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Abstract: In wireless sensor networks, terminal devices with restricted cost and size have limited
battery life. Meanwhile, these energy-constrained devices are not easy to access, especially when
the terminal devices are located in severe environments. To recharge the energy-constrained devices
and extend their network service time, unmanned aerial vehicles (UAVs) equipped with wireless
power chargers are leased by the third-party control center. To incent the participation of UAVs
with different charging capabilities and ensure the strategy-proofness of the incentive mechanism, a
hidden information based contract theory model, specifically adverse selection, is introduced. By
leveraging individual rationality and incentive compatibility, a contract theory based optimization
problem is then formulated. After reducing redundant constraints, the optimal contract items are
derived by Lagrangian multiplier. Finally, numerical simulation results are implemented to compare
the prepared algorithm with three other baselines, which validates the effectiveness of our proposed
incentive mechanism.

Keywords: unmanned aerial vehicles; wireless charging; energy trading; incentive mechanism;
contract theory

1. Introduction

Wireless sensor network (WSN) is one potential technique to monitor and transfer
data from severe environments such as deserts or rainforests to remote control centers.
The terminal devices in WSNs are usually scattered by airplane or unmanned aerial vehi-
cles (UAVs), and thus their locations are random. At the same time, the cost and size of
these terminal devices are usually constrained, and thus their communication resources,
computational resources, caching resources, and energy are restricted [1]. Since the termi-
nal devices are randomly deployed and the severe environments are not easy to access,
changing batteries for them or recharging them is challenging.

The emergence of wireless power transfer (WPT) especially near-field power transfer
makes it possible to recharge the terminal devices in WSN [2]. By introducing capacitive
power transfer or inductive power transfer, the energy can be transmitted by electric field
or magnetic field in short distances, as shown in Ref. [2]. The research of the Massachusetts
Institute of Technology in 2007 shows the feasibility of WPT, and 60 W energy is transferred
in 2 m [3]. With the development of WPT, wirelessly recharging electronic vehicles also
becomes possible [4], which shows a new vision for electronic vehicle charging techniques.

The terminal devices in WSN are deployed randomly, and they constitute self-organizing,
multi-hopping networks. The data collected by terminal devices in WSN can be transmitted
over short distances, with the coordination of multiple terminal devices. If the data needs to
be transmitted within long distances, leveraging UAV is one feasible scheme. Introducing
UAVs as data collectors is widely researched, as shown in Ref. [5]. Except for data collecting,
implementing wireless charging using the flying UAVs is another hot research area [6].
As mentioned above, the energy-constrained devices such as sensors in WSNs are not
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easy to access if they are deployed in harsh environments. In this case, these sensors will
die since they cannot be recharged timely. If most of the sensors become fail nodes, the
WSNs cannot work normally. By equipping flying UAVs with wireless power chargers, the
sensors can be wirelessly recharged by UAVs and then the service time of sensors in WSNs
can be prolonged.

Up to now, many excellent works have been done in wireless charging for UAV-assisted
WSN. Ref. [5] proposes a reinforcement learning-based approach, utilizing Q-learning, to
plan UAV routes for efficient wireless charging data collection from scattered sensor devices.
The approach improves energy efficiency by analyzing UAV states and actions, enhancing
the data collection process. However, the UAV’s flight time is ignored in [5]. In the absence
of energy efficiency awareness and throughput awareness, the UAV’s flight maneuvers tend
to be frequently incentivized, which will lead to a significant increase in the UAV’s flight
time. In Ref. [6], a sensor energy-saving charging method is studied in WSN scenarios and
a greedy algorithm based on utility function is proposed. Through simulation experiments,
it is verified that the algorithm can minimize the total energy consumption of drones under
battery constraints and sensor deadline constraints. Nevertheless, Ref. [6] only uses a
greedy-based method to solve the problem and does not consider the obstacles’ impact
on UAV path planning. Ref. [7] investigates a multi-channel UAV charging system with
a compact receiver. By adopting the design of a compact receiver based on a zero-cross-
coupled transmission path and a capacitively-biased unipolar coil, the effect of circulating
currents is effectively avoided and any fault channels are removed, which greatly improves
the transmission efficiency and stability. The system designed in Ref. [7] possesses a
high degree of complexity, and its practicality also needs to be validated further. Ref. [8]
proposes a method to provide wireless energy transfer to mission UAVs by charging UAVs,
which is based on a deep reinforcement learning algorithm to optimally schedule single and
multiple charging UAVs to minimize the task time of the mission UAVs. However, [8] does
not fully consider other factors that may affect wireless energy charging efficiency, which
can significantly affect the actual results. Ref. [9] proposes a magnetic coupler design using
nanocrystalline cores, with an additional asymmetrical coil for coupling the transmitter
and receiver coils on a carbon fiber body. The use of an optimized nanocrystalline alloy
film is also proposed to reduce eddy current losses, ultimately enhancing system efficiency.
Nevertheless, [9] only investigates the nanocrystalline alloy film to diminish the coupling
between the airframe and coil, and lacks an overall analysis of the system loss. Ref. [10]
investigates a scheme based on joint scheduling and trajectory optimization of charging
UAVs so as to improve the charging efficiency. Besides, two particle swarm optimization
based algorithms are proposed, and the superiority and stability of the algorithm are
verified through simulations. Ref. [10] only considers one charging UAV flight altitude, and
the findings may not accurately reflect the real situation. Ref. [11] investigates a scheme
for a novel UAV-enabled Internet of Things (IoT) network, where the UAVs charge IoT
devices in the down-link by wireless way, via radio frequency WPT and collect data in
the uplink, where each IoT device is capable of associating with multiple time slots and
multiple UAVs. Ref. [11] proposes a loop iterative algorithm based on block coordinate
descent and successive convex approximation techniques, which achieves a reduction in
the energy consumption of the UAVs. However, Ref. [11] uses first-order Taylor expansion
to replace non-convex functions in the objective function and constraints with convex
approximations to solve the trajectory design problem, which does not fully capture the
intricacy of the problem. Ref. [12] presents a design control and modeling approach for
three-dimensional wireless energy transfer systems. The controller is tested under variable
velocity receiver trajectories and it can achieve maximum power transfer in a closed loop.
Nevertheless, the model in Ref. [12] simplifies some of the complexities in real systems.
Furthermore, the model has not been tested in practical application scenarios.

Besides, Ref. [13] proposes a mathematical model and segmented adaptive firefly
algorithm to address the charging path planning challenge in UAV wireless sensor networks.
By utilizing multiple sorting techniques, the distance and brightness weights are considered,
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which can impact the algorithm’s responsiveness. However, the proposed algorithm
in Ref. [13] is affected by the frequent sorting, which considers both the distance and
brightness weight of the learning samples. To extend WSN’s lifetime, the UAVs are served
as power sources and data collectors in Ref. [14]. By considering sensor energy consumption
rates and energy harvesting, Ref. [14] optimizes UAV hover position and time. There are
also some drawbacks in Ref. [14]. In order to ensure network lifetime, the restrictions on
UAV hovering are introduced, which will lead to some limitations in UAV functionality.
Ref. [15] presents the utilization of UAVs as carriers for wireless power chargers, aiming to
maximize the charging energy of energy-constrained devices by formulating a multi-cycle
charging process problem. Nevertheless, Ref. [15] does not take into account the situation if
there is a lack of a central server in the decision-making process, in which case the UAV and
the energy-constrained devices cannot make decisions on their own. Ref. [16] investigates
the optimal placement of UAV-enabled WPT systems considering factors such as UAV
power consumption, conversion loss, and base station charging process. In Ref. [16], it is
difficult to derive a closed-form solution when the sensor number is relatively large, which
inevitably requires sacrificing the precision of the result, resulting in a lack of accuracy.
Ref. [17] develops two mathematical models to improve the system’s theoretical basis and
control strategy, considering radial deviation. Ref. [17] simplifies the efficiency function
from a function with two-dimensional variables to a function with only a radial variable,
which may lead to a loss of information. By removing one of the dimensions, the function
may lose the ability to capture certain characteristics or variations in the data that are present
in the original two-dimensional function. Ref. [18] formulates a comprehensive charging
UAV deployment optimization problem with multiple objectives: increasing sensor nodes
within the range of charging UAV, improving minimum charging efficiency, and reducing
charging UAV energy consumption. However, Ref. [18] does not take into account that the
sensor nodes are located in places that are not easy to pass through, or the sensor nodes
are covered by other objects; the emitted signals will be significantly attenuated, which
leads to a reduction in the maximum charging distance. This leads to some limitations of
this approach in the text, it can only be used in WSN scenarios in outdoor environments
with less occlusion. Ref. [19] presents an approach for developing an asymmetric magnetic
coupler with a horizontal magnetic field, aiming to achieve a lightweight and conformal
pickup mechanism for UAVs while addressing rotation misalignment and horizontal offset
challenges. However, the experiments in Ref. [19] are not used to take into account the
fact that these conformal structures are difficult to realize free rotation. However, current
UAVs cannot achieve this level of angular alignment. Ref. [20] investigates the optimization
problem of the average age of information (AoI) in a wireless rechargeable sensor network
assisted by laser-charged UAVs, aiming to minimize average AoI while ensuring successful
data transmission and maintaining a threshold energy level in each sensor. The incentive
mechanism is not considered in Ref. [20] to stimulate the participation of UAVs. Ref. [21]
proposes a fuzzy gradient-based optimization (GBO) algorithm while considering the
operation of UAVs with limited energy and response to charging requests. In Ref. [21],
fuzzy logic based combinatorial clustering strategy and GBO routing algorithm are adopted
to help UAVs achieve independent path planning. It can effectively increase the network
lifetime and improve the performance of WSNs and UAVs. However, Ref. [21] does not
consider the energy consumption dynamics of sensor nodes in detail.

From the above analysis, most of the current research on wireless charging problems
in WSN focuses on the optimization of UAV allocation and trajectory optimization, while
few literatures pay attention to the energy trading problem between UAVs and terminal
devices in WSN. Distinguished from the current research, the contribution of this paper is
summarized as follows:

• Firstly, the energy trading problem between UAVs and terminal devices in WSN is
highlighted, the flying UAVs are stimulated to provide energy charging services for
terminal devices, and a contract theory based economic model is utilized to formulate
the interaction between the UAVs and energy server;
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• Secondly, to solve the contract theory based optimization problem, the properties
of feasible contracts are proved and then the redundant individual rationality and
incentive compatibility constraints are reduced. In addition, a Lagrangian multiplier
based algorithm is proposed to solve the reformulated problem;

• Thirdly, numerical simulation results are implemented to validate the good perfor-
mance of the proposed incentive mechanism. Compared with the other three baselines,
the proposed algorithm is the best choice to incentivize the participation of UAVs. In
addition, the strategy-proofness of UAVs is also proved by simulations.

The rest of the paper is organized as follows. In Section 2, the interaction between
UAVs and energy server is modeled, and contract theory based problem optimization is
formulated. Section 3 proves the properties of feasible contracts and the reducing redundant
constraints in the original problem. In the following, Section 4 proposes the Lagrangian
multiplier based algorithm to solve the reformulated problem. In Section 5, numerical
simulation results are presented to validate the good performance of the proposed incentive
mechanism. Finally, Section 6 draws the conclusions.

2. System Model
2.1. Agents’ Utilities

In WSN, the battery life of sensors is restricted, and it is not easy to change batteries
for them, especially when these sensors are located in harsh environments. To ensure
the sustainability of these terminal devices and extend the service time of WSNs, a UAV-
assisted wireless charging scenario is considered in this paper. The UAVs equipped with
wireless power chargers are leveraged as possible energy sources, and they are employed
by the energy server. The sensors are deployed in a distributed manner, and then the third
control center, i.e., the energy server, is introduced. The energy server designs reasonable
energy trading mechanisms to attract the participation of charging UAVs and import more
energy for the WSNs. After being employed by the energy server, the UAVs will serve
the sensors and recharge them. This paper focuses the work on the incentive mechanism
design between the energy server and charging UAVs, and the energy resource allocation
problem between the UAV and sensors is not involved. The charging capacities of different
UAVs are constrained by the wireless power chargers and the endurance of UAVs. It is
obvious that the charging capacities of UAVs vary, and this kind of information is private.

Assume the charging capacities of UAVs are divided into K, and all UAVs are denoted
by K = {1, . . . , k, . . . , K}. Besides, the charging capacity of UAVs is expressed as type, and
there are K kinds of types, and the type set is represented as θ = {θ1, . . . , θk, . . . , θK}. To
incentivize the participation of UAVs, the energy server will pay the fees for the energy
supply. In this way, the utility of energy server when leasing UAV k is

UServer
k = αqk − Rk, (1)

where qk indicates the energy contributed by UAV k, Rk is the reward for leasing qk, and α
denotes the unit revenue of energy server for leasing energy from UAVs.

Meanwhile, the utility of UAV k can be expressed as

UUAV
k = θkv(Rk)− βqk. (2)

Here, θk indicates the type of UAV k. For UAV i, j ∈ K and i 6= j, UAV i has more
energy capacity than UAV j if θi > θj, and vice versa. β is the unit cost for contributing
energy resource. Besides, v(Rk) is the evaluation function for reward Rk. Here, v(0) = 0,
v′(Rk) > 0, and v′′(Rk) < 0, since all UAVs are risk adverse towards the reward.

2.2. Preliminaries for Contract Theory

As one kind of game theory, contract theory is widely introduced to design incentive
mechanisms in recruitment markets [22], especially in hidden-information and hidden-
action scenarios. In recruitment markets, the employer and employees negotiate with the
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contribution and reward. Before employment, the employees’ ability is private information
and the employer only knows the distribution of the employees’ ability from the historic
experience and the employer does not know the actual ability of all employees. One method
to design incentive mechanisms in hidden-information scenarios is adverse selection in
contract theory. On the other hand, if one employee is employed, his actual job performance
is not known by the employer in advance, which belongs to hidden-action scenarios. To
make the employees work hard, another moral hazard model in contract theory can be
utilized for the hidden-action scenarios.

In this paper, the energy server tries to design an incentive mechanism to stimulate
the participation of UAVs, and then the sensors in WSNs can be fully charged. Before
employment, the energy server only knows the distribution of UAVs’ charging capacities
and it does not know the specific charging capacity of each UAV, which belongs to hidden-
information scenarios. Hence, the adverse selection model can be leveraged. In the adverse
selection model, the employer arranges different kinds of contract items for employees, and
then the employees select and sign the contracts designed for them. One critical property
of adverse selection is that all employees are honest when they sign the contracts, i.e.,
they will not choose contracts designed for other employees, and adopting the adverse
selection model can ensure the strategy-proofness of the incentive mechanism. To ensure
the performance of employer and employees, the adverse selection based contract theory
can be formulated by satisfying the following conditions:

• Firstly, as the organizer of job recruitment, the employer always aims to maximize its
utility. Since only the distribution of type information is prior information, the system
model should be formulated by maximizing the expected utility of the employer in
adverse selection based contract theory;

• Secondly, as one kind of game theory, all players in contract theory are individually
rational. Hence, all employees will not work for free and the utilities of all employees
should not be less than zero, which is individual rationality (IR) constraint in the
following problem formulation;

• As shown above, the adverse selection model can be utilized in hidden-information
scenarios to ensure that the incentive mechanism is strategy-proof. Therefore, the
utility of choosing other contracts cannot exceed the utility of selecting the contract
designed for itself for all employees, which is incentive compatibility (IC) restriction.

2.3. Contracts Based Optimization Formulation

Assume the energy server designs a series of contracts for the UAVs, and each UAV
selects the contract suitable for itself. Meanwhile, each contract includes two parameters,
i.e., (Rk, qk). As mentioned before, the UAVs’ energy capacities are private information, and
thus one critical property needed for this network is IC, i.e., choosing any other contract
items will not gain more benefits for each UAV. The mathematical description of IC is

θiv(Ri)− βqi > θiv(Rj)− βqj, i, j ∈ K, i 6= j. (3)

From inequality (3), UAV i with type θi cannot achieve higher utility if it selects other
contracts except contract (Ri, qi). Another crucial property in game theory is IR, i.e., all
UAVs will not a sign contract that will result in negative utility value. The mathematical
expression of IR is

θkν(Rk)− βqk > 0, ∀k ∈ K. (4)

Based on the incentive compatibility and individual rationality, the contract theory
based optimization problem can be formulated by

max
(R,q)

∑K
k=1 λk(αqk − Rk), (5)

subject to
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(IR): θkv(Rk)− βqk > 0, ∀k ∈ K,

(IC): θiv(Ri)− βqi > θiv(Rj)− βqj, i, j ∈ K, i 6= j.

Under IR and IC constraints, this paper aims to maximize the expected utility of the
energy server. However, too many constraints are involved in the formula, and solving the
contract items directly is therefore difficult.

3. Reduce Redundant Constraints
3.1. Properties of Feasible Contracts

In this part, some properties of feasible contracts are shown. Firstly, for any feasible
contracts (R, q), Ri > Rj if and only if θi > θj. The first property indicates that the UAVs
with higher type will receive more rewards. To prove the first property, we prove if θi > θj
is satisfied, and then Ri > Rj is obtained. According to the IC constraints,

θiv(Ri)− βqi > θiv(Rj)− βqj, i, j ∈ K, i 6= j. (6)

θjv(Rj)− βqj > θjv(Ri)− βqi, i, j ∈ K, i 6= j. (7)

Adding (6) and (7) together, and then

v(Ri)[θi − θj] ≥ v(Rj)[θi − θj]. (8)

Since θi > θj, v(Ri) > v(Rj) is satisfied, and then we can obtain Ri > Rj.
In the following, we prove if Ri > Rj is satisfied, and then θi > θj is obtained. In

addition, adding (6) and (7) together, another form can be represented as

θi[v(Ri)− v(Rj)] ≥ θj[v(Ri)− v(Rj)]. (9)

Since Ri > Rj and v(Ri) > v(Rj) is already satisfied, and thus θi > θj can be derived.

3.2. Reducing IR Constraints

As shown in Ref. [22], the constraints in optimization problem (5) can be reduced
effectively if the Spence–Mirrlees single crossing condition

∂

∂θ

[
−

∂UUAV/∂R
∂UUAV

/
∂q

]
> 0, (10)

is satisfied. Obviously, the utility function of UAVs meets this requirements, and thus
reducing the constraints in (5) is feasible. For the IR constraints θkv(Rk)− βqk > 0, since
θkv(Rk)− βqk > θkv(R1)− βq1 > θ1v(R1)− βq1, and thus the IR constraints can be replaced
by θ1v(R1)− βq1 > 0. Since the objective of this paper is to maximize the expected utility of
energy server, R1 will be decreased until θ1v(R1)− βq1 = 0. As a result, the IR constraints
in (5) further become θ1v(R1)− βq1 = 0.

3.3. Reducing Downward IC Constraints

On the other hand, the IC constraints consisting of downward incentive constraints
(DICs) and upward incentive constraints (UICs), can also be reduced. Firstly, we prove
that the DICs can be replaced by local downward incentive constraints (LDICs) and the
monotonicity of UAVs’ rewards. According to the LDICs,

θk+1v(Rk+1)− βqk+1 ≥ θk+1v(Rk)− βqk, (11)

θkv(Rk)− βqk ≥ θkv(Rk−1)− βqk−1. (12)
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Since θk+1 > θk, θk+1[v(Rk) − v(Rk−1)] ≥ θk[v(Rk) − v(Rk−1)] ≥ β[qk − qk−1] is
satisfied. Hence, inequality (11) can further be shown as

θk+1v(Rk+1)− βqk+1 ≥ θk+1v(Rk)− βqk

≥ θk+1v(Rk−1)− βqk−1.
(13)

Extending the result in (13), and then we can get

θk+1v(Rk+1)− βqk+1 ≥ θk+1v(Rk)− βqk

≥ θk+1v(Rk−1)− βqk−1

≥ . . .

≥ θk+1v(R1)− βq1.

(14)

3.4. Reducing Upward IC Constraints

Besides, the UICs can be substituted by local upward incentive constraints (LUICs).
According to LUICs,

θkv(Rk)− βqk ≥ θkv(Rk+1)− βqk+1, (15)

θk+1v(Rk+1)− βqk+1 ≥ θk+1v(Rk+2)− βqk+2. (16)

Due to θk+1 > θk, β[qk+2− qk+1] ≥ θk+1[v(Rk+2)− v(Rk+1)] ≥ θk[v(Rk+2)− v(Rk+1)]
can be obtained. In the following, inequality (15) can further be expressed by

θkv(Rk)− βqk ≥ θkv(Rk+1)− βqk+1

≥ θkv(Rk+2)− βqk+2.
(17)

Extending the result in (17), we can get

θkv(Rk)− βqk ≥ θkv(Rk+1)− βqk+1

≥ θkv(Rk+2)− βqk+2

≥ . . .

≥ θkv(RK)− βqK

(18)

3.5. Reformulated Problem

The constraints in (5) become the combination of LDICs, LUICs, and the monotonicity
of UAVs’ rewards Ri, i.e.,

LDIC : θk+1v(Rk+1)− βqk+1 ≥ θk+1v(Rk)− βqk,

LUIC : θkv(Rk)− βqk ≥ θkv(Rk+1)− βqk+1,

Monotonicity : Ri ≥ Rj, where θi ≥ θj.

The objective of this paper is to maximize the utility of energy server, and thus the
UAVs’ rewards should be as small as possible. Decrease Rk+1 until θk+1v(Rk+1)− βqk+1 =
θk+1v(Rk)− βqk, and then the LDIC constraints can be replaced by

θk+1v(Rk+1)− βqk+1 = θk+1v(Rk)− βqk. (19)

Meanwhile, since θk+1v(Rk+1)− βqk+1 = θk+1v(Rk)− βqk and θk+1 > θk are satisfied,
and thus θkv(Rk)− βqk ≥ θkv(Rk+1)− βqk+1. Hence, the LUICs constraints can also be
substituted by inequality (19) and the monotonicity of UAVs’ rewards [23].

After reducing redundant constraints, the original optimization problem in (5) are
changed to

max
(R,q)

∑K
k=1 λk(αqk − Rk), (20)

subject to
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θ1v(R1)− βq1 = 0,

θkv(Rk)− βqk = θkv(Rk−1)− βqk−1, ∀k ∈ K,

Ri ≥ Rj, where θi ≥ θj.

4. Lagrangian Multiplier Based Optimization Method
4.1. Contract Theory Based Optimization Solution

The Lagrangian function of (20) can be expressed as

L =
K

∑
k=1
{λk[αqk − Rk] + µk[θkv(Rk)− βqk − θkv(Rk−1)

+ βqk−1] + ε[θ1v(R1)− βq1]},
(21)

where µk and ε denote Lagrangian multiplier. Then, take the partial derivative of parameters
Rk and qk, respectively. When k = 1, 2, . . . , K− 1, we can obtain

∂L
∂Rk

= −λk + µkθkv′(Rk)− µk+1θk+1v′(Rk) = 0, (22)

∂L
∂qk

= αλk − βµk + µk+1β = 0. (23)

On the other hand, when k = K, the partial derivative can be denoted by

∂L
∂Rk

= −λk + µkθkv′(Rk) = 0, (24)

∂L
∂qk

= αλk − βµk = 0. (25)

Based on the above Equations (22)–(25), all Rk and qk can be calculated. In sequel, µk
and Rk are firstly achieved, and then qk is obtained [24].

4.1.1. Step 1: Solving µk and Rk

When k = K, the partial derivative result can be expressed by

µkθkv′(Rk) = λk, (26)

αλk = βµk. (27)

When k = 1, 2, . . . , K− 1, the partial derivative results can be denoted as

µkθkv′(Rk) = λk + µk+1θk+1v′(Rk), (28)

βµk = αλk + βµk+1. (29)

Once the number of types K is set, λk = 1
K can be achieved. Based on λk, µK and

RK can be calculated by leveraging Equations (27) and (26), respectively. Next, since
µk = α

β λk + µk+1 when k = 1, 2, . . . , K− 1, all µk can be achieved iteratively. At the same
time, when k = 1, 2, . . . , K− 1,

v′(Rk) =
λk

µkθk − µk+1θk+1
, (30)

can be obtained from equation (28). In this paper, v(Rk) is assumed to be ln(Rk + 1), and
thus we can get
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Rk =
µkθk − µk+1θk+1

λk
− 1. (31)

Therefore, all µk and Rk are calculated.

4.1.2. Step 2: Calculating qk

According to the reformulated problem in Section 3.5, θ1v(R1)− βq1 = 0 is satisfied.
After obtaining R1, the value of q1 is then calculated. Meanwhile, equation θkv(Rk) −
βqk = θkv(Rk−1)− βqk−1 is also satisfied, which is shown in Section 3.5. Therefore, qk =
θk
β v(Rk) − θk

β v(Rk−1) + qk−1, and then q2 can be calculated if q1, R1 and R2 are already
known. Similarly, q3, q4 until qK can be obtained iteratively. Hence, all qk are calculated.
After all qk and Rk are obtained, the monotonicity of Rk and qk need to be checked. It
should be noticed that all qk and Rk can be calculated by utilizing the Lagrangian multiplier
optimization in contract theory based incentive mechanism. The UAVs with different types
sign corresponding contracts (Rk, qk) with the energy server at this time, and then the
UAVs contribute energy and obtain rewards according to the contracts. If one UAV changes
its type or the number of UAV types varies, all contract items need to be recalculated
according to Section 4.1. Here, we assume that all UAVs will contribute energy, as signed in
the contract, and if one UAV wants to change its type, it has to keep the previous contracts
first. If one UAV does not contribute energy as promised, it will be blacklisted by the energy
server. The specific algorithm procedure is illustrated in Algorithm 1.

Algorithm 1 Contract Theory Based Incentive Mechanism.

Input: UAV set K and the types of all UAVs θk; Parameters α and β;
Output: Contract items designed for different types of UAVs (Rk, qk);

1: Initiation: Formulate energy server’s utility (αqk − Rk) and UAV’s utility (θkv(Rk)−
βqk) according to system model;

2: Construct IC and IR constraints, leverage Lagrangian multiplier.
3: while UAVs’ types remain unchanged do
4: Step 1: Solving µk and Rk
5: if UAV’s type k = K then
6: Calculate µK by µK = α

β λK where λk =
1
K , and calculate RK by RK = µKθK

λK
− 1;

7: else
8: Calculate µk by µk =

α
β λk + µk+1, and calculate Rk by Rk =

µkθk−µk+1θk+1
λK

− 1;
9: end if

10: Step 2: Calculating qk
11: if UAV’s type k = 1 then
12: Calculate q1 by q1 = θ1

β v(R1);
13: else
14: Calculate qk by qk =

θk
β v(Rk)− θk

β v(Rk−1) + qk−1;
15: end if
16: end while
17: Check the monotonicity of Rk and qk.
18: Terminate with all feasible contracts (Rk, qk), the UAVs with different types sign corre-

sponding contracts.

4.2. Upper and Lower Bounds for UAVs

As shown on Section 2, the utility of energy server when leasing UAV k is denoted
as UServer

k = αqk − Rk, while the utility of UAV k is defined by UUAV
k = θkv(Rk)− βqk. To

maximize the utility of UAV k, the energy server’s utility when leasing UAV k is set to be
zero, i.e., αqk − Rk = 0, ∀k. Hence, the upper bound for UAVs can be obtained by solving
the following problem:

max
Rk

UUAV
k = max

Rk
θkv(Rk)−

β

α
Rk. (32)
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Similarly, to maximize the utility of energy server, the utilities of UAVs are assumed to
be zero, i.e., θkv(Rk) = βqk. Then the lower bound for UAVs can be achieved by addressing
the following optimization problem:

max
Rk

UServer
k = max

Rk
α

θk
β

v(Rk)− Rk. (33)

4.3. Linear Price Based Results

For linear pricing based resource trading, the reward of UAV Rk is linearly related to
the contributed energy qk. Assume Rk = pqk, and p is the price for unit energy. Based on
the assumption, the utility of UAV k is denoted by UUAV

k = θkv(pqk)− βqk, and the energy
server’s utility when leasing resources from UAV k is UServer

k = αqk − pqk. To ensure the
energy server’s utility is not less than zero, unit price p is less than α. For a fixed price,
higher qk will lead to higher energy server’s utility. Meanwhile, proper qk can maximize
the utility of UAV, which can be solved from the following optimization problem,

max
qk

UUAV
k = max

qk
θkv(pqk)− βqk. (34)

Hence, optimal qk and Rk can be obtained for linear price based mechanism.

5. Simulation Results

In this section, the performance of the proposed incentive mechanism is validated. All
simulation related parameters are listed in Table 1. As described in [14], 1 UAV is allocated to
charge 15 sensors within a square area of 500 m × 500 m. Therefore, 5 UAVs with different
types are considered in the simulation to charge sensors in WSNs within a square area of
2 km × 2 km. Here, 5 UAVs are used as one small example to validate the performance of our
algorithm. If the UAV types remain unchanged, and the UAV number increases, all qk and Rk
remain the same and the UAVs with the same type sign the same contracts with the energy
server. On the other hand, if more than 5 UAV types are incorporated, all qk and Rk can be
recalculated according to the steps in Sections 4.1.1 and 4.1.2.

Besides, as one illustration, the unit revenue α of energy server for leasing energy from
UAVs and the unit cost β of UAV for contributing energy resource are assumed to be 1,
since the assumption will simplify the calculation in Sections 4.1.1 and 4.1.2. It is worth
noting that α and β are two weighting factors in the energy server’s utility function and
UAV’s utility function, and their values will not influence the performance comparisons of
different algorithms. In addition, the other four algorithms are leveraged as baselines. The
bargaining game related results are represented by utilizing the bargaining game in game
theory. Meanwhile, the upper bound for UAVs, the lower bound for UAVs, and the linear
pricing based mechanism are also represented, which are illustrated in Section 4.

Table 1. Simulation parameters utilized in this paper.

Parameters Values

Evaluation function v(Rk) ln(1 + Rk)
UAV number 5
UAV type number 5
UAV type θk θ1 = 6, θ2 = 7, θ3 = 8, θ4 = 9, θ5 = 10
Unit revenue α of energy server for leasing energy from UAVs 1
Unit cost β of UAV for contributing energy resource 1
The relationship of Rk and qk in linear pricing mechanism Rk = 0.5qk

Firstly, the energy contribution of UAVs and the rewards from the energy server
are depicted in Figure 1 and Figure 2, respectively. From Figure 1, the upper bound
for UAVs contributes the minimum energy. In this way, solely ensuring UAVs’ utilities
is not beneficial for the energy trading process. The second low energy contribution is
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achieved by linear pricing mechanism and bargaining game. The UAVs with higher types
will contribute more energy, and the increment is very limited. Besides, when UAV type
equals to 2, 3, 4, and 5, the UAVs in the proposed incentive mechanism achieve the highest
energy contribution, which proves that the proposed mechanism can effectively stimulate
UAVs’ participation in the energy trading market. When the type number equals to 5,
the UAVs in the proposed algorithm contribute more than 30.5% of energy than in the
lower bound algorithm. On the other hand, the rewards received by different types of
UAVs are illustrated in Figure 2. As can be seen from Figure 2, the UAVs in the proposed
incentive mechanism obtain the highest rewards when UAV type equals to 2, 3, 4, and 5.
The bargaining game achieves the second highest rewards, while the UAVs in the other
three algorithms achieve the same rewards. From the comparisons of energy contribution
and reward, the proposed contract theory based incentive mechanism can incentivize the
UAVs to contribute their energy while ensuring their high rewards.

Secondly, the utilities of UAVs and energy server are shown in Figure 3 and Figure 4,
respectively. From Figure 3, the upper bound for UAVs can obtain the highest UAVs’
utilities, since the upper bound for UAVs tries to optimize the UAVs’ utilities while the
energy server’s utility is set to be zero. Meanwhile, the bargaining game achieves the
second highest sum utilities of all UAVs. Besides, the UAVs’ utilities in the lower bound
are zero, and all UAVs cannot obtain an extra bonus. Furthermore, the linear pricing based
algorithm achieves higher UAVs’ utilities than the proposed incentive mechanism if the
number of UAV type is 5. As the type number increases, the UAVs’ utilities in the proposed
incentive mechanism grow faster than in the linear pricing mechanism, and the UAVs with
higher types will achieve much higher utilities. Then the utility of the energy server is
depicted in Figure 4. In contrast to Figure 3, the lower bound for UAVs achieves the highest
energy server’s utility while the upper bound for UAVs obtains the lowest energy server’s
utility. Meanwhile, the bargaining game obtains the second least energy server’s utility
and the linear pricing mechanism obtains the third least energy server’s utility. As the type
increases, the energy server’s utility grows with small increments in the bargaining game
and linear pricing mechanism. It is worth noting that the proposed incentive mechanism
can obtain sub-optimal energy server’s utility. When the type number equals to 5, the
energy server’s utility in the proposed incentive mechanism is three times as much as the
energy server’s utility in the linear pricing mechanism, which proves the good performance
of the proposed algorithm.

Finally, the incentive compatibility of the proposed algorithm is validated in Figure 5.
As shown in Figure 5, the UAVs with higher types will achieve higher UAVs’ utilities.
In this paper, the energy server designs different contract items for UAVs with different
types. For type-1 UAVs, choosing the contract designed for type 1 is the best choice, since
choosing other contracts will induce negative utility. Similarly, for type-3 UAVs, choosing
the contracts designed for type 3 can achieve the highest UAVs’ utilities, and choosing
the contracts designed for type 5 can achieve the highest UAVs’ utilities for type-5 UAVs.
Hence, all UAVs will choose the contracts according to their true type, which proves the
incentive compatibility of the proposed incentive mechanism.
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Figure 1. UAVs’ energy contribution.
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Figure 2. UAVs’ rewards.
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Figure 3. UAVs’ utilities.
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Figure 4. Energy server’s utility.
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Figure 5. Incentive compatibility validation.

6. Conclusions

In this paper, a UAV-assisted energy trading market is proposed for energy constrained
terminal devices in wireless sensor networks. Meanwhile, an adverse selection based
contract theory model is utilized to stimulate the participation of UAVs and ensure the
strategy-proofness. Besides, the optimal contract items are designed by reducing constraints
and leveraging the Lagrangian multiplier. Simulation results show that the UAVs in the
proposed incentive mechanism can contribute more than 30.5% of energy than in the
lower bound algorithm. Meanwhile, the energy server’s energy is three times as much
as the energy server’s utility in the linear pricing. which proves the good performance of
the proposed incentive mechanism. In addition, the strategy-proofness of the proposed
algorithm is validated by the simulations.
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