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Abstract: Reducing the time spent on computational simulations is an active area in solid mechanics,
and efforts are being made to implement novel techniques and apply them to time-sensitive areas in
the industry and research. One of these techniques is called global–local non-intrusive analysis, a
methodology that enriches a local patch model using 3D elements with non-linear behavior (such
as crack propagation), coupled with a linear, global 1D frame model that solves iteratively, thereby
reducing overall times compared to a monolithic solution. However, engineers do not know the length
of the local model (also known as the patch model) to be considered, which affects the convergence,
computational time, and overall quality of the solution. Therefore, this study considered the use
of categorical analyses for performing linear and quadratic discriminant solvers for a given set of
simple cases with symmetric crack propagation within the local model and defining the convergence
boundary with a certain probability of a successful convergence. In addition, a practical case was
analyzed for different lengths of the local model, giving strong correlations to the results of the
discriminant analysis. The solution of all the cases was also analyzed, considering the number of
degrees of freedom, computational times, and the number of iterations for convergence. This aimed
to establish a functional relation for engineering practice, enabling the determination of a suitable
patch length for performing global–local non-intrusive analysis with crack propagation in doubly
symmetric steel sections.

Keywords: global–local; non-intrusive; patch length; crack growth; machine learning; discriminant
analysis; functional relation

1. Introduction

Structures are engineered to withstand different internal forces, either acting alone
or in combination [1,2]. This design framework also necessitates the consideration of
fatigue-related and seismic issues such as crack propagation [3–6]. Structural integrity and
performance are inevitably impacted by factors such as corrosion, cyclic load characteristics,
and maintenance routines, leading to damage and consequent crack propagation [7].

Crack propagation can be studied and damage tolerance analyzed using finite-element
analysis and the extended finite-element method (X-FEM) [8,9]. The X-FEM technique uses
an enrichment of the finite-element shape functions in a localized area of interest; thus,
when a crack appears in the material, it allows for the incorporation of the discontinuity of
the model without remeshing [10].

However, for large structures under static and dynamic loads, beam elements (1D
elements with 6 degrees of freedom per node) are often used for the analysis [11]. However,
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in their formulations, these elements cannot account for crack propagation. Therefore,
the study of such behavior must adopt more complex models, such as multi-scale methods
based on domain decomposition theory [12–18]. New types of analysis have been studied,
involving an iterative solution between local non-linear models coupled with global linear
models, called global–local non-intrusive analysis [19].

Global–local non-intrusive analysis uses previously optimized linear and non-linear
solvers available in commercial software. These solutions are introduced into the linear
model of the structure in the form of displacements and/or forces without the need to
modify it [18].

This analysis has been used to estimate crack propagation, non-linear hardening
behavior, and non-linear contact, among other complex behaviors, with less computational
time compared to a non-decomposed model (also known as a monolithic model) [20–25].

The global–local non-intrusive methodology has great advantages, but its convergence
depends on the size of the domain of the local model. For example, global–local analysis
with mesh refinement was performed in [26–28]. A local domain size with a large number
of degrees of freedom is preferable since it ensures convergence and results in a better
solution; however, it would increase computational costs.

In the implementation of global–local non-intrusive analysis with 1D-to-3D coupling
performed in [25], it can be seen that the convergence depends on the length of the lo-
cal model, which is determined by changing the number of iterations and their errors.
Therefore, it is necessary to know the optimal dimensions to ensure the convergence of
the methodology.

One way to determine the optimal size of the local model is to use machine learning
(ML) techniques. ML is a class of artificial intelligence that seeks to make predictions
from available datasets and algorithms [29]. ML techniques have been used to predict
the strength of structural elements, for example, the shear strength in beams [30–32] and
joints [33,34]. Also, they have been used to determine the axial resistance in steel [35–37]
and concrete elements [38–40]. Other ML applications include damage detection [41–45]
and structural analysis and design [46–49], among others.

There are three main stages in the development of an ML model [29]:

1. Prepare the database: The data used to build models are presented in the form of input
variables (features) and output variables (labels, categories, or classes). In the case of
structures, geometric dimensions and material properties can be classified as features,
whereas resistance and deflection are used as labels. In this step, it is important to
perform a classification analysis in order to identify the main features among different
experiments and to group large amounts of data, considering certain variables that
adequately explain certain analyzed behaviors. The features of the initial data and the
performance of the learning algorithm affect the accuracy of ML models.

2. Learn: This step aims to train some of the existing ML algorithms using the data
obtained from the previous step.

3. Evaluate the model: With the ML model trained, the performance is evaluated using
a loss function as a performance indicator.

Some of the ML algorithms used for structural design problems and performance
evaluation include linear regression, kernel regression, tree-based algorithms, logistic re-
gression, support vector machines, k-nearest neighbors, discriminant analysis, and artificial
neural networks and their variants [50].

Linear and quadratic discriminant analysis [51,52] are appealing because they have
closed-form solutions that are easy to compute, are inherently multiclass, and have no
hyperparameters to fit, achieving good accuracy. Some applications can be found in [53–55].

Therefore, this work applies machine learning techniques in the area of finite-element
methods applied to global–local analysis and is organized as follows. The methodology
section presents a summary of the global–local non-intrusive methodology, the different
cases to be studied, and the mathematical formulation of the categorical discriminant
analyses to be used. In the results section, the convergence of the cases is presented, as well
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as the results of the discriminant analysis. The validation cases using complete structures
and the decision function are also introduced, i.e., a functional relationship between the
length of the local model and the crack position. Finally, the discussion section summarizes
the research and the results obtained, concluding with possible future studies on this topic.

2. Methodology
2.1. Global–Local Non-Intrusive Analysis with 1D-To-3D Coupling

Global–local non-intrusive analysis is performed using SAP2000 software for the linear
global problem, with a 1D frame model (with 6 degrees of freedom, or d.o.f., for each node),
as presented in Figure 1, and Code_Aster software for the local non-linear solution of the
crack propagation, with 3D tetrahedron elements with 3 d.o.f. per node.

Figure 1. Degrees of freedom per node for 1D frame elements (using SAP2000) and 3D tetrahedron
elements (using Code_Aster).

Global–local non-intrusive analysis solves a finite-element problem within a fixed-
point algorithm by dividing its components into two or more parts: a linear coarse-grid
global problem (ΩG) and one or more local fine-grid non-linear problems (ΩL). The non-
linear behavior of this study is limited to crack propagation. The different domains are
presented in Figure 2.

Figure 2. Reference mechanical problem (domain of the ΩR structure).

The coupling of the models is performed using Code-Aster software, communicating
the displacements and forces between the global model and the local non-linear model
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using the comtypes Python library. The complete methodology for coupling 1D frames
with 3D elements is presented in [25]:

1. The equation systems for the global problem are solved using SAP2000, returning the
displacements of the global domain un+1

G , as presented in Equation (1):

KGun+1
G = f G

d + CT
GPn (1)

where KG and f G
d are the stiffness matrix and external load vector of the global model

ΩG, respectively. The coupling operators that transform quantities in the whole
domain into the interfaces CG and Pn are the compensation forces related to the
fixed-point algorithm used in the global–local non-intrusive method.

2. As the software enables obtaining the nodal reaction forces of an embedded substruc-
ture, the auxiliary problem is solved, returning λn+1

A in the interface zone. In the
case that certain software does not enable obtaining the nodal reaction forces directly,
Equation (2) must be used:

KAun+1
A

∣∣
Γ − CT

Aλn+1
A = f A

d (2)

where KA, f A
d , and λn+1

A are the stiffness matrix, external load vector, and interface
reaction forces for the auxiliary domain ΩA, respectively.
The interface displacements of the auxiliary domain un+1

A

∣∣
Γ can be obtained from the

global model displacement, considering the following Equation (3):

un+1
A

∣∣
Γ = CAun+1

A = CGun+1
G (3)

where CA is an operator that transforms quantities from the auxiliary domain ΩA into
the interface Γ, and CG was previously defined.

3. A non-linear local problem is solved using Code_Aster software, imposing displace-
ments onto the nodes of the interface Γ. After the non-linear problem is solved, i.e., a
number of propagation steps are completed, the final displacements of the local model
are obtained using Equation (4):

un+1
L

∣∣
Γ = CLun+1

L = PrGL{CGun+1
G } (4)

where CL, un+1
L

∣∣
Γ, and PrGL are the coupling operator, the interface displacements,

and the projector operator from the global 1D to the local 3D domain ΩL, respectively.
The reaction forces λn+1

L of the local model in the interface are obtained using
Equation (5):

KLun+1
L

∣∣
Γ − CT

L λn+1
L = f L

d (5)

where KL, f L
d , and λn+1

L are the stiffness matrix, the external load vector, and the
reaction forces at the interface in the domain ΩL.

4. The local reaction forces are then integrated and transformed into three equivalent
forces and moments, as per the 6 degrees of freedom used in SAP2000. This is
performed using the PROJ_CHAMP operator in Code_Aster.

5. With the local and auxiliary forces calculated, the correction forces for the next iteration
Pn are obtained using Equation (6):

Pn+1 = λn+1
A + PrLG{λn+1

L } (6)

where the projector operator PrLG, from the local to the global domain, is solved using
the aforementioned PROJ_CHAMP operator in Code_Aster.

In order to estimate the best choice of the local model length, a set of three structures
is considered to perform global–local non-intrusive analysis, with different lengths and
heights for a simple one-bay one-story moment-resisting frame. A total of 39 cases of wide
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beam sections, length patches, and different locations of the initial crack are considered.
A summary of the geometrical configurations for the cases is presented in Figure 3.

Figure 3. Summary of the geometrical configurations for all cases.

The basic properties of the structures are presented in Tables 1–3, separated by the
length of the original frame beam.

Table 1. Analyzed models using the global–local non-intrusive method for a length of 3000 mm and
height of 2000 mm.

Case Section * (H × B × tf × tw in mm)
Original
Depth of

Crack (mm)

Beam Patch
Length (mm)

Complete
Beam Length

Lorig (mm)

Uncracked
Area Aorig

(mm2)

Uncracked
Inertia Iorig

(mm4)

1 H200 × 200 × 8 × 6 25 500 3000 4304 32,623,018
2 H200 × 200 × 8 × 6 50 500 3000 4304 32,623,018
3 H200 × 200 × 8 × 6 75 500 3000 4304 32,623,018
4 H200 × 200 × 8 × 6 50 650 3000 4304 32,623,018
5 H200 × 200 × 8 × 6 75 650 3000 4304 32,623,018
6 H200 × 200 × 8 × 6 25 750 3000 4304 32,623,018
7 H200 × 200 × 8 × 6 50 750 3000 4304 32,623,018
8 H200 × 200 × 8 × 6 75 750 3000 4304 32,623,018
9 H200 × 200 × 8 × 6 75 900 3000 4304 32,623,018

10 H200 × 200 × 8 × 6 25 1000 3000 4304 32,623,018
11 H200 × 200 × 8 × 6 50 1000 3000 4304 32,623,018
12 H200 × 200 × 8 × 6 75 1000 3000 4304 32,623,018
13 H300 × 150 × 8 × 6 40 1250 3000 4104 62,624,352
14 H300 × 150 × 8 × 6 60 1250 3000 4104 62,624,352
15 H300 × 150 × 8 × 6 100 1250 3000 4104 62,624,352
16 H300 × 150 × 8 × 6 140 1250 3000 4104 62,624,352
17 H400 × 300 × 16 × 10 80 900 3000 13,280 395,629,227
18 H400 × 300 × 16 × 10 160 900 3000 13,280 395,629,227
19 H400 × 300 × 16 × 10 80 1100 3000 13,280 395,629,227
20 H400 × 300 × 16 × 10 120 1100 3000 13,280 395,629,227
21 H400 × 300 × 16 × 10 160 1100 3000 13,280 395,629,227

* H is the total height of the wide-flange section; B is the total width of the section; tf is the thickness of the flange;
and tw is the thickness of the web.



Symmetry 2023, 15, 2068 6 of 22

Table 2. Analyzed models using the global-local non-intrusive method for a length of 5000 mm and
height of 3000 mm.

Case Section * (H × B × tf × tw in mm)
Original

Crack Depth
(mm)

Beam Patch
Length (mm)

Complete
Beam Length

Lorig (mm)

Uncracked
Area Aorig

(mm2)

Uncracked
Inertia Iorig

(mm4)

22 H200 × 200 × 8 × 6 30 500 5000 4304 32,623,018
23 H200 × 200 × 8 × 6 60 500 5000 4304 32,623,018
24 H200 × 200 × 8 × 6 90 500 5000 4304 32,623,018
25 H200 × 200 × 8 × 6 30 750 5000 4304 32,623,018
26 H200 × 200 × 8 × 6 60 750 5000 4304 32,623,018
27 H200 × 200 × 8 × 6 90 750 5000 4304 32,623,018
28 H200 × 200 × 8 × 6 30 1000 5000 4304 32,623,018
29 H200 × 200 × 8 × 6 60 1000 5000 4304 32,623,018
30 H200 × 200 × 8 × 6 90 1000 5000 4304 32,623,018

* H is the total height of the wide-flange section; B is the total width of the section; tf is the thickness of the flange;
and tw is the thickness of the web.

Table 3. Analyzed models using the global-local non-intrusive method for a length of 7000 mm and
height of 4000 mm.

Case Section * (H × B × tf × tw in mm)
Original

Crack Depth
(mm)

Beam Patch
Length (mm)

Complete
Beam Length

Lorig (mm)

Uncracked
Area Aorig

(mm2)

Uncracked
Inertia Iorig

(mm4)

31 H200 × 200 × 8 × 6 25 500 7000 4304 32,623,018
32 H200 × 200 × 8 × 6 50 500 7000 4304 32,623,018
33 H200 × 200 × 8 × 6 75 500 7000 4304 32,623,018
34 H200 × 200 × 8 × 6 25 750 7000 4304 32,623,018
35 H200 × 200 × 8 × 6 50 750 7000 4304 32,623,018
36 H200 × 200 × 8 × 6 75 750 7000 4304 32,623,018
37 H200 × 200 × 8 × 6 25 1000 7000 4304 32,623,018
38 H200 × 200 × 8 × 6 50 1000 7000 4304 32,623,018
39 H200 × 200 × 8 × 6 75 1000 7000 4304 32,623,018

* H is the total height of the wide-flange section; B is the total width of the section; tf is the thickness of the flange;
and tw is the thickness of the web.

All models presented in Tables 1–3 have the same Young’s modulus of 200,000 (MPa),
a Poisson ratio ν of 0.3, grade 50 steel (50 ksi or 345 MPa yield stress), a lateral force in the
upper node of 100 (kN), and three propagation steps.

As shown in Tables 1–3, three sections were analyzed, considering different initial
positions of the crack before propagation. The initial geometrical properties of each section
are presented in Table 4. The cracked section is depicted in Figure 4 for a wide-flange
steel section.

Figure 4. Original and cracked section of a wide-flange steel section.
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Table 4. Different sections and initial geometrical properties.

Section Case Section * (H × B × tf × tw in mm) Original Crack
Depth (mm)

Area of
Cracked

Section mm2

Cracked Inertia
in Minor Axis

mm4

Cracked Inertia
in Major Axis

mm4

S1 H200 × 200 × 8 × 6 25 2602 5,336,339 7,054,597
S2 H200 × 200 × 8 × 6 30 2572 5,336,249 6,503,006
S3 H200 × 200 × 8 × 6 50 2452 5,335,889 4,567,420
S4 H200 × 200 × 8 × 6 60 2392 5,335,709 3,754,370
S5 H200 × 200 × 8 × 6 75 2302 5,335,439 2,715,291
S6 H200 × 200 × 8 × 6 90 2212 5,335,169 1,878,233
S7 H300 × 150 × 8 × 6 40 2712 2,254,536 19,314,453
S8 H300 × 150 × 8 × 6 60 2592 2,254,176 15,529,984
S9 H300 × 150 × 8 × 6 100 2352 2,253,456 9,422,895

S10 H300 × 150 × 8 × 6 140 2112 2,252,736 5,078,668
S11 H400 × 300 × 16 × 10 80 7840 36,025,333 71,161,800
S11 H400 × 300 × 16 × 10 120 7440 36,022,000 48,818,746
S11 H400 × 300 × 16 × 10 160 7040 36,018,667 31,461,314

* H is the total height of the wide-flange section; B is the total width of the section; tf is the thickness of the flange;
and tw is the thickness of the web.

Using the section properties (non-cracked and initially cracked) and different lengths
of the cases, the stiffness and ratios between section properties can be calculated to obtain
the relation between the properties and the results of the non-intrusive analysis, as well as
deriving a discriminant function.

2.2. Machine Learning Models

In order to find the functional relation between the overall results of the non-intrusive anal-
ysis and its geometrical properties, a classification or categorical analysis must be performed.

In this section, we discuss some of the most widely employed classification models
and present their strengths and limitations. Machine learning is an artificial intelligence
discipline with the objective of improving the performance of a specific process using
training data based on previous experiences or simulations. The training is carried out by
creating mathematical models with adjustable parameters, which are optimized during
the learning process. These models can be used to obtain future predictions or extract
information from the data, among others [56,57]. It is important to mention that machine
learning models achieve the best interpretability and results when simple features and
mathematical models are considered [57].

2.2.1. Classification Models

Classification models are mathematical models within a supervised scheme that
are designed to approach problems, where a given dataset must be assigned a certain
category based on observed features [56,58]. Some of the most commonly used methods
are as follows:

1. Linear Discriminant Analysis and Quadratic Discriminant Analysis: These types
of discriminant analysis consist of two classifiers with linear and quadratic decision
boundaries, respectively. These automatic supervised learning techniques are used
for classification and dimensionality reduction. The objective is to find a linear com-
bination of features that maximizes the separation between classes within a dataset.
These classification models are attractive due to their closed-form solutions that can be
easily calculated. They have been proven to work well with small datasets for training
and because there are no hyperparameters to be adjusted [59]. Their advantages
are, for example, when the classes are linearly or quadratically separable and the
covariances are equal. Interpretability is another strength since the coefficients of the
resulting linear combinations provide information on the most relevant characteristics
for the separation of the classes. Their disadvantages are, for example, sensitivity
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to equality of covariances since they assume that the covariances of the classes are
equal. Additionally, valid results are only accepted in the domain of training the
independent variables [60].

2. Support Vector Machines: Support vector machines are powerful supervised learn-
ing algorithms used in both classification and regression tasks. The main objective
is to find an optimal separation hyperplane that maximizes the margin between
the classes. Their benefits include efficiency in high-dimensional spaces since they
can efficiently handle datasets with a large number of attributes, robustness since
they have the ability to generalize and are less prone to overfitting, and flexibility in
the kernel, allowing the use of different kernel functions such as linear, polynomial,
and radial basis functions (RBF), making them adaptable to a wide range of problems
and data structures. Their disadvantages include the selection of the appropriate
hyperparameters and their inefficiency on large datasets, as they can be computation-
ally expensive and difficult to interpret since they can be less intuitive in terms of
parameter interpretation [61].

3. Nearest Neighbors Classification: K-nearest neighbor (K-NN) classification is a su-
pervised machine learning method used to address classification problems. Its main
focus is to assign a class label to a data instance based on the class labels of the closest
training instances in a feature space. Its benefits include its conceptual simplicity
since it is easy to understand and implement; adaptability since it can learn relatively
well, including nonlinear and multiclass classification problems; suitability for small
datasets; and the nonparametric algorithm used since it does not make assumptions
about the functional form of the data. Its disadvantages include that the choice of
the number of neighbors (K) is critical and can significantly affect the performance of
K-NN, and it is sensitive to scale, so it is important to perform adequate normalization
before applying it [62].

4. Decision Tree Classifier: This is a supervised machine learning method whose main
objective is to create a tree model that partitions the feature space into decision nodes,
where each node represents a region or dataset with a specific class label. The benefits
of this model include its interpretability, which allows the model’s decision-making
process to be visualized and understood. In addition, it can handle datasets that
include both numerical and categorical characteristics. Moreover, it requires little
data preparation since it does not require data normalization, it can efficiently han-
dle missing values, and it is effective in detecting interactions since it can capture
non-linear relationships and detect interactions between features. The disadvantages
include that it tends to overfit the training data if its growth is not adequately con-
trolled. Furthermore, it can exhibit instability since it is sensitive to small variations
in the training data, which can result in different trees for similar datasets. Finally, it
has limitations in a complex class separation where classes overlap or very complex
separation is required and a tendency to be biased toward dominant classes, as it may
have difficulty in handling unbalanced datasets [63].

5. Random Forest: This is a decision tree-based machine learning algorithm used for
both classification and regression problems. Unlike a single decision tree, random
forest creates a collection of trees and combines their predictions for more robust
and accurate results. Its benefits include high precision, as it tends to achieve high
prediction accuracy on a variety of datasets and problems; robustness against overfit-
ting, as by combining multiple trees, random forest reduces the tendency to overfit;
and its ability to effectively handle missing data and outliers, without the need for
extensive preprocessing. Its disadvantages include its low interpretability because
although each tree within a random forest is interpretable, the combination of many
trees can make the model difficult to interpret. Another disadvantage is the need to
configure each of the hyperparameters, such as the number of trees and the maximum
depth, which must be adjusted appropriately to optimize performance. Finally, the
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computational efficiency and running time are disadvantages due to the construction
of multiple trees and the combination of predictions [64].

Due to the small dataset and the need for a reliable model that is easy to interpret and
can generate a closed-form equation of the classification results, in this study, linear and
quadratic discriminant analyses are used.

2.2.2. Discriminant Analysis

To perform a discriminant analysis, the following assumptions and restrictions must
be considered [65]:

• One variable is considered categorical and the others are numerical intervals or values,
independent of the categorical variables.

• Two minimum cases are needed in order to generate at least two clusters or groups.
• The number of discriminant variables must be less than the number of cases minus 2,

i.e., x1, . . . , xp, where p < (n− 2) and n is the number of observations or cases.
• Any discriminant variable cannot be a linear combination of two or more discriminant

variables.
• The covariance matrices of each group must be approximately equal.
• All continuous variables must comply with a multivariate normal distribution.

Assuming a dataset with d features or properties, and k category classes, the condi-
tional probability of the variable x given a category k or P(x|y = k) is calculated.

Knowing the probability of each analyzed case and its results, predictions can be
calculated using Bayes’ Theorem, as shown in Equation (7).

P(y = k|x) = P(x|y = k)P(y = k)
P(x)

(7)

The probability of x, given the category y equal to a class k, i.e., P(x|y = k), is calculated
using a multivariate Gaussian distribution, with the probability density in Equation (8):

P(x|y = k) =
1

(2π)d/2|Covk|1/2 exp
(
−1

2
(x− µk)

tCov−1
k (x− µk)

)
(8)

where d corresponds to the number of features used for the analysis, and Covk corresponds
to the covariance matrix of the different categories.

Finally, in order to predict the results of the discriminant analysis, the posterior
P(y = k|x) is calculated, depending on whether the discriminant is one of the following types:

• Linear discriminant analysis (LDA): In this case, the posterior is calculated using
Equation (9):

log P(y = k|x) = −1
2
(x− µk)

tCov−1(x− µk) + log P(y = k) + C (9)

where Cov is the covariance matrix for all classes, µk is the mean of the classes, and C
is a constant.

• Quadratic discriminant analysis (QDA): In this case, the posterior can be calculated as
expressed in Equation (10):

log P(y = k|x) = −1
2

log |Cov| − 1
2
(x− µk)

tCov−1
k (x− µk) + log P(y = k) + C (10)

where Cov is the covariance matrix for each class k, µk is the mean of the classes, and C
is a constant.

It is important to mention that LDA presents a linear decision surface due to the
assumption of an equal covariance matrix between all classes. In contrast, there is no
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assumption on the covariance matrix for quadratic discriminant analysis, resulting in a
quadratic decision surface for the analysis.

The result to be considered in both linear and quadratic discriminant analysis is the
solution that maximizes the score, calculated using the posterior probabilities.

Both discriminant analyses were performed using the built-in functions provided in
the scikit learn package in Python [66].

3. Results

From all the cases analyzed using the global–local non-intrusive analysis, considering
three propagation steps, a maximum number of iterations of 50, and a convergence tolerance
of tol = 10−5, the results presented in Table 5 were obtained.

Table 5. Results of the non-intrusive analysis.

Case Section Crack Depth Patch Length (mm) Categorical Label Status Iterations Until
Convergence

1 H200 25 500 0 Non Conv. 50
2 H200 50 500 0 Non Conv. 50
3 H200 75 500 0 Non Conv. 50
4 H200 50 650 1 Conv. 44
5 H200 75 650 1 Conv. 32
6 H200 25 750 1 Conv. 27
7 H200 50 750 1 Conv. 24
8 H200 75 750 1 Conv. 37
9 H200 75 900 1 Conv. 49

10 H200 25 1000 1 Conv. 25
11 H200 50 1000 1 Conv. 23
12 H200 75 1000 1 Conv. 28
13 H300 40 1250 1 Conv. 20
14 H300 60 1250 1 Conv. 25
15 H300 100 1250 1 Conv. 18
16 H300 140 1250 0 Non Conv. 50
17 H400 80 900 0 Non Conv. 50
18 H400 160 900 0 Non Conv. 50
19 H400 80 1100 1 Conv. 24
20 H400 120 1100 1 Conv. 32
21 H400 160 1100 0 Non Conv. 50

22 H200 30 500 1 Conv. 31
23 H200 60 500 1 Conv. 19
24 H200 90 500 0 Non Conv. 50
25 H200 30 750 1 Conv. 13
26 H200 60 750 1 Conv. 38
27 H200 90 750 0 Non Conv. 50
28 H200 30 1000 1 Conv. 28
29 H200 60 1000 0 Non Conv. 50
30 H200 90 1000 0 Non Conv. 50

31 H200 25 500 1 Conv. 30
32 H200 50 500 1 Conv. 36
33 H200 75 500 0 Non Conv. 50
34 H200 25 750 0 Non Conv. 50
35 H200 50 750 1 Conv 34
36 H200 75 750 1 Conv 25
37 H200 25 1000 1 Conv. 23
38 H200 50 1000 1 Conv. 25
39 H200 75 1000 0 Non Conv. 16
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As evident in Table 5, the convergence depended on the patch length, as well as the
depth of the crack with respect to the initial height of the section. In addition, two distinct
features were identified:

• The convergence strongly depended on the patch length. According to Saint Venant’s
principle, the discontinuity (crack position) must be far from the interface to neglect
the non-linear effects at the end of the local model.

• The convergence status of the method was observed to depend on the length of the
overall beam. This is because a very flexible patch in relation to the auxiliary model
can negatively affect the convergence of the method.

Is important to mention that in accordance with the governing equations of fracture
mechanics for flexure problems, the second moment of area, the area, the length of the
element, and the thickness, or in this case, the area, must be considered [67,68]. In this case,
the patch length affected the convergence of the method, as explained by Saint Venant’s
principle. Another factor to consider is the relation between the length of the patch and
the original beam due to the relation of the stiffness of these elements. This affected the
convergence when the local model stiffness was considerably larger with respect to the
global model in the non-intrusive global–local coupling. Additionally, the stress intensity
factors used for crack propagation in Code_Aster depended on the geometry of the crack
and the geometrical properties of the cross-section of the element being analyzed [69].

A physics-based analysis of the results indicated that the stiffness of the beam with
respect to the original beam and the location of the crack with respect to the original height
of the section should be considered. Hence, the variables to analyze from the different cases
are presented in Equations (11) and (12).

X = Z/H (11)

where the ratio Z/H is a dimensionless value corresponding to the percentage of the section
initially cracked.

Y =
12 · Imajor

orig /L3
orig + Aorig/Lorig

12 · Imajor
cracked/L3

patch + Acracked/Lpatch

(12)

where the numerator in the equation for the dimensionless Y value corresponds to the
stiffness contribution of the original non-cracked beam, and the denominator corresponds
to the stiffness contribution of the cracked patch, considering only major flexure and axial
stresses (based on the original problem). The terms in Equation (12) are the following:
Imajor
orig is the non-cracked second-moment area of the cross-section, Lorig is the complete

beam length of the non-cracked beam, Aorig corresponds to the cross-section area of the

non-cracked section, Imajor
cracked is the major axis second-moment area of the cracked beam,

Acracked is the cross-section area of the cracked beam, and Lpatch is the length of the patch
used in the analysis.

It is important to highlight that Young’s modulus E in the stiffness contribution in
Equation (12) was simplified between the terms of the numerator and the denominator,
obtaining the mentioned equation.

The results of the iterations for both features analyzed are presented in Figure 5.
Both discriminant analyses were performed with the analyzed features and the cate-

gorical classes, i.e., convergence or non-convergence, and considering that for these cases,
no reduction and centering were performed on the data prior to the training of the different
discriminant analyses.

For the linear discriminant analysis presented in Figure 6, the line indicating a 50%
probability of convergence is marked in black, representing a score or accuracy of 76.92%,
using the features obtained from the data analysis.



Symmetry 2023, 15, 2068 12 of 22

Figure 5. Contour lines for the number of iterations for all 39 cases analyzed.

Figure 6. Linear discriminant analysis for the 39 cases.
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Different precision metrics or scores were considered when evaluating the results of
the classification performed using linear discriminant analysis, as follows:

1. Micro-Score: This metric is calculated by summing the results of all the classes and
calculating the metric over all the datasets. This is the score presented in Figure 6,
which is calculated as follows:

ScoreMicro =
TruePos.

TruePos. + FalsePos. + FalseNeg.
(13)

2. Macro-Score: This metric is calculated for each class separately to obtain a simple
average of each metric. Each class contributes equally to the calculation of the macro-
score, independent of its size.

Score(by class) =
TruePos.

TruePos. + FalsePos. + FalseNeg.
(14)

ScoreMacro =
Scoreclass 1 + Scoreclass 2

2
(15)

3. Weighted Score: For this case, the size of each class is considered when calculating the
weighted average of each metric. This implies that larger classes have a bigger impact
on the final score.

Score(by class) =
TruePos.

TruePos. + FalsePos. + FalseNeg.
(16)

ScoreWeighted = (Proportionclass 1 · Scoreclass 1) + (Proportionclass 2 · Scoreclass 2) (17)

The results are as follows:

• Micro-score: 0.7692
• Macro-score: 0.7594
• Weighted score: 0.7647

For this case, the weighted metric for the LDA model was considered more relevant
due to the consideration of the size of each class when the weighted average was calculated.

The confusion matrix of the LDA is presented in Figure 7.

Figure 7. Confusion matrix of LDA.
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For the QDA presented in Figure 8, the line indicating a 50% probability of convergence
is marked in black, representing a score or accuracy of 79.42%, using the features obtained
from the data analysis.

Figure 8. Quadratic discriminant analysis for the 39 cases.

For QDA, the same precision metrics presented in Equations (13)–(17) were considered.
The results obtained were as follows:

• Micro-score: 0.7948
• Macro-score: 0.7824
• Weighted score: 0.7915

For this case, the weighted metric was considered more relevant due to the con-
sideration of the size of each class when the weighted average was calculated. Finally,
the confusion matrix of the QDA is presented in Figure 9.

To validate the results of the discriminant analyses, the three-story building presented
in [25] with various patches was analyzed with the following properties:

• A three-story steel structure with a height between floors of 3 m.
• A span length of 10 m with rigid supports on the column bases.
• Beam and column sections corresponding to a wide flange, with H = 300 mm,

B = 200 mm, tf = 10, and tw = 6 mm.
• The uncracked inertia in (mm4), uncracked area in (mm2), and complete beam length

in (mm) were 95,109,333, 5680, and 10,000 (mm), respectively.
• The cracked inertia in (mm4) and cracked area in (mm2) were 20,010,062 and 3440,

respectively.
• Four patches were analyzed with local lengths of 1000, 1500, 2000, and 2500 mm.
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• Each local model was analyzed with an initial crack length of 50 mm and three
propagation steps.

Figure 9. Confusion matrix of QDA.

The SAP2000 model of the software is presented in Figure 10 and was obtained
from [25].

Figure 10. SAP2000 3-story building.
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The different building cases used for validation are presented in Table 6.

Table 6. Sections and patches used for validation using the 3-story building.

Building Section
Case Section X Feature

(Dimensionless)
Y Feature

(Dimensionless)
Local Patch Length

(mm) Status

BS1 H300 × 200 × 10 × 6 0.16667 0.154652891 1000 Non-Conv.
BS2 H300 × 200 × 10 × 6 0.16667 0.24070462 1500 Conv.
BS3 H300 × 200 × 10 × 6 0.16667 0.325220802 2000 Conv.
BS4 H300 × 200 × 10 × 6 0.16667 0.409051684 2500 Conv.

The building cases were incorporated into the discriminant analyses, obtaining differ-
ent confidence intervals, to ensure the behavior of the global–local analysis.

For the linear discriminant analysis, the results are presented in Figure 11.

Figure 11. Linear discriminant analysis with building cases.

As presented in Figure 11, to validate the global–local analysis of the building cases,
considering a linear discriminant analysis using a contour of the probability of 80%,
the convergence for the analyzed cases was achieved using the functional relation from
Equation (18) to numerically obtain the patch length:

Y =
12 · Imajor

orig /L3
orig + Aorig/Lorig

12 · Imajor
cracked/L3

patch + Acracked/Lpatch

= 4.848X− 0.649 (18)
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where X corresponds to the feature Z/H, which relates the initial percentage of the initial
crack with respect to the total height of the section. The previous equation is plotted in
green in Figure 11, resulting in a linear fit with R2 = 1.0.

For the quadratic discriminant analysis, the results are presented in Figure 12.

Figure 12. Quadratic discriminant analysis with building cases.

As presented in Figure 12, to validate the quadratic discriminant analysis of the global–
local non-intrusive analysis for the building cases, the convergence of the problem was
achieved using a contour of the probability of 76%, obtaining the functional relation of
Equation (19), and solving for the patch length numerically:

Y =
12 · Imajor

orig /L3
orig + Aorig/Lorig

12 · Imajor
cracked/L3

patch + Acracked/Lpatch

= 9.55X3 + 6.44X2 − 1.42X + 0.18 (19)

where X corresponds to the feature Z/H, which relates the initial percentage of the initial
crack with respect to the total height of the section. The previous equation is plotted in
green in Figure 12, resulting in a cubic polynomial fit with R2 = 1.0.

For Equations (18) and (19), R2 is calculated using the following equation:

R2 = 1−
(

∑ (Data− Fit)2

∑ (Data−mean(Data))2

)
(20)
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3.1. Convergence Analysis of the Building Cases

For the building cases, the converged cases were further analyzed in order to consider
the execution times, number of iterations for convergence, number of degrees of freedom
for the local patch/model, and distance from the 80% confidence line in the LDA and the
76% confidence line in the QDA, as presented in Table 7.

Table 7. Iterations for convergence, degrees of freedom, and overall execution times for all converged
building cases with X = Z/H = 0.1667; LDA: Y = 0.1591; and QDA: Y = 0.1664.

Building
Section Case Iter. for Conv. Degrees of

Freedom
Execution
Times (s) Y Feature Ratio Y /Y80%

LDA Ratio Y /Y76%
QDA

BS1 – 30159 – 0.1546 0.97 0.92
BS2 19 47703 391 0.2407 1.51 1.44
BS3 20 55434 442 0.3252 2.04 1.95
BS4 18 65781 455 0.4091 2.57 2.45

From the converged cases, it was observed that all differences with respect to the
probabilistic discriminant analysis calculation of the Y feature allowed obtaining a ratio
of at least 1.5, ensuring the convergence of the building cases. It was also observed that
the difference between the local models was negligible relative to the first convergence,
i.e., a patch length of 1500 mm, and the iterations. However, for the number of degrees of
freedom, there was a difference of +16% and +37% for patch lengths of 2000 and 2500 mm,
respectively. Regarding the execution time, there was a difference with respect to the
1500 mm patch of +13% and +16%, and patch lengths of 2000 and 2500 mm, respectively.
It can be added that from the discriminant analysis of the building cases, a patch length
of 1500 mm was suggested to be used (using the functional relation and a safety factor of
1.5, obtaining a patch length of 1490 mm using the LDA Y feature from Equation (21) and
1555 mm using the QDA Y feature from Equation (22), respectively).

Y
(S.F = 1.5)

=
12 · Imajor

orig /L3
orig + Aorig/Lorig

12 · Imajor
cracked/L3

patch + Acracked/Lpatch

= [4.848X− 0.649] (21)

Y
(S.F = 1.5)

=
12 · Imajor

orig /L3
orig + Aorig/Lorig

12 · Imajor
cracked/L3

patch + Acracked/Lpatch

=
[
9.55X3 + 6.44X2 − 1.42X + 0.18

]
(22)

Finally, the equations, both with and without safety factors are presented in Figure 13,
summarizing the functional relations obtained in this work.

Figure 13. Linear and quadratic discriminant analyses with building cases and safety factors.
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3.2. Summary of the Results

Performing linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA) within the global–local non-intrusive method enables the training and generation
of distinct probabilistic results. The results are presented as contours, facilitating the
selection of the optimal patch length and ensuring convergence for doubly symmetric wide-
flange elements. This machine learning technique serves as a starting point for solving
the problem of defining the optimal patch length. The validation for both discriminant
analyses was performed with a three-story building model with varying patch lengths,
calculating a safety factor of 1.5 to ensure crack propagation within the local model while
minimizing computational resources in the non-intrusive methodology. The presented
decision variables take into account the difference in stiffness between the local and global
models in the area of interest in order to determine the optimal patch length.

4. Discussion

Global–local non-intrusive analysis with 1D-to-3D coupling is a technique that allows
us to more efficiently analyze localized discontinuities; however, the length of the local
non-linear patch is unknown a priori. Therefore, discriminant analysis was performed
using 39 one-bay one-story moment-resisting frames with lateral loads, three propagation
steps, and different lengths of the local models or patches.

The categorical analysis was performed using linear and quadratic discriminants,
resulting in an accuracy or score greater than 75% in both cases. Nevertheless, the quadratic
discriminant analysis performed better, achieving an accuracy of 79%.

Out of the four building cases analyzed, three of them achieved convergence. A 75%
confidence contour was considered for QDA, and an 80% confidence level was used for
LDA, resulting in a good correlation with the different building models.

From the analysis, a safety factor of 1.5 was recommended to achieve convergence,
avoiding excessive degrees of freedom in the local model, i.e., the length of the model
was directly related to the number of d.o.f. of the model. This safety factor must be
multiplied in the Y feature obtained from the analysis to ensure the expected behavior of
the global–local analysis.

The execution time was also taken into account to consider the overall increase in time
when larger patches were used relative to the suggested patch with a safety factor of 1.5.
The execution time was observed to be 37% greater for the larger local patch compared to
the recommended patch from the analysis.

Finally, from the linear and discriminant analyses, a functional relationship between
the crack location and the overall height of the section was obtained, allowing for the
extrapolation of the ratio between the axial and flexure stiffness of the patch and beam.
This allowed us to easily obtain the length of the patch for the local model, ensuring the
convergence of the model with a confidence level of 75% or greater.

In future research, more complex machine learning techniques could be used, such as
neural networks, support vector machines, and feature selection, among others. More cases
are also needed to apply these types of methods, including varying the crack positions,
lengths of patches, and types of sections (channels, angles, tubulars, etc.) to be considered
in these future analyses.
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