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Abstract: In this paper, we study the entanglement structure of a system of N quantum oscillators
with distinctive coupling strengths, all linearly coupled to a common massless scalar quantum field.
This study is helpful in characterizing the notion of an entanglement domain and its symmetry
features, which is useful for understanding the interplay between different levels of structure in
many-body quantum systems. The effect of the quantum field on the system is derived via the
influence functional and the correlation functions are obtained from the solutions of the evolutionary
operator of the reduced density matrix. They are then used to construct the covariance matrix,
which forms the basis for our analysis of the structure of quantum entanglement in this open system.
To make the physical features explicit, we consider a system of three quantum coupled oscillators
placed at the vertices of an equilateral triangle with disparate pairwise couplings. We analyze
the entanglement between one oscillator and the other two with equal (symmetric) and unequal
(asymmetric) coupling strengths. As a physical illustration, we apply the results for these two
different configurations to address some basic issues in macroscopic quantum phenomena from the
quantum entanglement perspective.

Keywords: quantum entanglement; entanglement hierarchy; symmetry structure; quantum open
systems; macroscopic quantum phenomena; influence functional formalism; non-Markovian dynamics

1. Introduction

Entanglement being an exclusive feature of quantum phenomena [1,2], it is natural
to ask how to use entanglement as a clear signifier or distinct marker of the existence of,
or, further, a quantitative measure of, the quantum features of many-body quantum sys-
tems, and in particular, understanding the theoretical foundation of macroscopic quantum
phenomena (MQP) (see, e.g., [3–30] and references therein). In a series of papers, one
of us along with his co-authors have explored three pathways to characterize MQP by
way of large N, quantum correlations, and entanglement [31–34] (see also [35] for further
developments). Understanding MQP from an entanglement perspective is an important
mission of our research program and the goal of this work.

Regarding the fundamental role that entanglement plays in our understanding of
quantum many-body systems, we should mention one very powerful methodology, the
tensor network formalism (see, e.g., [36–41] and references therein), which has seen great
advancement in the last two decades. Here, in contrast, we avoid the complexities and
intricacies by staying at a lower structural level and asking just one key question, namely
the geometry and symmetry dependence of entanglement. We use a simple model but carry
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out the analysis of N (here, N = 3 in detail) coupled harmonic oscillators (see, e.g., [42–44]
and references therein) with disparate strengths in a common quantum field bath.

In an earlier paper [45], we have studied the distance and coupling dependence of
the entanglement between two coupled oscillators in a common quantum field bath. The
presence of a quantum field as the environment accords an indirect interaction between
the two oscillators at finite separation of a non-Markovian nature [46] that competes with
the direct coupling between them (e.g., [47–51]). The interplay between these two factors
results in a rich variety of interesting entanglement behaviors. We see from [46] that, at very
early times, the indirect non-Markovian interaction between the two oscillators induced by
their interaction with the common bath manifests as an interference pattern. But, not too
long after that, entanglement is dominated by direct coupling between the two oscillators.
Here, we go beyond and work out the entanglement for three oscillators in a common
quantum field bath. Not surprisingly, contributions to entanglement under direct coupling
between the oscillators dominate over those from the indirect interactions through the bath,
with no direct coupling, as was calculated in [52]. With N = 3, more interesting factors
show up: we can see how different coupling strengths change the entanglement structure
and how the geometry and symmetry determine the entanglement pattern.

The central issues in MQP that interest us most (see, e.g., [53]) are the identification
of the correct levels of structure in a composite body and the judicious choice of the
appropriate collective variables, which can capture the essential and different physics of
each level. These are often characterized by strong coupling between fine-grained elements
or constituents in one particular level of structure (e.g., the level of quarks/gluons or the
level of nucleons) and weaker coupling between the elements in a coarser-grained level of
structure (e.g., atoms or molecules). Capturing the quantum features of a macroscopic object
is greatly facilitated by the existence and functioning of these collective variables depicting a
specific level of structure. An exemplary question is: why is it that the Schrodinger equation
for the center of mass (CoM) motion of a macroscopic object such as the cantilever in nano-
electro and opto-mechanics experiments gives an excellent match with experimental results?
Under what conditions can the quantum dynamics of a many-body system be captured
well by its CoM? This question was investigated earlier by Chou et al. [54] with a coupled
N-oscillator model, where they derived a sufficient condition for this to hold, the so-called
“Center of Mass Axiom”.

In Ref. [31] (see also cited work therein, e.g., [55]), the marked difference between
entanglement within one specific level of structure and entanglement between different
levels of structure is explicated, and how each type would scale with N is identified. These
two aspects, namely the role of the CoM in a many-body system and how the level of
structure enters in the manifestation of macroscopic quantum phenomena, can be examined
by using the entanglement structure results obtained here for a three-oscillator system with
disparate coupling strengths.

This paper is organized as follows: in the next section, we derive the late-time co-
variance matrix elements formed by the canonical variable operators of the N coupled
oscillators (for a pedagogical entry into this subject, read, e.g., Section II of [46] for the
N = 2 case). The nonequilibrium evolution of this system under the influence of a quantum
scalar field can be derived based on the influence functional formalism approach (for the
same purpose, Section II of [45] contains the basics of this methodology). This method
first introduced by Feynman and Vernon [56] for the study of quantum Brownian motion
has been applied to the derivation of Markovian and non-Markovian master equations for
oscillator baths [57–59] and for a quantum field environment [60,61]. (For an alternative
treatment of an N-oscillator system, see [62] and references therein.) Here, we take the
direct route of seeking solutions to the evolutionary operator of the reduced density matrix
given formally by Grabert et al. [63] for the derivation of correlation functions. (For an
alternative derivation of the non-Markovian master equation and finding their solutions,
see [64] and references therein.) In Section 3, the covariance matrix of this system, which is
at the heart of our analysis of quantum entanglement, is used to construct the (logarithmic)
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negativity, a computable and quantifiable quantum measure. In Section 4, we specialize
to N = 3 with disparate coupling and analyze the symmetric and asymmetric configura-
tions described above. In Section 5, we summarize our results and briefly describe their
implications for some key issues in MQP and applications in other areas.

2. A System of N Interacting Detectors

We consider a system of N interacting (i = 1, . . ., N) detectors where each detector’s
internal degree of freedom χ(i)(t) is described by a one-dimensional harmonic oscillator.
These detectors are allowed to have direct coupling via their internal degrees of freedom,
and the coupling term is assumed to be at most quadratic in the internal degrees of freedom.
In addition, each oscillator is coupled to a common massless scalar field φ(x, t) that acts
as an environment to the N-oscillator system. As such, there will be indirect interactions
between the oscillators mediated by the shared environment. The system with only indirect
interaction has been used in [46,52,65,66] to explore the entanglement features.

We consider a system of N detectors, fixed at z(i), and assume that all the oscillators
have the same mass m, the same bare frequency ω0, and are acted upon by a harmonic
potential of the same form V(χ(i)) = mω2

0χ(i)2/2.
The Lagrangian for the afore-specified system is given by

S[χ, φ] =
∫ t

ds
N

∑
i=1

[m
2

χ̇(i)2(s)−V(χ(i))−
N

∑
j>i

Vij(χ)
]
+
∫ t

ds
∫

d3x
N

∑
i=1

j(i)(x, s)φ(x, s)

+
1
2

∫ t
ds
∫

d3x
[
∂µφ(x, s)

][
∂µφ(x, s)

]
, (1)

where j(i)(x, s) = gi χ(i)(s) δ(3)(x− z(i)) describes the source that accounts for the interac-
tion between the internal degree of freedom χ(i) of the ith detector and the environmental
scalar field φ with coupling strength gi, which we will assume to be weak. The direct
coupling between the detectors is given by the interaction potential Vij of the form

Vij(χ) =
mσij

2

[
χ(i)(s)− χ(j)(s)

]2
, σij = σji , (2)

with the coupling strength σij, which is positive and can be strong. The partial derivative ∂µ

in the action of the free scalar field represents ∂µ = (∂t,∇), and we choose the Minkowski
metric ηµν with the convention ηµν = diag(+,−,−,−).

A nice feature of the Gaussian system is that virtually all of the observables can be con-
structed from the elements of covariance matrix elements due to the Wick expansion [67,68].
In particular, they play a central role in determining the entanglement dynamics of the
corresponding system. The covariance matrix V of the N-oscillator system is defined by
the expectation values of the anticommutator among the canonical variable operators of
the N oscillators

V(t) =
1
2
〈
{

R(t), RT(t)
}
〉 , (3)

where R is a column matrix, constituting the canonical variable operators of the N-oscillator
system, RT = (χ(1), p(1), . . . , χ(N), p(N)), and

{
A, B

}
gives the anticommutator of two

operators, A and B.
Since we are interested only in the late-time entanglement dynamics, the late-time

values of the covariance matrix elements will be of our interest, and they are given by,
for example,

lim
t→∞

1
2
〈
{

χ(l)(t), χ(m)(t)
}
〉 = 1

m
Im
∫ ∞

−∞

dω

2π
coth

βω

2

[
D̃2(ω)

]
lm

, (4)

lim
t→∞

1
2
〈
{

p(l)(t), p(m)(t)
}
〉 = m Im

∫ ∞

−∞

dω

2π
ω2 coth

βω

2

[
D̃2(ω)

]
lm

, (5)
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and

lim
t→∞

1
2
〈
{

χ(l)(t), p(m)(t)
}
〉 = 0 , (6)

where we have chosen gi = g and defined a new kernel function D2(s) = θ(s)D2(s), and
its Fourier transform D̃2(ω) is given by

D̃2(ω) =

[
−ω2 I + Ω2 − g2

m
G̃R(ω)

]−1

, (7)

if we define the Fourier transformation f̃ (ω) of a given function f (t) by

f̃ (ω) =
∫ ∞

−∞
dτ ei ωτ f (τ) . (8)

The matrices Di are a special set of homogeneous solutions

D1(0) = IN , Ḋ1(0) = 0 , D2(0) = 0 , Ḋ2(0) = IN .

to the equation

m χ̈(t) + m Ω2 · χ(t)−
∫ t

0
ds GR(t, s) · χ(s) = 0 , (9)

where the matrix IN is an N × N identity matrix, and the N × N interaction matrix Ω2,
given by [67]

Ω2 =



ω2
0 +

N

∑
k=1

′σ1k −σ12 −σ13 · · · −σ1N

−σ21 ω2
0 +

N

∑
k=1

′σ2k −σ23 · · · −σ2N

−σ31 −σ32
. . . · · · −σ3N

...
...

...
. . .

...

−σN1 −σN2 −σN3 · · · ω2
0 +

N

∑
k=1

′σNk



, (10)

essentially indicates the strength of direct coupling between the internal degrees of freedom
of the different detectors. The prime next to the summation, for example,

N

∑
k=1

′σjk,

means that the summation index k runs from 1 to N except for k = j.
The matrices GR(s, s′) in (9), and GH(s, s′) for the future reference, are of special inter-

est: they are, respectively, the dissipation kernel and the fluctuation kernel [61], defined by

Gij
R(s, s′) = i θ(s− s′) Trφ

([
φ(z(i), s), φ(z(j), s′)

]
× $β

)
, (11)

Gij
H(s, s′) =

1
2

Trφ

({
φ(z(i), s), φ(z(j), s′)

}
× $β

)
, (12)

where [· , ·] is the commutator and Trφ denotes the trace taken over the field variables. While
the noise kernel represents the coarse-grained effect of the environment as stochastic forces,
the dissipation kernel captures the damping effect on the detectors’ internal dynamics,
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in the form of ‘radiation reaction’ or self-force. Ostensibly not to be arbitrarily assigned
by hand, they are bound by a set of fluctuation–dissipation relations that should be well
known and, in the general case, also a set of propagation–correlation relation that is lesser
known [60]. Furthermore, they mediate the response of one detector to the others both by
direct couplings amongst the detector and even in the case when there is no direct coupling
since the trajectory of each detector affects the field, which in turn affects the other detectors.
Therefore, for such an N-detector system, the dynamics are highly non-Markovian. Note,
incidentally, that they should not be mistaken as being tensorial quantities: the superscripts
i, j are merely labels for the action of the jth detector on the ith detector.

These late-time values (4) and (5) are independent of time and, in particular, Equation (4)
has a special significance. It gives the fluctuation–dissipation relations of the reduced
system. These relations are connected to the balance of the energy exchange between the
N-oscillator system and its surrounding quantum field environment. In turn, this implies
the existence of an asymptotic equilibrium state; that is, the N-oscillator system will evolve
into an equilibrium state at late times as long as these oscillators are distributed sufficiently
locally. A noteworthy feature of the current configuration is that although such a system is
coupled to a thermal bath, the final equilibrium state is not necessarily thermal unless the
oscillator–bath coupling is vanishingly weak.

The above discussions provide a nice backdrop about the nonequilibrium dynamics of
the N-oscillator system under the influences of the environment’s quantum field [56,69–77]
and facilitate the interpretation of the nonequilibrium evolution of entanglement dynamics.

3. Entanglement and Its Measure

If the joint system can be described by a convex sum of different product states

$ = ∑
i

pi $
(1)
i ⊗ $

(2)
i (13)

where $(1) and $(2) are the density matrices of the respective subsystems, with pi > 0
and ∑

i
pi = 1, then the corresponding state is called the separable mixed state. From this

definition, if a mixed state of a bipartite system cannot be expressed as (13), then the state
is entangled.

It has been shown [78,79] that if a mixed state is separable, then the partial transpose
of the density matrix remains positive:

$pt1 = ∑
i

pi $
(1)T
i ⊗ $

(2)
i > 0 . (14)

where T in the superscript represents the transpose operation. Here, as an example, we
perform transposition on only $(1). This is the positive partial transpose (PPT) separability
criterion. Thus, in principle, if we find a negative eigenvalue for the partially transposed
density matrix, then the corresponding state is entangled. This powerful criterion is further
extended to an M × N bi-partitions of the (M + N)-mode bi-symmetric Gaussian sys-
tem [68,80–86]. Both sufficient and necessary conditions apply to such a Gaussian system.

When we deal with a system described by continuous variables, the criterion based
on the density matrix of the system becomes inconvenient to work with because the
dimension of the density matrix for continuous variables is usually infinite. This is where
the covariance matrix finds its use. When translated into the covariance matrix, the partial
transpose of the density matrix is equivalent to the mirror reflection of the canonical
momentum in the corresponding subsystem. Then, a simple, computable, and quantifiable
entanglement measure known as logarithmic negativity EN [85,87–89] can be reformulated
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in terms of the partially transposed covariance matrix. This measure basically collects the
symplectic eigenvalues η̄k of the partially transposed covariance matrix,

EN = ∑
k

max
{

0,− ln 2η̄k

}
, (15)

and is positive when the state is entangled. In other words, the partially transposed
covariance matrix has symplectic eigenvalues η̄k smaller than 1/2 for an entangled state.

4. Disparate Inter-Detector Couplings for N = 3

Now we are in a position to discuss entanglement between three strongly coupled
detectors. Let these detectors be labeled by Q, A, and B. Assume that the coupling strength
λ between the QA pair is the same as that between the QB pair, but different from the
coupling strength σ between A and B. This leads to an interaction matrix Ω2 of the form

Ω2 =


ω2

0 + 2λ −λ −λ

−λ ω2
0 + λ + σ −σ

−λ −σ ω2
0 + λ + σ

 . (16)

It describes the case of disparate coupling between three detectors; that is, σ12 = σ13 = λ
but σ23 = σ in (10). These coupling strengths are not assumed weak in comparison with the
parameter ω2

0, which is the oscillator frequency of the internal degrees of freedom (or the
renormalized oscillating frequency after absorbing the divergence in the retarded Green’s
function) in the absence of the inter-detector coupling. Nonetheless, we still assume that
the coupling g between the detectors and the environmental scalar field is weak.

4.1. Normal Mode Decomposition

In general, the motion of such a system is highly non-Markovian due to the multi-time
correlations generated in the sharing of a common bath [67]. In principle, we would like
to decouple their motion by introducing the normal modes, but this is next to impossible
for a general non-Markovian system. For certain configurations, this can be achieved. To
accomplish this, we first discuss the normal modes, defined with respect to the interaction
matrix Ω2. The eigenvalues νi and the normalized eigenvectors vi for the interaction matrix
Ω2 are given by

ν1 = ω2
0 , vT

1 =
1√
3
(1, 1, 1) , (17)

ν2 = ω2
0 + 3λ , vT

3 =
1√
6
(2,−1,−1) , (18)

ν3 = ω2
0 + λ + 2σ , vT

3 =
1√
2
(0, 1,−1) . (19)

If we construct the matrix U in terms of the normalized eigenvectors, it will transform
the interaction matrix Ω2 into the diagonal form Λ2 by UT ·Ω2 ·U,

U =



1√
3

2√
6

0

1√
3
− 1√

6
1√
2

1√
3
− 1√

6
− 1√

2


, Λ2 =


ω2

0 0 0

0 ω2
0 + 3λ 0

0 0 ω2
0 + λ + 2σ

 . (20)
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Observe that the elements of the Ω2 matrix has the property that

∑
i

[
Ω2
]

ij
= ∑

j

[
Ω2
]

ij
= const. , (21)

which is a consequence of the way in which we construct the Lagrangian for inter-detector
coupling.

This has a very interesting implication. Suppose that we try to solve the eigenvalue
problem for such a system in general. Let the eigenvector v be given by v = (a1, a2, a3)

T ;
we need to solve a simultaneous set of homogeneous equations

Ω2 · v = ν v , ⇒


([

Ω2]
11 − ν

)
a1 +

[
Ω2]

12 a2 +
[
Ω2]

13 a3 = 0 ,[
Ω2]

21 a1 +
([

Ω2]
22 − ν

)
a2 +

[
Ω2]

23 a3 = 0 ,[
Ω2]

31 a1 +
[
Ω2]

32 a2 +
([

Ω2]
33 − ν

)
a3 = 0 .

(22)

Adding these three equations together leads to(
∑

i

[
Ω2
]

ij
− ν
)(

a1 + a2 + a3
)
= 0 . (23)

Thus, we have either ∑i
[
Ω2]

ij − ν = 0 or a1 + a2 + a3 = 0. This implies that (i) one of the
eigenvalues must be equal to the sum of elements in one of the rows or columns of the
matrix Ω2, and that (ii) the elements of the eigenvectors for the rest of the eigenvalues must
sum to zero.

From the condition (i), we see from the first equation of (22) that the elements of the
corresponding eigenvector must be such that a1 = a2 = a3, so we have

ν1 = ∑
i

[
Ω2
]

i1
, vT

1 =
1√
3
(1, 1, 1) , (24)

after proper normalization. The second condition states that the rest of the eigenvector must
be normal to the plane a1 + a2 + a3 = 0. Therefore, as long as the matrix Ω2 satisfies (21),
the matrix U that diagonalizes Ω2 will be the same up to the re-ordering of the rows or
columns. If we define the normal modes v by v = UT · r, then it implies that one of the
normal modes, say v(1), must be such that

v(1) = vT
1 · r =

r(1) + r(2) + r(3)√
3

, (25)

which highlights the special role of the center-of-mass coordinate of the original variables of
motion. Extension to the case of N detectors is straightforward. This seemingly intuitive yet
rarely proven fact will play a key role in our analysis of one important facet of macroscopic
quantum phenomena later.

Now, in terms of normal mode variables, the two-point function matrix G, shown
in (9) for example, will be transformed into

G = UT ·G ·U , (26)
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so let us examine the structure of the transformed Green’s function. Generically, we have

G11 = G11 +
2
3

(
G12 + G13 + G23

)
, (27)

G12 =
1

3
√

2

(
G12 + G13 − 2G23

)
, (28)

G13 =
1√
6

(
G12 −G13

)
, (29)

G23 =
1√
3

(
G12 −G13

)
, (30)

G22 = G11 +
1
3

(
−2G12 − 2G13 + G23

)
, (31)

G33 = G11 −G23 . (32)

due to the fact that G11 = G22 = G33. If the coupling constant between the oscillator and
the environment is the same for all three detectors, and if the distances between any two of
the detectors are the same, then we will have Gij, i 6= j all the same; that is, if the detectors
sit at the vertices of an equilateral triangle, the Green function matrix, which describes the
backreaction effects from the environment, will take on only two distinct values.

Let G11 = G22 = G33 = G\\ and Gij = G× for i 6= j. For future reference, we write
down the explicit expressions of the retarded Green’s functions, G\\R and G×R ,

G\\R(x, t; , x, t′) = − 1
2π

θ(τ) δ′(τ) , G×R (x, t; x′, t′) =
1

2π
θ(t− t′) δ(τ2 − d2) ,

where τ = t− t′ and d = |x− x′|. Furthermore, we immediately see that the consequence
of this particular configuration leads to Gij = 0 for i 6= j, but

G11 = G\\ + 2G× , G22 = G\\ −G× , G33 = G\\ −G× . (33)

In the condensed notation, we will write them as gii = G\\ + αi G×, where α1 = 2,
α2 = α3 = −1. The transformed Green’s function matrix g becomes diagonal, too. This
implies that we will have three decoupled equations for the normal modes v,

v̈1(t) + 2γ v̇1(t) + ω2
0 v1(t)−

4γ

d
v1(t− d) = 0 , (34)

v̈2(t) + 2γ v̇2(t) +
(
ω2

0 + 3λ
)
v2(t) +

2γ

d
v2(t− d) = 0 , (35)

v̈3(t) + 2γ v̇3(t) +
(
ω2

0 + λ + 2σ
)
v3(t) +

2γ

d
v3(t− d) = 0 . (36)

As long as the coupling between the detectors and the environment is sufficiently weak
and the distance between detectors is not too short, the time-delay term, which describes
the mutual indirect influence between oscillators, only introduces a small correction for the
late-time dynamics [46]. Hence, the fundamental solutions to the above equations look like
those to the damped oscillators, and are given by

d
(i)
1 (s) = e−Γis

[
cos Ωis +

Γi
Ωi

sin Ωis
]

, d
(i)
2 (s) = e−Γis 1

Ωi
sin Ωis , (37)

where the damping constant Γi and the “resonance” frequency (strictly speaking, this does
not look like the resonance frequency. The typical resonance frequency has a contribution
of the order γ2, which is ignored here by the assumption that 1/ωid � γ. However, we
should keep in mind that this assumption is not necessary) Ωi are given by
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Γi = γ

[
1 +

αi
ωid

sin ωid
]

, Ωi = ωi

[
1− αi

γ

ω2
i d

cos ωid

]
, (38)

in terms of the (renormalized) oscillator frequency ωi

ω2
1 = ω2

0 , ω2
2 = ω2

0 + 3λ , ω2
3 = ω2

0 + λ + 2σ , (39)

and the parameter γ = g2/8πm.

4.2. Covariance Matrix of the Normal Modes

Let ζ denote the normal mode variables of the reduced three-oscillator system χ.
Then, it can be shown that the correlations between χ and their conjugate variables can be
expressed in terms of the counterparts of the normal modes ζ; that is,

〈 χ
(l)
b χ

(m)
b 〉 = Uli Umj 〈 ζ

(i)
b ζ

(j)
b 〉 , 〈 p(l)b p(m)

b 〉 = Uli Umj 〈π
(i)
b π

(j)
b 〉 , (40)

〈 χ
(l)
b p(m)

b 〉 = Uli Umj 〈 ζ
(i)
b π

(j)
b 〉 , (41)

where π(j) is the canonical momentum conjugate to ζ(j). More importantly, the correlation
functions for the normal modes have the same form as those for χ in (4) and (5) except
that all the relevant matrices are replaced by their counterparts associated with the normal
modes. This correspondence greatly simplifies the calculation when the normal modes
can be completely decoupled, as shown in the configuration introduced previously. Again,
these late-time values are also independent of the initial state of the normal mode, such that

〈 ζ
(i) 2
b 〉 = 1

m
Im
∫ ∞

−∞

dω

2π
d̃
(i)
2 (ω) , (42)

〈π
(i) 2
b 〉 = m Im

∫ ∞

−∞

dω

2π
ω2 d̃

(i)
2 (ω) , (43)

〈 {ζ(i)b , π
(i)
b }〉 = 0 , (44)

where d̃
(i)
2 is the Fourier transformation of the fundamental solution (37) to each normal

mode; that is,

D̃2 =

d̃
(1)
2 0 0
0 d̃

(2)
2 0

0 0 d̃
(3)
2

 , (45)

and

d̃
(i)
2 (ω) =

[
−ω2 + ω2

i −
g2

m
g̃ii(ω)

]−1

=
[
−ω2 + ω2

i − i 2γ ω− 2γ
αi
d

ei ωd
]−1

, (46)

and we have used

G̃\\(ω) = div. + i
ω

4π
, G̃×(ω) =

1
4πd

ei ωd . (47)

The divergence in G̃\\(ω) can be absorbed into ωi. Here, we have assumed that we have a
zero-temperature bath, so β→ ∞ and coth(βω/2) = 1.

Carrying out the integrals in (42) and (43) gives

〈 ζ
(i) 2
b 〉 = 1

2mωi

{
1− 2

π

γ

ωi
+

γ αi

ω2
i d

[
cos ωid−

2
π

sin ωid
]
+ · · ·

}
,

〈π
(i) 2
b 〉 = mωi

2

{
1 +

2
π

γi
ω

(
ln

Π2

ω2
i
− 1
)
− γ αi

ω2
i d

[
cos ωid−

2
π

(
ln

Π2

ω2
i
− 1
)

sin ωid
]
+ · · ·

}
,
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where Π is the cutoff frequency associate with the scalar field, and is assumed to take
the same value for all oscillators. Note that the correction due to interaction with the
environment is linear in γ. The damping constant Γi and the resonance frequency Ωi are
given by (38). In the weak coupling limit γ� ωi, the resonance frequency Ωi also differs
from the normalized oscillating frequency ωi by the order of γ/ωi. Thus, for the leading
order, we have

〈 ζ
(i) 2
b 〉 ' 1

2mωi
, 〈π

(i) 2
b 〉 ' mωi

2
, (48)

as t→ ∞.
Next, we can transform the results for the normal modes ζ back into the counterparts

for the original variables χ by

〈 χb χT
b 〉 = U 〈 ζb ζT

b 〉UT , 〈 pb pT
b 〉 = U 〈πb πT

b 〉UT . (49)

Explicitly, we have 〈 χ
(l)
b χ

(m)
b 〉 given by

〈 χ
(1) 2
b 〉 = 1

3

[
〈 ζ

(1) 2
b 〉+ 2〈 ζ

(2) 2
b 〉

]
, (50)

〈 χ
(2) 2
b 〉 = 〈 χ

(3) 2
b 〉 = 1

6

[
2〈 ζ

(1) 2
b 〉+ 〈 ζ

(2) 2
b 〉+ 3〈 ζ

(3) 2
b 〉

]
, (51)

〈 χ
(1)
b χ

(2)
b 〉 = 〈 χ

(1)
b χ

(3)
b 〉 =

1
3

[
〈 ζ

(1) 2
b 〉 − 〈 ζ

(2) 2
b 〉

]
, (52)

〈 χ
(2)
b χ

(3)
b 〉 =

1
6

[
2〈 ζ

(1) 2
b 〉+ 〈 ζ

(2) 2
b 〉 − 3〈 ζ

(3) 2
b 〉

]
, (53)

and similar structures for 〈 p(l)b p(m)
b 〉. Also note that, in these cases, we have 〈 χ

(i)
b χ

(j)
b 〉 =

〈 χ
(j)
b χ

(i)
b 〉, and thus

1
2
〈 {χ(i)

b , χ
(j)
b } 〉 = 〈 χ

(i)
b χ

(j)
b 〉 . (54)

Now it is instructive to make a comparison with the case where there is no inter-
detector coupling [52]. In the latter case, the late-time correlation between the variables
χ(i) solely results from their interaction with the environment; thus, it is typically of the
order γ. In addition, as a consequence of the intervention of the background field, this
correlation depends on the spatial separation between the detectors. Thus, the detectors
tend to have pairwise correlation due to the facts that they have stronger correlation if
they get closer to one another, and that additional correlation mediated by the third parties
will be at least of the order O(γ2). On the other hand, in the presence of inter-detector
coupling, the later-time correlation comes from the superposition of their counterparts from
the normal modes; it is of the same order as the uncertainty of the corresponding variables.
Thus, the correlation due to inter-detector coupling tends to be much stronger than the
induced correlation by the shared bath, and it does not depend on the distance between
two detectors. These are the fundamental differences between the two cases studied in the
present two papers.

4.3. Bipartite Entanglement

In the subsequent discussion, since the contributions from the environment are much
smaller than those from inter-detector coupling, we will only keep terms that are zeroth
order in γ, much like what we carried out in Equation (48). The covariance matrix at the
late time is then explicitly given by
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V =



〈 χ
(1)
b χ

(1)
b 〉 0 〈 χ

(1)
b χ

(2)
b 〉 0 〈 χ

(1)
b χ

(3)
b 〉 0

0 〈 p(1)b p(1)b 〉 0 〈 p(1)b p(2)b 〉 0 〈 p(1)b p(3)b 〉
〈 χ

(2)
b χ

(1)
b 〉 0 〈 χ

(2)
b χ

(2)
b 〉 0 〈 χ

(2)
b χ

(3)
b 〉 0

0 〈 p(2)b p(1)b 〉 0 〈 p(2)b p(2)b 〉 0 〈 p(2)b p(3)b 〉
〈 χ

(3)
b χ

(1)
b 〉 0 〈 χ

(3)
b χ

(2)
b 〉 0 〈 χ

(3)
b χ

(3)
b 〉 0

0 〈 p(3)b p(1)b 〉 0 〈 p(3)b p(2)b 〉 0 〈 p(3)b p(3)b 〉


, (55)

with 〈 χ
(i)
b χ

(j)
b 〉 given by (50)–(53) and 〈 ζ

(i) 2
b 〉, 〈π

(i) 2
b 〉 by (48). Some information of entan-

glement for this tripartite system can be revealed in the symplectic eigenvalues of a covari-
ance matrix, which correspond to the partially transposed density matrix of this system.

For a system that involves more than two parties, there is more than one way to take
the partial transpose of the density matrix. Denote detector 1 as Q, and the remaining two
as A and B. We see two distinct cases, one where swapping A and B leads to identical
results, because Q is coupled with equal strength λ to A and B. This will be what we called
the symmetric case, Case [SYM] before. In the other case, which we called Case [ASM]
earlier, the entanglement between A and Q is different from that between A and B because
the coupling strengths of these pairs are different, being λ in the former and σ in the latter.
Thus, there are two ways to perform the partial transpose. We can either apply it to Q,
which will be called Q versus AB (symmetric case). Or, we partially transpose variables
associated with A, which will be called A versus QB (asymmetric case).

Recall that the consequence of taking a partial transpose in the density matrix is equiv-
alent to changing the sign of the conjugate momentum of the corresponding subsystem.
Take the case Q versus AB for example: the covariance matrix associated with the partial
transpose of the subsystem Q becomes

V ptQ =



〈 χ
(1)
b χ

(1)
b 〉 0 〈 χ

(1)
b χ

(2)
b 〉 0 〈 χ

(1)
b χ

(3)
b 〉 0

0 〈 p(1)b p(1)b 〉 0 −〈 p(1)b p(2)b 〉 0 −〈 p(1)b p(3)b 〉
〈 χ

(2)
b χ

(1)
b 〉 0 〈 χ

(2)
b χ

(2)
b 〉 0 〈 χ

(2)
b χ

(3)
b 〉 0

0 −〈 p(2)b p(1)b 〉 0 〈 p(2)b p(2)b 〉 0 〈 p(2)b p(3)b 〉
〈 χ

(3)
b χ

(1)
b 〉 0 〈 χ

(3)
b χ

(2)
b 〉 0 〈 χ

(3)
b χ

(3)
b 〉 0

0 −〈 p(3)b p(1)b 〉 0 〈 p(3)b p(2)b 〉 0 〈 p(3)b p(3)b 〉


,

and, likewise for the case A versus QB, it is

V ptA =



〈 χ
(1)
b χ

(1)
b 〉 0 〈 χ

(1)
b χ

(2)
b 〉 0 〈 χ

(1)
b χ

(3)
b 〉 0

0 〈 p(1)b p(1)b 〉 0 −〈 p(1)b p(2)b 〉 0 〈 p(1)b p(3)b 〉
〈 χ

(2)
b χ

(1)
b 〉 0 〈 χ

(2)
b χ

(2)
b 〉 0 〈 χ

(2)
b χ

(3)
b 〉 0

0 −〈 p(2)b p(1)b 〉 0 〈 p(2)b p(2)b 〉 0 −〈 p(2)b p(3)b 〉
〈 χ

(3)
b χ

(1)
b 〉 0 〈 χ

(3)
b χ

(2)
b 〉 0 〈 χ

(3)
b χ

(3)
b 〉 0

0 〈 p(3)b p(1)b 〉 0 −〈 p(3)b p(2)b 〉 0 〈 p(3)b p(3)b 〉


.

The symplectic eigenvalue η of the covariance matrix can be found by solving the eigenvalue
problem of the form [90]

σ · v = i η J · v , or equivalently i
(

J · σ
)
· v = η v , (56)

where the matrix Σ is the fundamental symplectic matrix

J =
N⊕

k=1

(
0 1
−1 0

)
, (57)
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and, in our case, N = 3. The vector v is the corresponding eigenvector. The eigenvalues
always appear in pairs and this is most transparent to see in the Williamson normal form
of the covariance matrix

n⊕
k=1

(
ηk 0
0 ηk

)
, (58)

which is the diagonal form of a symmetric matrix under suitable symplectic transformations.
The eigenvalues in our case are then given by the roots to the polynomial

det
(
σpt − i η J

)
= 0 , (59)

Since it is a third-degree polynomial in η2, its roots can always be found exactly.

4.4. Entanglement of Q with AB

For Q versus AB, or what we call the symmetric [SYM] case, the symplectic eigenval-
ues are

η =
1
2

,

η± =

{
4ω2

1 + ω1ω2 + 4ω2
2 ± 2

√
2(ω2 −ω1)

√
(2ω1 + ω2)(ω1 + 2ω2)

36ω1ω2

} 1
2

.

They do not depend on ω3, and thus are independent of the coupling constant σ between
A and B. Among these three eigenvalues, we observe that η+ is always greater than 1/2,
but η− is always smaller than 1/2, so it signals the presence of entanglement between Q
and the pair AB according to (15). Hence, we only focus on the symplectic eigenvalue η−.
In terms of the coupling constant λ between Q and A or Q and B, we can show that

η− =


1
2
− λ

2
√

2 ω2
0

+ · · · , λ� ω2
0 ,

33/4

4
√

2

(
ω2

0
λ

)1/4

+ · · · , λ� ω2
0 ,

(60)

so it ranges from 1/2 to 0.
The fact that η− does not depend on the interaction between A and B may not be

that surprising because the interaction between the QA pair is of the same strength as the
QB pair; whatever happens between A and B will be “equally” distributed to Q over two
channels through the QA, QB couplings. This observation is supported by the fact that
the correlation functions between the canonical variables associated with Q and A, say
〈 χ

(1)
b χ

(2)
b 〉, take on the same value as the corresponding correlation between Q and B, as

seen in (52). The value does not depend on the coupling constant between A and B. This
balance or symmetry is built-in in the parity between A and B since they start from the
same initial configurations, have the same initial oscillating frequency, and are coupled to
Q with equal strength. It can be easily disrupted if their motion is out of phase by changing
any of the above-mentioned factors or by skewing their relative positions, such that the
dependence on σ will re-appear.

If we put back the subleading contributions from the influence of the environment,
the conclusion that η− does not depend on σ still holds because both A and B experience
the same self-force and the same non-Markovian effects mediated by the environment. In
comparison, the correlations, say 〈 χ

(2)
b χ

(3)
b 〉, between A and B, do depend on the coupling

constant σ between A and B.
Following this line of reasoning, we see that when the coupling between Q and A

(or B) is vanishing small, the entanglement of Q with AB gradually disappears. This is
consistent with our intuition because the correlation between Q and A (or B) vanishes,
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as seen in (52). In this limit, the only connection between Q and A (or B) comes from
their coupling to the environment, which is weak. If we even ignore that part, then Q is
essentially isolated from A and B. Thus, if Q gets disentangled with AB, it will remain
disentangled throughout its evolution. On the other hand, if Q interacts strongly with A,
their momenta tend to be strongly anti-correlated while their positions remain positively
correlated. Meanwhile, the symplectic eigenvalue η− deviates further away from 1/2 from
below, signaling stronger entanglement between Q and AB in the sense of negativity.

4.5. Entanglement of A with QB

Now, turn to the case A versus QB. The corresponding symplectic eigenvalues share
several identical features as in the case Q versus AB. Among the three distinct symplectic
eigenvalues, one of them is always greater than 1/2, the second is equal to 1/2, and
the third one, denoted by η−, is always smaller than 1/2, regardless of the values of ω2

0,
λ and σ:

η =
1
2

,

η± =
1

72ω1ω2ω3

{
2ω2

1
(
3ω2 + ω3

)
+ 2ω2ω3

(
ω2 + 3ω3

)
+ ω1

(
3ω2

2 − 4ω2ω3 + 3ω2
3
)

±
√
−324 ω2

1ω2
2ω2

3 +
[
3ω1ω2

(
2ω1 + ω1

)
+ 2
(
ω1 −ω2

)2
ω3 + 3

(
ω1 + 2ω2

)
ω2

3

]2
}

.

Nonetheless, in this case where η− does depend on the coupling constant σ between
A and B, generally speaking, for fixed values of ω2

0 and λ, the symplectic eigenvalue
η− monotonically decreases with larger values of σ. Therefore, this implies that when
the coupling between A and B is stronger than the interaction between Q and A, the
entanglement for A versus QB is stronger than the counterpart for Q with AB, and vice
versa. Thus, the role that inter-detector coupling plays on determining the entanglement
structure is more transparent from this comparison. On the other hand, for fixed values of
ω2

0 and σ, the symplectic eigenvalue η− is not always a monotonically decreasing function
of λ. For small λ, the value of η− can increase with λ to a maxima and then monotonically
decreases. This is particularly significant for larger values of σ.

To better understand the behavior of η−, let us take a look at some limiting cases: first,
suppose that λ is vanishingly small and σ is fixed in value, and then the only channel for
the possible entanglement of A with QB comes from the interaction between A and B. Q
is out of reach of A. In this case, we can (wait for the system to reach a steady state and)
examine the cross-correlation between them. We see that

〈 χ
(Q)
b χ

(A)
b 〉 = 〈 χ

(Q)
b χ

(B)
b 〉 = 1

6m

(
1

ω1
− 1

ω2

)
= 0 , (61)

〈 p(Q)
b p(A)

b 〉 = 〈 p(Q)
b p(B)

b 〉 = m
6
(ω1 −ω2) = 0 , (62)

but

〈 χ
(A)
b χ

(B)
b 〉 = 1

4m

(
1

ω1
− 1

ω3

)
> 0 , (63)

〈 p(A)
b p(B)

b 〉 = m
4
(ω1 −ω3) < 0 , (64)

due to the fact that ω3 > ω2 = ω1 in this limit.
Then, we let λ increase from zero: there comes an extra channel between A and QB

owing to the interaction between A and Q. In addition, B can also be related to A via Q,
thus improving the connection between A and QB. For λ 6= 0, we have ω3 > ω2 > ω1 if σ
is still greater than λ, so it implies that the cross-correlations then become
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〈 χ
(Q)
b χ

(A)
b 〉 = 〈 χ

(Q)
b χ

(B)
b 〉 = 1

6m

(
1

ω1
− 1

ω2

)
> 0 , (65)

〈 p(Q)
b p(A)

b 〉 = 〈 p(Q)
b p(B)

b 〉 = m
6
(ω1 −ω2) < 0 , (66)

while

〈 χ
(A)
b χ

(B)
b 〉 = 1

12m

[
2
(

1
ω1
− 1

ω3

)
+

(
1

ω2
− 1

ω3

)]
> 0 , (67)

〈 p(A)
b p(B)

b 〉 = m
12

[2(ω1 −ω3) + (ω2 −ω3)] < 0 . (68)

As λ increases beyond σ, even when we have ω2 > ω3 > ω1, the cross-correlation between
A and B does not change qualitatively. However, we find that both 〈 χ

(A)
b χ

(B)
b 〉 and

〈 p(A)
b p(B)

b 〉 reach their extremal values at λ = σ; that is, 〈 χ
(A)
b χ

(B)
b 〉 decreases from some

positive value as λ moves away from zero, until it reaches its minimum at λ = σ. After that
point, the correlation between χ

(A)
b and χ

(B)
b monotonically increases with λ, approaching

the value 1/(3mω1). The minimum is

min〈 χ
(A)
b χ

(B)
b 〉 = 1

3m

(
1

ω1
− 1

ω2

)
> 0 . (69)

On the other hand, the correlation 〈 p(A)
b p(B)

b 〉 increases from some negative values with λ
until it reaches its maximum value

min〈 p(A)
b p(B)

b 〉 = m
3
(ω1 −ω2) < 0 , (70)

at λ = σ. Beyond that point, it decreases monotonically without bounds. This partially
explains the non-monotonic behavior of η− for a fixed σ because some other factors that
enter in determining the covariance matrix, such as 〈 χ

(Q)
b χ

(A)
b 〉, do not depend on σ.

For the case with a fixed λ, if we let σ = 0—that is, no direct coupling between A and
B—the only connection between A and QB results from interaction between A and Q. In
this case, B is not entirely out of contact with A. Their correlation can be mediated by Q.
Now, we examine their cross-correlation. For σ = 0, we have ω2 > ω3 > ω1, and

〈 χ
(Q)
b χ

(A)
b 〉 = 〈 χ

(Q)
b χ

(B)
b 〉 = 1

6m

(
1

ω1
− 1

ω2

)
> 0 , (71)

〈 p(Q)
b p(A)

b 〉 = 〈 p(Q)
b p(B)

b 〉 = m
6
(ω1 −ω2) < 0 . (72)

They are in contrast with (61) and (62). As for the cross-correlation between A and B,
we have

〈 χ
(A)
b χ

(B)
b 〉 = 1

12m

[
2
(

1
ω1
− 1

ω3

)
+

(
1

ω2
− 1

ω3

)]
> 0 , (73)

〈 p(A)
b p(B)

b 〉 = m
12

[2(ω1 −ω3) + (ω2 −ω3)] < 0 . (74)

These qualitative features do not change with increasing σ. However, there is a major
distinction in this case. There is no extremum for the cross-correlation between A and B
when we vary σ. This is consistent with the behavior of η−. Since we have known that the
entanglement Q with AB does not depend on σ, it is equivalent to the special case σ = λ.
Therefore, we can draw the conclusion that when the coupling σ is greater than λ, the
entanglement for the partition A versus QB is stronger than the counterpart for Q versus
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AB. On the other hand, when the coupling σ is weaker than λ, the entanglement for the
partition Q versus AB is stronger than the counterpart for A versus QB (see Figure 1).

0

5

10

0

5

10 0.3

0.4

0.5

Figure 1. Comparison of entanglement for the two cases: Q vs. AB and A vs. QB. Here, we show
the dependence of their smallest symplectic eigenvalues, denoted by ηQ

− , ηA
−, respectively, on the

inter-oscillator coupling strength λ, σ.

Here, we summarize some general features of cross-correlations. It has been shown
that with stronger inter-oscillator couplings, the cross-correlation 〈 χ(i)χ(j) 〉 tends to be
more strongly correlated, with the exception that 〈 χ(Q)χ(A) 〉 is not sensitive to the coupling
strength σ between A and B. On the other hand, 〈 p(i)p(j) 〉 tends to be more strongly anti-
correlated with stronger inter-oscillator couplings. We also observe that since 〈 χ(i)χ(j) 〉
is bounded, they do not change appreciably with λ and σ. In contrast, 〈 p(i)p(j) 〉 is not
bounded below; it can vary more dramatically with the coupling constants λ and σ. In
particular, 〈 p(A)p(B) 〉 varies more significantly with σ but less with λ, while 〈 p(Q)p(A) 〉
changes more notably with λ but is independent of σ.

In conclusion, we see from this detailed analysis how the entanglement structure
of coupled quantum oscillators depends on the coupling strength, from knowledge of
the cross-correlations between the oscillators. This quantitative description is valuable in
aiding our understanding of entanglement behavior because it is the simplest continuous
variable many-body system that is amenable to such a detailed analysis. For larger systems
with more components and less symmetry, this becomes dauntingly challenging. We
shall explore the implications of our results for some key issues in macroscopic quantum
phenomena in the next section.

5. Summary of Results and Implications

The effects of field-induced interaction on quantum entanglement between two har-
monic oscillators have been studied earlier, notably in [45,46,65,66,91–94]. One interesting
feature shown there is the distance dependence of quantum entanglement, since the cou-
pling is mediated by a quantum field whose influence varies with time and space. In [52],
a model of N quantum oscillators located at different fixed positions in space, which do
not interact with each other directly but only through weak couplings to a common scalar
massless quantum field, was studied. After coarse-graining the quantum field, a late-time
covariance matrix of this open system of N oscillators with only indirect field-induced
coupling was derived and analyzed. For N = 3, it was found that, in the weak coupling
limit, the correlations adopt a simple pairwise structure, in that the correlation between
any two oscillators is ignorant of the presence of the other oscillator. The way in which one
oscillator’s presence alters the entanglement of the other two was used in [52] to capture
a novel notion called an ‘entanglement domain’. This paper studies the entanglement
structure of the N quantum oscillator system sharing a common quantum scalar field
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environment but, unlike these two earlier papers, we allow the oscillators to have direct
pairwise couplings of disparate strengths.

5.1. Comparison with Case without Direct Coupling

The salient features based on detailed studies of the N = 3 case, as we have seen, turn
out to be quite different from the case of N oscillators with only field-induced coupling.
The first entanglement feature, namely that the correlation between any two oscillators is
ignorant of the presence of the other oscillator, is no longer true. The second feature, namely
the distance dependence of entanglement due to each oscillator’s coupling to a quantum
field, is now no longer prominent, being overwhelmed by the direct couplings. We see that
each case studied in these two papers captures one aspect of the overall behavior of the
system of N oscillators: while the first case may depict neutral atoms, the latter case depicts
ions (in an open quantum field rather than in a cavity or in a trap). The idealized model
study here, though not a replica of actual experimental setups, can nonetheless provide us
with a clear theoretical understanding and quantitative description of the entanglement
structure of such commonly encountered continuous-variable quantum systems.

5.2. Summary of Direct Disparate Coupling Results

• Entanglement for the N-oscillator system with direct coupling is decided by whether
any of the symplectic eigenvalues of the partially transposed covariance matrix are
smaller than 1/2.

• Entanglement is enhanced by stronger coupling between any two oscillators, as in
intuitive reasoning.

• Two cases of different symmetries are studied in detail here, where three oscillators
are placed at the vertices of an equilateral triangle. Call one of the oscillators Q, which
is distinguished from the other two, A and B, by different couplings. Consider the
two cases: Case [SYM], where Q is equally coupled to A and B (symmetric configura-
tion), versus Case [ASY], where A is coupled to Q differently from its coupling to B
(asymmetric configuration). The main features are:

Symmetric versus asymmetric cases

1. CASE [SYM] Q vs. AB, where Q is coupled to A and B with equal strength: the
entanglement of Q with AB as a group is independent of the coupling between A and
B. It is as if Q is entangled with a ‘center-of-mass’ variable of the two oscillators AB
as a group.

2. CASE [ASY] A vs. QB, where the coupling strength between A and Q is different
from that between A and B: entanglement for A vs. QB does depend on QA coupling
and AB coupling.

(a) For a fixed QA coupling, the entanglement measure is a monotonically de-
creasing function of AB coupling; the symplectic eigenvalue η− of the partially
transposed covariance matrix in this case ranges from 1/2 to 0. (Further devia-
tion from 1/2 means increasing entanglement.)

(b) For a fixed AB coupling, the entanglement measure does not always mono-
tonically decrease with increasing QA coupling. It increases first to reach
the maximum and then monotonically decreases. This is due to the effect of
cross-correlations.

(c) For QA and QB coupling greater than AB coupling, entanglement for Q vs.
AB is stronger than entanglement A vs. QB.

(d) For AB coupling greater than QA coupling, entanglement for A vs. QB is
stronger than that for Q vs. AB

5.3. Implications for Issues in Meso- and Macroscopic Quantum Phenomena

As mentioned in the introduction, one emergent area of research that results from
this analysis can be applied to is macroscopic quantum phenomena. We identified two
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key issues to explore: one is the role of the CoM in the quantum behavior of a many-body
system and the other is how the level of structure manifests in macroscopic quantum
phenomena. They can be examined using the entanglement structure results obtained here
for a three-oscillator system with disparate coupling strengths.

In the SYM case, we show that, as far as quantum entanglement is concerned, Q is
effectively coupled to the CoM of A and B. This shows that, for quantum behavior of
this nature, the CoM variable plays a role similar to that in classical mechanics. Now,
view Q as the center of mass variable representing a macroscopic object 1, and A, B as
representative constituents of a similar macroscopic object 2. One interesting result of of
relevance to the level-of-structure aspect of MQP that we found here is that (at least for
quadratic inter-particle coupling) the entanglement between Q and AB is equivalent to that
between Q and the CoM of 2, independent of the coupling between A and B, provided that
A and B are interchangeably identically. This is of interest because it explains why as one
reports on the quantum dynamics of, say, a cantilever (e.g., [18,21]), one does not need to
also provide information on how the nucleons in the metal bar are coupled. A comparison
of the results between the [SYM] and the [ASY] cases is also informative about why levels
of structure, or a hierarchical ordering in the organization of matter [29], facilitates a better
understanding of the manifestation of quantum behavior of macroscopic objects.

The open system of an N coupled quantum oscillator system is a generic model for
investigating continuous-variable quantum many-body systems under different environ-
mental influence. Toward understanding macroscopic quantum phenomena from the
entanglement perspective, an important contributing factor is the identical particle or indis-
tinguishability issue, such as that discussed in, e.g., [95–99]. In addition to the entanglement
aspects explored here, the ‘size or large N’ and the ‘correlation or infrared behavior’ aspects
of MQP for interacting quantum systems as explained in [32–34] are also of interest. We
can mention two easily extrapolated directions. One is to assume the presence of finite
temperature fields whereby one can investigate issues in quantum thermodynamics such
as those related to thermal entanglement [42,43,100,101], which underlie MQP in biological
systems. One can also partition the N oscillators into two parts: one consisting of m oscil-
lators representing the system and the second part consisting of n = N −m oscillators as
the bath. By varying m versus n or varying the inter- and intra-coupling strengths, one can
investigate new facets of mesoscopic phenomena [81,102–104]. Doing so in a microscopic
model enables one to monitor or even control the emergence of macroscopic quantum
phenomena, possibly showing up in different patterns.
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