software 2018.

This article is organized as follows: In Section 2, the wave equation for the SRWE (1)
is derived. In Section 3, the exact stochastic solution of the SRWE (1) is achieved via the
extended tanh function and mapping methods. In Section 4, the effect of white noise on
the obtained solutions of the SRWE may be detected. Finally, conclusions of the paper
are offered.

2. Wave Equation for the SRWE

To derive the wave equation of the SRWE (1), we use

U (x, y, t) = Ψ(ξ)e[σW(t)− 1
2 σ2t], V(x, y, t) = Φ(ξ)e[σW(t)− 1

2 σ2t] and ξ = ξ1x + ξ2y + λt, (2)

where Ψ and Φ are real deterministic functions and ξ1, ξ2, and λ are nonzero constants.
We observe that

Ux = ξ1Ψ′e[σW(t)− 1
2 σ2t], Uy = ξ2Ψ′e[σW(t)− 1

2 σ2t], (3)

Uxxy = ξ2
1ξ2Ψ(3)e[σW(t)− 1

2 σ2t], Vx = ξ1Φ′e[σW(t)− 1
2 σ2t], (4)
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and

Ut = [λΨ′ + σΨWt +
1
2

σ2Ψ− 1
2

σ2Ψ]e[σW(t)− 1
2 σ2t]

= [λΨ′ + σΨWt]e[σW(t)− 1
2 σ2t], (5)

where + 1
2 σ2Ψ is the Itô correction term. Inserting Equation (2) into Equation (1) and

utilizing (3)–(5), we obtain

λΨ′ + γ1ξ2
1ξ2Ψ(3) + (γ2ξ1ΨΦ′ + γ3ξ1ΦΨ′)e[σW(t)− 1

2 σ2t] = 0,

ξ2Ψ′ = ξ1Φ′.
(6)

Integrating the second equation of (6), we obtain

Φ =
ξ2

ξ1
Ψ +

ρ

ξ1
, (7)

where ρ is a constant of the integral. Plugging Equation (7) into the first equation of (6), we
have

λΨ′ + γ1ξ2
1ξ2Ψ(3) + (γ2ξ2ΨΨ′ + γ3ξ2ΨΨ′ + ργ3Ψ′)e[σW(t)− 1

2 σ2t] = 0.

Taking the expectations E(·) on both sides, we obtain

λΨ′ + γ1ξ2
1ξ2Ψ(3) + (γ2ξ2ΨΨ′ + γ3ξ2ΨΨ′ + ργ3Ψ′)e−

1
2 σ2tE(eσW(t)) = 0. (8)

Since W(t) is a Gaussian process, then E(eσW(t)) = e
1
2 σ2t. Hence, Equation (8) becomes

γ1ξ2
1ξ2Ψ(3) + (λ + ργ3)Ψ′ + (γ2ξ2 + γ3ξ2)ΨΨ′ = 0. (9)

Integrating Equation (9) once with respect to ξ, we have

Ψ′′ + `1Ψ + `2Ψ2 = 0, (10)

where
`1 =

λ + ργ3

γ1ξ2
1ξ2

and `2 =
γ2 + γ3

2γ1ξ2
1

.

3. Exact Stochastic Solutions of SRWE

To obtain exact stochastic solutions for the SRWE (1), we use two alternative methods:
the extended tanh–coth approach and the mapping method.

3.1. Modified Extended tanh Function Method

We apply here the modified extended tanh function method (for more information,
see [18]). Let us assume the solution Ψ of Equation (10) has the form

Ψ(ξ) =
M

∑
j=0

ajφ
j +

M

∑
j=1

bjφ
−j, (11)

where φ solves
φ′ = φ2 + k. (12)

The solutions of Equation (12) are as follows: If k > 0, we obtain

φ(ξ) =
√

k tan(
√

kξ) or φ(ξ) = −
√

k cot(
√

kξ). (13)
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If k < 0, we obtain

φ(ξ) = −
√
−k tanh(

√
−kξ) or φ(ξ) = −

√
−k coth(

√
−kξ). (14)

If k = 0, we obtain

φ(ξ) =
−1
ξ

. (15)

To find the value of M, we balance Ψ2 with Ψ′′ in Equation (10) to have

2M = M + 2,

then
M = 2. (16)

Rewriting Equation (11) and using Equation (16), we obtain

Ψ(ξ) = a0 + a1φ + a2φ2 + b1φ−1 + b2φ−2. (17)

Substituting Equation (17) into Equation (10), we obtain

(6ka2 + `2a2
2)φ

4 + (2a1 + 2`2a1a2)φ
3 + (8ka2 + 2a0a2`2 + a2

1`2 + `1a2)φ
2

(2ka1 + `1a1 + 2`2a0a1 + 2a2b1)φ + (2k2a2 + 2b2 + `1a0 + `2a2
0 + 2`2a1b1

+2`2a2b2) + (2kb1 + 2`2a0b1 + 2`2a1b2 + `1b1)φ
−1 + (8kb2 + 2a0b2`2

+b2
1`2 + `1b2)φ

−2 + (2b1k2 + 2`2b1b2)φ
−3 + (6k2b2 + `2b2

2)φ
4 = 0.

The coefficients of each power of φ are set to zero as follows:

6a2 + `2a2
2 = 0,

2a1 + 2`2a1a2 = 0,

8ka2 + 2a0a2`2 + a2
1`2 + `1a2 = 0,

2ka1 + `1a1 + 2`2a0a1 + 2a2b1 = 0,

2k2a2 + 2b2 + `1a0 + `2a2
0 + 2`2a1b1 + 2`2a2b2 = 0,

2kb1 + 2`2a0b1 + 2`2a1b2 + `1b1 = 0,

8kb2 + 2a0b2`2 + b2
1`2 + `1b2 = 0,

2b1k2 + 2`2b1b2 = 0.

and
6k2b2 + `2b2

2 = 0.

We obtain the four separate sets by solving these equations as follows:
First set:

a0 =
−6k
`2

, a1 = 0, a2 =
−6
`2

, b1 = 0, b2 = 0, λ = 4kγ1ξ2
1ξ2 − ργ3. (18)

Second set:

a0 =
−2k
`2

, a1 = 0, a2 =
−6
`2

, b1 = 0, b2 = 0, λ = −4kγ1ξ2
1ξ2 − ργ3. (19)

Third set:

a0 =
−12k
`2

, a1 = 0, a2 =
−6
`2

, b1 = 0, b2 =
−6k2

`2
, λ = 16kγ1ξ2

1ξ2 − ργ3. (20)
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Fourth set:

a0 =
8k
`2

, a1 = 0, a2 =
−6
`2

, b1 = 0, b2 =
−6k2

`2
, λ = −14kγ1ξ2

1ξ2 − ργ3. (21)

First set: Using (18), the solution of Equation (10) takes the form

Ψ(ξ) =
−6k
`2
− 6

`2
φ2(ξ).

There are three cases for φ(ξ):
Case 1: When k > 0, we have the following, using (13):

Ψ(ξ) =
−6k
`2
− 6k

`2
tan2(

√
kξ) = −6k

`2
sec2(

√
kξ),

and
Ψ(ξ) =

−6k
`2
− 6k

`2
cot2(

√
kξ) =

−6k
`2

csc2(
√

kξ).

Hence, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) = −6k
`2

sec2(
√

kξ)e[σW(t)− 1
2 σ2t], (22)

V(x, y, t) = [−6kξ2

`2ξ1
sec2(

√
kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (23)

and
U (x, y, t) =

−6k
`2

csc2(
√

kξ)e[σW(t)− 1
2 σ2t], (24)

V(x, y, t) = [−6kξ2

`2ξ1
csc2(

√
kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (25)

where ξ = ξ1x + ξ2y + [4kγ1ξ2
1ξ2 − ργ3]t.

Case 2: When k < 0, we have the following, using (14):

Ψ(ξ) =
−6k
`2

+
6k
`2

tanh2(
√
−kξ) =

−6k
`2

sech2(
√
−kξ),

and
Ψ(ξ) =

−6k
`2

+
6k
`2

coth2(
√
−kξ) =

6k
`2

csch2(
√
−kξ).

Hence, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) =
−6k
`2

sech2(
√
−kξ)e[σW(t)− 1

2 σ2t], (26)

V(x, y, t) = [−6kξ2

`2ξ1
sech2(

√
−kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (27)

and
U (x, y, t) =

6k
`2

csch2(
√
−kξ)e[σW(t)− 1

2 σ2t], (28)

V(x, y, t) = [
6kξ2

`2ξ1
csch2(

√
−kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (29)
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Case 3: When k = 0, we have the following, using (15):

Ψ(ξ) = − 6
`2

1
ξ2 .

Therefore, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) = [
−6
`2

1
ξ2 ]e

[σW(t)− 1
2 σ2t], (30)

V(x, y, t) = [
−6ξ2

`2ξ1

1
ξ2 +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (31)

where ξ = ξ1x + ξ2y− ργ3t.
Second set: Using (19), the solution of Equation (10) takes the form

Ψ(ξ) =
−2k
`2
− 6

`2
φ2(ξ).

There are three cases for φ(ξ):
Case 1: When k > 0, we have the following, using (13):

Ψ(ξ) =
−2k
`2
− 6k

`2
tan2(

√
kξ),

and
Ψ(ξ) =

−2k
`2
− 6k

`2
cot2(

√
kξ).

Therefore, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) = [
−2k
`2
− 6k

`2
tan2(

√
kξ)]e[σW(t)− 1

2 σ2t], (32)

V(x, y, t) = [
−2kξ2

`2ξ1
− 6kξ2

`2ξ1
tan2(

√
kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (33)

and
U (x, y, t) = [

−2k
`2
− 6k

`2
cot2(

√
kξ)]e[σW(t)− 1

2 σ2t], (34)

V(x, y, t) = [
−2kξ2

`2ξ1
− 6kξ2

`2ξ1
cot2(

√
kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (35)

where ξ = ξ1x + ξ2y− [4kγ1ξ2
1ξ2 + ργ3]t.

Case 2: When k < 0, we have the following, using (14):

Ψ(ξ) =
−2k
`2

+
6k
`2

tanh2(
√
−kξ),

and
Ψ(ξ) =

−2k
`2

+
6k
`2

coth2(
√
−kξ).

Therefore, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) =
−2k
`2

+
6k
`2

tanh2(
√
−kξ)e[σW(t)− 1

2 σ2t], (36)

V(x, y, t) = [
−2kξ2

`2ξ1
+

6kξ2

`2ξ1
tanh2(

√
kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (37)
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and
U (x, y, t) =

−2k
`2

+
6k
`2

coth2(
√
−kξ)e[σW(t)− 1

2 σ2t], (38)

V(x, y, t) = [
−2kξ2

`2ξ1
+

6kξ2

`2ξ1
coth2(

√
kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (39)

where ξ = ξ1x + ξ2y− [4kγ1ξ2
1ξ2 + ργ3]t.

Case 3: When k = 0, we have the following, using (15):

Ψ(ξ) =
−6
`2

1
ξ2 .

Thus, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) =
−6
`2

1
ξ2 e[σW(t)− 1

2 σ2t], (40)

V(x, y, t) = [
−6ξ2

`2ξ1

1
ξ2 +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (41)

where ξ = ξ1x + ξ2y− ργ3t.
Third set: Using (20), the solution of Equation (10) takes the form

Ψ(ξ) =
−12k
`2
− 6

`2
φ2(ξ)− 6k2

`2
φ−2(ξ).

For φ(ξ), there are three cases:
Case 1: When k > 0, we have the following, using (13):

Ψ(ξ) =
−12k
`2
− 6k

`2
tan2(

√
kξ)− 6k

`2
cot2(

√
kξ)

= −6k
`2

[sec2(
√

kξ) + csc2(
√

kξ)].

Hence, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) = −6k
`2

[sec2(
√

kξ) + csc2(
√

kξ)]e[σW(t)− 1
2 σ2t], (42)

V(x, y, t) = [
−6kξ2

`2ξ1
sec2(

√
kξ)− 6kξ2

`2ξ1
csc2(

√
kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (43)

where ξ = ξ1x + ξ2y + [16kγ1ξ2
1ξ2 − ργ3]t.

Case 2: When k < 0, we have the following, using (14):

Ψ(ξ) =
−12k
`2

+
6k
`2

tanh2(
√
−kξ) +

6k
`2

coth2(
√
−kξ)

=
−6k
`2

[sech2(
√
−kξ)− csch2(

√
−kξ)].

Thus, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) =
−6k
`2

[sech2(
√
−kξ)− csch2(

√
−kξ)]e[σW(t)− 1

2 σ2t], (44)

V(x, y, t) = [
−6kξ2

`2ξ1
sech2(

√
−kξ) +

6kξ2

`2ξ1
csch2(

√
−kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (45)

where ξ = ξ1x + ξ2y + [16kγ1ξ2
1ξ2 − ργ3]t.
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Case 3: When k = 0, we have the following, using (15):

Ψ(ξ) =
6
`2

1
ξ2 +

6
`2

ξ2.

Thus, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) = (
6
`2

1
ξ2 +

6
`2

ξ2)e[σW(t)− 1
2 σ2t], (46)

V(x, y, t) = [
6ξ2

`2ξ1

1
ξ2 +

6ξ2

`2ξ1
ξ2 +

ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (47)

Fourth set: Using (21), the solution of Equation (10) takes the form

Ψ(ξ) =
8k
`2
− 6

`2
φ2(ξ)− 6k2

`2
φ−2(ξ).

There are three cases for φ(ξ):
Case 1: When k > 0, we have the following, using (13):

Ψ(ξ) =
8k
`2
− 6k

`2
tan2(

√
kξ)− 6k

`2
cot2(

√
kξ).

Thus, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) = [
8k
`2
− 6k

`2
tan2(

√
kξ)− 6k

`2
cot2(

√
kξ)]e[σW(t)− 1

2 σ2t], (48)

V(x, y, t) = [
8kξ2

`2ξ1
− 6kξ2

`2ξ1
tan2(

√
kξ)− 6kξ2

`2ξ1
cot2(

√
kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (49)

where ξ = ξ1x + ξ2y− [14kγ1ξ2
1ξ2 + ργ3]t.

Case 2: When k < 0, we have the following, using (14):

Ψ(ξ) =
8k
`2

+
6k
`2

tanh2(
√
−kξ) +

6k
`2

coth2(
√
−kξ).

Therefore, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) = [
8k
`2

+
6k
`2

tanh2(
√
−kξ) +

6k
`2

coth2(
√
−kξ)]e[σW(t)− 1

2 σ2t], (50)

V(x, y, t) = [
8kξ2

`2ξ1
+

6kξ2

`2ξ1
tanh2(

√
−kξ) +

6kξ2

`2ξ1
coth2(

√
−kξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (51)

where ξ = ξ1x + ξ2y− (14kγ1ξ2
1ξ2 + ργ3)t.

Case 3: When k = 0, we have the following, using (15):

Ψ(ξ) =
6
`2

1
ξ2 +

6
`2

ξ2.

Thus, the exact solutions of the SRWE (1), using (7), are

U (x, y, t) = [
6
`2

1
ξ2 +

6
`2

ξ2]e[σW(t)− 1
2 σ2t], (52)

V(x, y, t) = [
6ξ2

`2ξ1

1
ξ2 +

6ξ2

`2ξ1
ξ2 +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (53)
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where ξ = ξ1x + ξ2y− ργ3t.

Remark 1. If we set σ = 0 in Equations (26), (27), (36)–(39), (50), and (51), then we obtain the
same results, (30)–(35), (28), and (29), respectively, that were reported in [13].

3.2. Mapping Method

The mapping method [19] is used here. With M = 2, the solutions of Equation (10)
have the following form:

Ψ(ξ) = h̄0 + h̄1Z(ξ) + h̄2Z2(ξ), (54)

where h̄0, h̄1, and h̄2 are unknown constants and Z(ξ) is the solution of

Z′ =
√

r + qZ2 + pZ4, (55)

where r, q, and p are real parameters. We obtain the following by differentiating
Equation (54) twice and using (55):

Ψ′′ = h̄1(qZ + 2pZ3) + 2h̄2(r + 2qZ2 + 3pZ4). (56)

Putting Equations (54) and (56) into Equation (10), we obtain

(6h̄2 p + `2h̄2
2)Z4 + (2ph̄1 + 2`2h̄1h̄2)Z3

+(4h̄2q + 2`2h̄0h̄2 + `2h̄2
1 + `1h̄2)Z2

+(h̄1q + 2`2h̄0h̄1 + `1h̄1)Z + (2rh̄2 + `2h̄2
0 + `1h̄0) = 0.

Each Z power’s coefficients are set to zero, as follows:

6h̄2 p + `2h̄2
2 = 0,

2ph̄1 + 2`2h̄1h̄2 = 0,

4h̄2q + 2`2h̄0h̄2 + `2h̄2
1 + `1h̄2 = 0,

h̄1q + 2`2h̄0h̄1 + `1h̄1 = 0,

and
2rh̄2 + `2h̄2

0 + `1h̄0 = 0.

When we solve these equations, we obtain

h̄0 =
−(`1 + 4q)

2`2
, h̄1 = 0, h̄2 =

−6p
`2

, λ = −4qγ1ξ2
1ξ2 − ργ3.

Therefore, Equation (10) has the following solution:

Ψ(ξ) =
−(`1 + 4q)

2`2
− 6p

`2
Z2(ξ). (57)

To find the the solutions Z(ξ) of Equation (55), there are many cases, depending on r,
q, and p, as follows:

Case 1: When r = 1, q = −(1 + m2), and p = m2, then Z(ξ) = sn(ξ). In this case, the
exact solutions of the SRWE (1), found by utilizing Equations (2), (57), and (7), are

U (x, y, t) = [
−(`1 − 4(1 + m2))

2`2
− 6m2

`2
sn2(ξ)]e[σW(t)− 1

2 σ2t], (58)
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V(x, y, t) = [
−ξ2(`1 − 4(1 + m2))

2`2ξ1
− 6ξ2m2

`2ξ1
sn2(ξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (59)

where ξ = ξ1x + ξ2y + [4(1 + m2)γ1ξ2
1ξ2 − ργ3]t. If m→ 1, then Equation (58) changes to

U (x, y, t) = [
−(`1 − 8)

2`2
− 6

`2
tanh2(ξ)]e[σW(t)− 1

2 σ2t], (60)

V(x, y, t) = [
−ξ2(`1 − 8)

2`2ξ1
− 6ξ2

`2ξ1
tanh2(ξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (61)

Case 2: If r = −m2(1−m2), q = 2m2 − 1, and p = 1, then Z(ξ) = ds(ξ). In this case,
the exact solutions of the SRWE (1) found by utilizing Equations (2), (57), and (7) are

U (x, y, t) = [
−(`1 + 4(2m2 − 1))

2`2
− 6

`2
ds2(ξ)]e[σW(t)− 1

2 σ2t], (62)

V(x, y, t) = [
−ξ2(`1 + 4(2m2 − 1))

2`2ξ1
− 6ξ2

`2ξ1
ds2(ξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (63)

where ξ = ξ1x + ξ2y− [4(2m2 − 1)γ1ξ2
1ξ2 + ργ3]t. If m→ 1, then Equation (62) changes to

U (x, y, t) = [
−(`1 + 4)

2`2
− 6

`2
csch2(ξ)]e[σW(t)− 1

2 σ2t], (64)

V(x, y, t) = [
−ξ2(`1 + 4)

2`2ξ1
− 6ξ2

`2ξ1
csch2(ξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (65)

When m→ 0, then Equation (62) changes to

U (x, y, t) = [
−(`1 − 4)

2`2
− 6

`2
csc2(ξ)]e[σW(t)− 1

2 σ2t], (66)

V(x, y, t) = [
−ξ2(`1 − 4)

2`2ξ1
− 6ξ2

`2ξ1
csc2(ξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (67)

Case 3: If r = (1−m2), q = 2−m2, and p = 1, then Z(ξ) = cs(ξ). In this case, the
exact solutions of the SRWE (1) found by utilizing Equations (2), (57), and (7) are

U (x, y, t) = [
−(`1 + 4(2−m2))

2`2
− 6

`2
cs2(ξ)]e[σW(t)− 1

2 σ2t], (68)

V(x, y, t) = [
−ξ2(`1 + 4(2−m2))

2`2ξ1
− 6ξ2

`2ξ1
cs2(ξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (69)

where ξ = ξ1x + ξ2y− [4(2−m2)γ1ξ2
1ξ2 + ργ3]t. If m→ 1, then Equation (68) transfers to

Equation (64).
When m→ 0, Equation (68) changes to

U (x, y, t) = [
−(`1 + 8)

2`2
− 6

`2
cot2(ξ)]e[σW(t)− 1

2 σ2t], (70)

V(x, y, t) = [
−ξ2(`1 + 8)

2`2ξ1
− 6ξ2

`2ξ1
cot2(ξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (71)
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Case 4: If r = (1−m2), q = 2m2 − 1, and p = −m2, then Z(ξ) = cn(ξ). In this case,
the exact solutions of the SRWE (1) found by utilizing Equations (2), (57), and (7), are

U (x, y, t) = [
−(`1 + 4(2m2 − 1))

2`2
− 6m2

`2
cn2(ξ)]e[σW(t)− 1

2 σ2t], (72)

V(x, y, t) = [
−ξ2(`1 + 4(2m2 − 1))

2`2ξ1
− 6m2ξ2

`2ξ1
cn2(ξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (73)

where ξ = ξ1x + ξ2y− [4(2m2 − 1)γ1ξ2
1ξ2 + ργ3]t. If m → 1, then Equation (72) tends to

turn into

U (x, y, t) = [
−(`1 + 4)

2`2
+

6
`2

sech2(ξ)]e[σW(t)− 1
2 σ2t], (74)

V(x, y, t) = [
−ξ2(`1 + 4)

2`2ξ1
+

6ξ2

`2ξ1
sech2(ξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (75)

Case 5: If r = (m2 − 1), q = 2−m2, and p = −1, then Z(ξ) = dn(ξ). In this case, the
exact solutions of the SRWE (1) found by utilizing Equations (2), (57), and (7) are

U (x, y, t) = [
−(`1 + 4(2−m2))

2`2
+

6
`2

dn2(ξ)]e[σW(t)− 1
2 σ2t], (76)

V(x, y, t) = [
−ξ2(`1 + 4(2−m2))

2`2ξ1
+

6ξ2

`2ξ1
dn2(ξ) +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (77)

where ξ = ξ1x + ξ2y− [4(2−m2)γ1ξ2
1ξ2 + ργ3]t. If m→ 1, then Equation (76) changes to

Equation (74).

Case 6: If r = 1
4 , q = (m2−2)

2 , and p = m2

4 , then Z(ξ) = sn(ξ)
1+dn(ξ) . In this case, the exact

solutions of the SRWE (1) found by utilizing Equations (2), (57), and (7) are

U (x, y, t) = [
−(`1 + 2(m2 − 2))

2`2
+

3m2

2`2

sn2(ξ)

[1 + dn(ξ)]2
]e[σW(t)− 1

2 σ2t], (78)

V(x, y, t) = [
−ξ2(`1 + 2(m2 − 2))

2`2ξ1
+

3m2ξ2

2`2ξ1

sn2(ξ)

[1 + dn(ξ)]2
+

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (79)

where ξ = ξ1x + ξ2y− [2(m2 − 2)γ1ξ2
1ξ2 + ργ3]t. If m → 1, then Equation (78) tends to

turn into

U (x, y, t) = [
−(`1 − 2)

2`2
+

3
2`2

tanh2(ξ)

[1 + sech(ξ)]2
]e[σW(t)− 1

2 σ2t], (80)

V(x, y, t) = [
−(`1 − 2)ξ2

2`2ξ1
+

3ξ2

2`2ξ1

tanh2(ξ)

[1 + sech(ξ)]2
+

ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (81)

Case 7: If p = −1
4 , q = (m2+1)

2 , and r = −(1−m2)2

4 , then Z(ξ) = mcn(ξ)± dn(ξ). In this
case, the exact solutions of the SRWE (1) found by utilizing Equations (2), (57), and (7) are

U (x, y, t) = [
−(`1 + 2(1 + m2))

2`2
+

3
2`2

(mcn(ξ)± dn(ξ))2]e[σW(t)− 1
2 σ2t], (82)

V(x, y, t) = [
−ξ2(`1 + 2(1 + m2))

2`2ξ1
+

3ξ2

2`2ξ1
(mcn(ξ)± dn(ξ))2 +

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (83)

where ξ = ξ1x + ξ2y− [2(m2 + 1)γ1ξ2
1ξ2 + ργ3]t. If m→ 1, then Equation (82) transfers to

Equation (74).
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Case 8: If p = m2−1
4 , q = (m2+1)

2 , and r = m2−1
4 , then Z(µ) = dn(ξ)

1+sn(ξ) . In this case, the
exact solutions of the SRWE (1) found by utilizing Equations (2), (57), and (7) are

U (x, y, t) = [
−(`1 + 2(1 + m2))

2`2
− 3(m2 − 1)

2`2

dn2(ξ)

[1 + sn(ξ)]2
]e[σW(t)− 1

2 σ2t], (84)

V(x, y, t) = [
−ξ2(`1 + 2(1 + m2))

2`2ξ1
− 3ξ2(m2 − 1)

2`2ξ1

dn2(ξ)

[1 + sn(ξ)]2
+

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (85)

where ξ = ξ1x + ξ2y− [2(m2 + 1)γ1ξ2
1ξ2 + ργ3]t. When m → 0, then Equation (84) trans-

fers to

U (x, y, t) = [
−(`1 + 2)

2`2
+

3
2`2

1
[1 + sin(ξ)]2

]e[σW(t)− 1
2 σ2t], (86)

V(x, y, t) = [
−ξ2(`1 + 2)

2`2ξ1
+

3ξ2

2`2ξ1

1
[1 + sin(ξ)]2

+
ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (87)

Case 9: If p = 1−m2

4 , q = (1−m2)
2 , and r = 1−m2

4 , then Z(µ) = cn(µ)
1+sn(µ) . In this case, the

exact solutions of the SRWE (1) found by utilizing Equations (2), (57), and (7) are

U (x, y, t) = [
−(`1 + 2(1−m2))

2`2
− 3(1−m2)

2`2

cn2(ξ)

[1 + sn(ξ)]2
]e[σW(t)− 1

2 σ2t], (88)

V(x, y, t) = [
−ξ2(`1 + 2(1−m2))

2`2ξ1
− 3ξ2(1−m2)

2`2ξ1

cn2(ξ)

[1 + sn(ξ)]2
+

ρ

ξ1
]e[σW(t)− 1

2 σ2t], (89)

where ξ = ξ1x + ξ2y− [2(1−m2)γ1ξ2
1ξ2 + ργ3]t. When m → 0, then Equation (84) trans-

fers to

U (x, y, t) = [
−(`1 + 2)

2`2
− 3

2`2

cos2(ξ)

[1 + sin(ξ)]2
]e[σW(t)− 1

2 σ2t], (90)

V(x, y, t) = [
−ξ2(`1 + 2)

2`2ξ1
− 3ξ2

2`2ξ1

cos2(ξ)

[1 + sin(ξ)]2
+

ρ

ξ1
]e[σW(t)− 1

2 σ2t]. (91)

4. The Impact of White Noise

We discuss here the impact of white noise on the acquired solutions of the SRWE (1).
Different graphical representations are provided to illustrate the behavior of these solutions.
For γ1 = 0.5, γ2 = γ3 = ξ1 = 1, and for varying values of ξ2 and σ (noise intensity), we
simulate the graphical representations for some attained solutions, including Equations (26),
(27), (58), and (59), as follows:

Finally, we can see in the preceding Figures 1–4 that when the noise is absent (i.e.,
σ = 0) there are several types of the solutions of the SRWE (1), including the bright bill,
dark bill, periodic, and so on. However, when the noise occurs, all of these solutions begin
to deteriorate, and the surface becomes flat as the noise amplitude rises. This indicates that
the noise influences the solutions’ behavior and it makes them stable.
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(a) σ = 0 (b) σ = 1

(c) σ = 2 (d) σ = 0, 1, 2

Figure 1. (a–c) present 3D profiles of U (x, y, t) given in Equation (26) for ξ2 = −2 and for different
σ = 0, 1, 2; (d) shows a 2D profile for these values of σ.

(a) σ = 0 (b) σ = 1

(c) σ = 2 (d) σ = 0, 1, 2

Figure 2. (a−c) present 3D profiles of V(x, y, t) given in Equation (27) for ξ2 = −2 and for different
σ = 0, 1, 2; (d) shows 2D shapes for these values of σ.
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(a) σ = 0 (b) σ = 1

(c) σ = 2 (d) σ = 0, 1, 2

Figure 3. (a−c) present 3D shapes of the solution U (x, y, t) given in Equation (58) for m = 0.5, ξ2 =

−0.8 and different σ = 0, 1, 2; (d) shows a 2D profile for these values of σ.

(a) σ = 0 (b) σ = 1

(c) σ = 2 (d) σ = 0, 1, 2

Figure 4. (a−c) present 3D shapes of the solution V(x, y, t) given in Equation (59) for m = 0.5,
ξ2 = −0.8 and for various σ = 0, 1, 2; (d) shows a 2D profile for these values of σ.
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5. Conclusions

In this study, we took into account the stochastic Riemann wave equation (SRWE)
forced by white noise in the Itô sense (1). Using the extended tanh function approach and
the mapping method, we were able to acquire exact solutions for the SRWE. Since the
SRWE is required for describing wave propagation, the produced solutions are crucial for
explaining a number of fascinating physical phenomena. Moreover, we expanded several
previous results, such as those published in [13]. Finally, the MATLAB software was used
to demonstrate the effect of multiplicative white noise on the exact solutions of the SRWE
(1). We discovered that the stochastic term stabilizes the solutions of the SRWE around zero.
In the future, we may investigate the SRWE with fractional derivatives or additive noise.
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