
Citation: Lévai, G.; Arias, J.M.

Nuclear Shape-Phase Transitions and

the Sextic Oscillator. Symmetry 2023,

15, 2059. https://doi.org/

10.3390/sym15112059

Academic Editors: Peter Otto Hess

and Charalampos Moustakidis

Received: 14 October 2023

Revised: 28 October 2023

Accepted: 10 November 2023

Published: 14 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Review

Nuclear Shape-Phase Transitions and the Sextic Oscillator
Géza Lévai 1,* and José M. Arias 2,3

1 HUN-REN Institute for Nuclear Research (ATOMKI), P.O. Box 51, H-4001 Debrecen, Hungary
2 Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla,

Apartado 1065, 41080 Sevilla, Spain; ariasc@us.es
3 Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n,

18071 Granada, Spain
* Correspondence: levai@atomki.hu

Abstract: This review delves into the utilization of a sextic oscillator within the β degree of freedom
of the Bohr Hamiltonian to elucidate critical-point solutions in nuclei, with a specific emphasis on the
critical point associated with the β shape variable, governing transitions from spherical to deformed
nuclei. To commence, an overview is presented for critical-point solutions E(5), X(5), X(3), Z(5), and
Z(4). These symmetries, encapsulated in simple models, all model the β degree of freedom using an
infinite square-well (ISW) potential. They are particularly useful for dissecting phase transitions from
spherical to deformed nuclear shapes. The distinguishing factor among these models lies in their
treatment of the γ degree of freedom. These models are rooted in a geometrical context, employing
the Bohr Hamiltonian. The review then continues with the analysis of the same critical solutions but
with the adoption of a sextic potential in place of the ISW potential within the β degree of freedom.
The sextic oscillator, being quasi-exactly solvable (QES), allows for the derivation of exact solutions
for the lower part of the energy spectrum. The outcomes of this analysis are examined in detail.
Additionally, various versions of the sextic potential, while not exactly solvable, can still be tackled
numerically, offering a means to establish benchmarks for criticality in the transitional path from
spherical to deformed shapes. This review extends its scope to encompass related papers published
in the field in the past 20 years, contributing to a comprehensive understanding of critical-point
symmetries in nuclear physics. To facilitate this understanding, a map depicting the different regions
of the nuclide chart where these models have been applied is provided, serving as a concise summary
of their applications and implications in the realm of nuclear structure.

Keywords: nuclear structure models and methods; collective models; Bohr Hamiltonian; quasi-
exactly solvable models; sextic potential

PACS: 21.60.-n; 21.60.Ev; 21.60.Fw

1. Introduction

Phase transitions are typically well-defined and associated with macroscopic sys-
tems [1]. However, in recent years, early indicators of phase transitions have been observed
in mesoscopic systems [2], leading to the concept of quantum phase transitions [3,4]. In
classical physics, phase transitions are traditionally classified into two categories: first-order
and continuous phase transitions, based on the behavior of the order parameter at the
critical point. At this juncture, the order parameter typically undergoes a discontinuous
change from zero to a finite value in first-order transitions, whereas in continuous transi-
tions, the change is smooth at the critical point. These same principles apply to quantum
phase transitions. It is evident that the notion of a critical point is closely intertwined with
the study of phase transitions.

An intriguing facet of modern nuclear physics involves the exploration of the quantum
shape-phase transition (QSPT) in atomic nuclei. In this context, QSPTs have been studied
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in nuclear physics with the introduction of shape variables. Different shape phases imply
different spectral patterns (energy spectrum, electromagnetic transitions, etc.), and often
different symmetries. The transitions from one shape phase to another thus correspond to
structural rearrangements in the nucleus. Identifying these is thus of primary importance in
understanding certain aspects of nuclear structure. The Bohr Hamiltonian was developed
to capture the dynamics of quadrupole-type surface excitations in nuclei [5]. It relies on
two key variables: β ≥ 0, which quantifies the deviation of the nuclear surface from a
spherical shape, and γ ∈ [0, π/3], which characterizes its deviation from axial symmetry.
In addition, describing the orientation of the nucleus requires Euler angles, rendering
the problem in a five-dimensional space. The kinetic term encompasses all five variables,
whereas the potential depends solely on the intrinsic β and γ shape variables. The position
of the potential minimum dictates the nuclear shape, which could be spherical, deformed
prolate, deformed oblate, deformed triaxial, deformed γ-unstable, and so forth. Changes in
a control parameter in the Hamiltonian can produce a transition from one specific form
to another. The point of change is called a critical point and is characterized by a critical
value of the appropriate control parameter. In the context of the Bohr Hamiltonian [5], a
few decades ago, Iachello introduced the concept of critical-point symmetries concerning
quantum systems like atomic nuclei [6]. Iachello formulated two critical-point symmetries
within the geometric model. One of these symmetries, known as E(5), characterizes the
critical point in the shape transition from spherical to deformed γ-unstable shapes [6] and is
particularly relevant for describing continuous shape-phase transitions. Another symmetry
proposed by Iachello, referred to as X(5), pertains to the critical point in the transition from
spherical to axially deformed shapes [7] and serves as a benchmark for first-order phase
transitions. In addition to these critical points, Iachello also discussed a phase transition in
the angle variables [8] and particularized the phase transition from axial to triaxial shapes
in nuclei. The corresponding critical point is known as Y(5). Soon after, Bonatsos and
collaborators proposed a model for the critical point in the transition from oblate to prolate
shapes, approximately separating variables in the Bohr Hamiltonian for γ = π/6 [9]. This
critical point is called Z(5). Some other critical-point solutions, such as X(3) and Z(4), have
been proposed and are discussed below.

Another widely employed nuclear structure model for exploring shapes and shape-
phase transitions is the Interacting Boson Model (IBM) [10]. While the IBM was originally
formulated within a second quantization formalism, it is possible to gain a geometric
understanding of the model by leveraging the concept of coherent states and the intrinsic
state formalism [11–13]. This approach unveils geometric shapes, akin to the Bohr model,
which are associated with the various dynamical symmetries of the IBM. These correspond
to special situations in which exact analytical solutions of the many-body problem can be
obtained using group theory techniques. These dynamical symmetries are labeled as U(5),
SU(3) (SU(3)), and O(6). With the introduction of shape variables, the U(5) limit corresponds
to spherical shapes, the SU(3) (SU(3)) limit yields prolate (oblate) axially symmetric shapes,
and the O(6) limit generates deformed γ-unstable shapes. This prompts the search for
counterparts to the E(5) and X(5) symmetries within the IBM. In this context, the critical
points are referred to as e(5) and x(5), respectively, and they represent the transitional
pathways from U(5) to O(6) and from U(5) to SU(3). Significant experimental and theoretical
investigations have been conducted to explore quantum phase transitions, particularly for
even-even nuclei within the IBM, as documented in various reviews [14–18].

The introduction of critical-point symmetries has sparked a quest to identify nuclei
that align with the predictions of these models. Additionally, it has spurred investigations
into potentials that yield exact solutions within the Bohr Hamiltonian framework (for
a comprehensive review, please refer to Ref. [19]). Our contribution to these endeavors
includes the proposal of the sextic oscillator potential for the β shape variable, making
the potential energy surface independent of γ [20–23]. This potential exhibits remarkable
flexibility: its characteristics can vary depending on the parameters, featuring either a
spherical minimum, a deformed minimum, or both. Moreover, the transition between
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these different shape phases can be controlled analytically. The sextic oscillator belongs
to the category of quasi-exactly solvable (QES) potentials [24,25], implying that only the
lowest few energy levels can be obtained exactly. Fortunately, these few lowest energy
levels generally correspond to the set of nuclear states for which a sufficient amount of
experimental spectroscopic information is available, allowing for a quantitative comparison
of experiment and theory. We have also derived electromagnetic transition rates (B(E2),
B(E0)) for this potential in closed form and computed benchmark values associated with
the transitions between different shape phases [21–23].

During the last 15 years, a systematic investigation of the quantum shape-phase
transitions linked to the sextic potential has been developed. Many works have employed
the sextic oscillator in the Bohr Hamiltonian with potentials dependent on the γ shape
variable. Various nuclear shapes have been explored, including γ-stable triaxial [26], γ-
stable prolate [27], γ-rigid triaxial [28], and γ-rigid prolate [29] nuclei (for an extensive
review from 2015, see Ref. [30]). Numerical investigations for the sextic oscillator have also
been conducted to describe double-well structures [31]. An examination of higher QES
solutions of the sextic oscillator [32] concluded that solutions with up to two nodes appear
to be the most suitable approximation for studies on phase transitions. Applications to
different regions of the nuclear chart table have been reported with all these approaches.

In this review, we present a summary of the most important results obtained in the
past 20 years in the framework of the Bohr equation solved with a sextic potential in the β
degree of freedom. This material is organized as follows. In Section 2, the Bohr Hamiltonian
is revisited, and its solutions with a γ-independent sextic oscillator in the β variable are
described. In Section 3, other various solutions of the Bohr Hamiltonian with a sextic
potential in the β variable are discussed, including several ways of treating the angular
variable γ. Some general conclusions are drawn in Section 4.

2. The Bohr Hamiltonian

The Bohr Hamiltonian describes the collective motion of the nucleus as a five-
dimensional system. The deformation variable β measures the deviation from the spherical
shape, whereas γ accounts for the deviation from axial symmetry toward triaxial configu-
rations. The remaining three variables are the three Euler angles (θ1, θ2, θ3), which describe
the spatial orientation of the deformed nucleus. After separating the angular variables, the
Bohr Hamiltonian is written as follows [5]:

H = − h̄2

2B

[
1
β4

∂

∂β
β4 ∂

∂β
+

1
β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 1

4β2 ∑
k

Q2
k

sin2(γ− 2
3 πk)

]
+ V(β, γ), (1)

where B is the mass parameter and Qk(k = 1, 2, 3) are the components of the angular mo-
mentum in the intrinsic reference frame. It is worthwhile switching to reduced energies by
rescaling the energy and potential terms as ε = 2B

h̄2 E and v(β, γ) = 2B
h̄2 V(β, γ), respectively.

Note that the deformation variable β is dimensionless, and so are v(β, γ) and ε. The mass
parameter B appears as a moment of inertia, and as such, it has the physical dimension
mass× length2. Its chosen value sets the energy scale [23].

In order to solve the two-dimensional partial differential Equation (1), one usually has
to apply various assumptions and approximations. The problem can be simplified if we
assume that the potential has a separable form:

v(β, γ) = u(β) +
w(γ)

β2 . (2)

In this case, the terms with the γ variable can be separated into a second-order differ-
ential operator containing the differential terms and w(γ). By solving the corresponding
differential equation, the resulting eigenvalues then appear in the β-differential equation
together with the β−2 factor.
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The electric quadrupole transitions are calculated using the first-order transition
operator [5,6,33]

T(E2) = tβ

[
D(2)

µ,0(θi) cos γ +
1√
2

(
D(2)

µ,2(θi) + D(2)
µ,−2(θi)

)
sin γ

]
, (3)

where D(j)
m,m′(θi) are rotation Wigner D-matrices, and t is a scale parameter. In some

situations, this operator may impose overly restrictive selection rules. These can be relaxed
by adding a second-order term to (3), where t′ is an additional parameter:

T(E2)′ = T(E2) + t′β2
[
−D(2)

µ,0(θi) cos(2γ) +
1√
2

(
D(2)

µ,2(θi) + D(2)
µ,−2(θi)

)
sin(2γ)

]
. (4)

The B(E2) electric quadrupole transition rates can be calculated as the matrix elements
of operators (3) or (4).

2.1. Special Solvable Cases and Critical-Point Symmetries

Several special cases have been discussed for which exact solutions can be obtained.
These cases are based on further assumptions or approximations that simplify the mathe-
matical formalism. Most of these are associated with various symmetries. Typically, these
special cases have been introduced using the infinite square well as u(β) in (2), the flat
bottom of which is considered an approximation of the shape-phase transition between
two potential minima (see, e.g., Ref. [6] for details). Here, we briefly review these models,
keeping in mind that they can also be implemented using the sextic oscillator as u(β). In
some of these models, the γ degree of freedom is omitted (w(γ) = 0) or γ is restricted to a
constant value, reducing the Bohr Hamiltonian to the Davydov–Chaban Hamiltonian [34].
These models are technically less involved, allowing for exact solutions. In others, w(γ) is
approximated with some simple potential.

E(5) symmetry: A special case arises for γ-unstable potentials, which depend explicitly
only on the β variable, i.e., w(γ) = 0 in (2). Then, the β-dependence can be separated into
an equation similar to the radial Schrödinger equation by using the substitution,

Ψ(β, γ, θi) = β−2φ(β)Φ(γ, θi). (5)

The β-differential equation is then

−d2φ(β)

dβ2 +

[
(τ + 1)(τ + 2)

β2 + u(β)

]
φ(β) = εφ(β). (6)

Here, τ is the seniority quantum number, which determines the allowed L angular
momentum values (see Section 2.2). By taking the infinite square well as u(β), this model
is associated with the E(5) symmetry describing the transition between the spherical and
the deformed γ-unstable shape phases [6].

X(5) symmetry: This model describes the transition from the spherical to axially
deformed shape phases. Here, the collective Hamiltonian is the original Bohr Hamiltonian
in five dimensions. This case corresponds to the situation in which the potential is separable,
v(β, γ) = u(β) + w̃(γ), where the β2 factor in Equation (2) is approximated using its mean
value 〈β2〉. In this situation, the differential equation is approximately separable in the
variables β and γ. Then, a harmonic oscillator with a minimum at γ = 0 is used for the γ
degree of freedom, whereas for the potential in β, an infinite square well is assumed [7].

Z(5) symmetry: This model accounts for the prolate to oblate shape-phase transition.
In this case, the variables in the Bohr Hamiltonian are approximately separated for γ = π/6.
A harmonic oscillator potential with a minimum at γ = π/6 in the γ variable was proposed,
whereas for the β variable, an infinite square well was assumed [9].



Symmetry 2023, 15, 2059 5 of 19

X(3) symmetry: This is a γ-rigid (with γ = 0) version of the X(5) model. It is called
X(3) because only three variables occur in this case, and the separation of variables is exact.
The collective Hamiltonian (in reduced units) is given in this case by

h = − 1
β2

∂

∂β
β2 ∂

∂β
− Q2

3β2 + v(β, γ). (7)

This is the case when γ is not considered as a variable but rather as a parameter with
a given value (γ-rigid case), such as γ = 0. For the β variable, an infinite square well is also
assumed [35].

Z(4) symmetry: This is another γ-rigid version but in this case, of Z(5). γ is considered
as a parameter fixed to γ = π/6 (not a variable). In this situation, the Bohr equation is a
function of four variables (β and the Euler angles). The Bohr Hamiltonian splits into two
equations: one for the β variable and another for the Euler angles[

1
β3

∂

∂β
β3 ∂

∂β
− λ

β2 + (ε− u(β))

]
φ(β) = 0 ;

[
1
4

3

∑
k=1

Q2
k

sin2(γ− 2πk
3 )
− λ

]
Φ)θi) = 0, (8)

where ε and u are the reduced energies and potentials introduced previously, and θi
(i = 1, 2, 3) are the Euler angles. For γ = π/6, the angular equation was solved long ago by
Meyer-ter-Vehn [36], with λ = λL,α = L(L + 1)− 3α2/4, where α are the eigenvalues of the
projection of the angular momentum on the body-fixed axis and are even integers [36]. For
the β variable, an infinite square well is used here too [37].

All these critical-point solutions are summarized in Figure 1.

β
w

β
w

β
w

β
w

β
w

β−degree of freedom γ−degree of freedom

γ− independent

γ  = 0
0

γ  = π/6
0

Critical Symmetry

E(5)

X(5)

Z(5)

X(3)
γ−

γ− rigid

ISW

ISW

ISW

ISW

ISW

HO

rigid

HO

0

0

0

0

0

γ  = 0

γ  = π/6
Z(4)

Figure 1. Pictorial summary of the critical-point solutions in the β degree of freedom.

2.2. The Sextic Oscillator as u(β)

The solutions of the general sextic oscillator

u6(r) = A−2r−2 + A0 + A2r2 + A4r4 + A6r6 , (9)
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cannot be written in an exact form. However, some of its special subsets admit partial exact
solutions. In this case, the Ai coefficients satisfy certain constraints. This happens for the
quasi-exactly solvable (QES) subset of the sextic oscillator [24], both as a radial (r ∈ [0, ∞),
A−2 6= 0) and as a one-dimensional (x ∈ (−∞, ∞), A−2 = 0) problem. Choosing the
former with r = β ∈ [0, ∞) and incorporating the β−2 term from Equation (6) using
A−2 = (τ + 1)(τ + 2), the normalizable solutions are written in terms of an infinite power
series of β2 multiplied by a suitable pre-factor containing exponential forms of β2 and
β4. Substituting it into the Schrödinger equation and collecting the terms with the same
powers β2i, its coefficients are found to satisfy an infinite three-term recurrence relation.
However, the recursion can be terminated by a suitable choice of the parameters, leading to
a polynomial form, P(M)(β2), of the solutions:

φ(β) ∼ βτ+2 exp
[
− a

4
β4 − b

2
β2
]

P(M)(β2) , (10)

where a and b are model parameters defining the β potential (see below). In this way, the
first M + 1 normalizable solutions can be obtained in closed form. Note that for A6 > 0,
the sextic oscillator tends to infinity asymptotically, so it has an infinite number of bound
states. The termination condition leads to constraints on the coefficients of the potential
terms, so eventually, the QES sextic oscillator potential takes the form

u(β) = uπ(β) = (b2 − 4acπ)β2 + 2abβ4 + a2β6 + uπ
0 . (11)

Here, a and b are the parameters appearing in the exponential term of φ(β) in
Equation (10). The a = 0 choice recovers the harmonic oscillator. cπ is a constant that
is determined by τ and M as

2cπ = τ + 2M +
7
2

. (12)

It is worth noting that all these conditions are necessary to obtain a QES potential with
state-independent exact analytical solutions. Relation (12) implies that the normalizable
solutions of the QES sextic oscillator are composed of φ(β) functions (10) with all combi-
nations of τ and M for which τ + 2M = const. It is obvious that cπ differs for τ-even (c+)
and τ-odd (c−) combinations, which also introduces a slight difference in the coefficient
of the quadratic potential component. This effect, which proved to be marginal in the
applications in [20–23], was handled by prescribing that the minima of the two potentials
coincide. This can be achieved by applying different constants in potential (11). For M = 2,
these constants are:

u+
0 = 0, (13)

u−0 =


(b2 − 15a)(β+

0 )
2 − (b2 − 17a)(β−0 )

2

+2ab[(β+
0 )

4 − (β−0 )
4] + a2[(β+

0 )
6 − (β−0 )

6] ; if b < (15a)
1
2

−(b2 − 17a)(β−0 )
2 − 2ab(β−0 )

4 − a2(β+
0 )

6 ; if (15a)
1
2 < b < (17a)

1
2

0 ; if b > (17a)
1
2

(14)

where
βπ

0 =
1
3a

[−2b± (b2 + 12acπ)
1
2 ] . (15)

See Refs. [20–23] for the detailed calculations.
The parameter space (a, b) is divided into three characteristic domains, each corre-

sponding to a specific potential shape in Figure 2. On the right of the parabola a = b2/(4cπ),
the coefficients of both the β2 and β4 potential terms are positive, so the u(β) potential
shows a monotonously increasing trend with β, and it has a minimum at β0 = 0. Above
the parabola, the coefficient of the quadratic term is negative, so the potential has a local
maximum at β0 = 0 and a minimum at β1 > 0. Finally, on the left of the parabola, the
coefficients of the quadratic and quartic terms are positive and negative, respectively, re-
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sulting in a local minimum at β0 = 0, a local maximum at β1 > 0, and another minimum at
β2 > β1. It can be proven that the latter minimum is always deeper than that located at
β0 = 0. Potentials corresponding to parameters lying on the parabola lack the quadratic
term, so they have a relatively flat bottom near β = 0. This situation is close to the infinite
square well, which has been considered as the model of phase transition from the spherical
to the axially deformed minimum in γ-unstable nuclei with E(5) symmetry. It has been
shown [20,21] that various benchmark numbers (ratios of energy eigenvalues or electric
quadrupole transition rates) are constant along the parabola.

V

Η.Ο.

β

β
min

= 0

V

β

β
min

> 0
V

β

β
min

> 0

β
min

= 0

a = b  /15
2

b

a

a = 0

V

β

Figure 2. Sextic model space (a, b) and the corresponding energy surfaces u(β) (11) in the different
regions for M = 2, which corresponds to c+ = 15/4 and c− = 17/4. The parabola a = b2/15 separates
spherical from deformed shapes for b > 0 and deformed shapes from a coexistence region with two
minima: one spherical and another deformed (b < 0). The figure was taken from Ref. [22] and is
licensed under CC BY-SA 4.0.

Before proceeding, we note that the sextic oscillator can also be formally obtained
through a suitable transformation from the bi-confluent Heun equation. In particular, the
polynomial solutions of this equation coincide with the QES solutions of the sextic oscillator
(see [38] for details on the relation between the two approaches).

Once the potential u(β) in Equation (11) has been selected, i.e., a, b, and cπ are fixed,
the energy eigenvalues and eigenstates can be determined. For this, the eigenvalues of
the (M + 1)× (M + 1) matrix (obtained from the termination of the three-term recurrence
relation) have to be diagonalized. This amounts to finding the roots of an (M+ 1)’th-degree
algebraic equation. This has to be carried out for each M and τ satisfying prescription (12).
This task can be completed numerically; however, for M = 0, 1, and 2, the roots can be
obtained in closed analytic form. In the first publications proposing the application of the
sextic oscillator in the Bohr Hamiltonian [20,21], solutions up to M = 1 were considered,
and the energy eigenvalues and eigenstates were determined in closed analytical form.
Later, the formalism was extended up to M = 2 [22], which extended the basis to 30 states
(from 10), with nodal excitation up to ξ = 3 (from 2) and angular momentum up to L = 10
(from 6). For this, the roots of a cubic algebraic equation had to be calculated in the standard
way. Here, we briefly recall the essential formulas for the energy eigenvalues and refer to
Ref. [22] for any further expressions (coefficients appearing in the polynomial solutions,
integrals appearing in the matrix elements, etc.).

The energy eigenvalues are determined for τ-even and τ-odd states separately. Ac-
cording to Equation (12), the choice τ + 2M = 4, which allows combinations such as
τ = 0, M = 2; τ = 2, M = 1; and τ = 4, M = 0, corresponds to c+ = 15/4. Similarly,
τ + 2M = 5 includes combinations such as τ = 1, M = 2; τ = 3, M = 1; and τ = 5,
M = 0, corresponding to c− = 17/4 [20]. This difference between c+ and c− also defines
the difference between the τ-even and τ-odd potentials as 2aβ2. The energy eigenvalues
are displayed in Table 1, where the various λ

(M)
i quantities are obtained from the solution

of the (M + 1)’th-order algebraic equations.
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Table 1. The energy eigenvalues of the sextic oscillator adapted to the Bohr Hamiltonian [22]. The
constant terms uπ

0 in Equations (13) and (14) that depend on the even or odd value of τ are subtracted

for simplicity. The λ
(M)
i and λ̃

(M)
i quantities are displayed in Equations (16) and (17). The fifth

column displays the angular momenta L contained in the given (ξ, τ) multiplet.

ξ τ M εξ,τ − uπ
0 L

1 0 2

{
λ
(2)
2 ; b > 0,

λ
(2)
1 ; b < 0,

0

1 2 1 9b + λ
(1)
− 2, 4

1 4 0 5b + λ
(2)
3 2, 4, 5, 6, 8

2 0 2 5b + λ
(2)
3 0

2 2 1 9b + λ
(1)
+ 2, 4

3 0 2 5b +

{
λ
(2)
1 ; b > 0,

λ
(2)
2 ; b < 0,

0

1 1 2 7b +

{
λ̃
(2)
2 ; b > 0,

λ̃
(2)
1 ; b < 0,

2

1 3 1 11b + λ̃
(1)
− 0, 3, 4, 6

1 5 0 15b 2, 4, 5, 6, 7, 8, 10
2 1 2 7b + λ̃

(2)
3 2

2 3 1 11b + λ̃
(1)
+ 0, 3, 4, 6

3 1 2 7b +

{
λ̃
(2)
1 ; b > 0,

λ̃
(2)
2 ; b < 0,

2

When introducing s = (2τ + 5)/4, the quantities shown in Table 1 become the follow-
ing [22]:

λ
(1)
± = 2b± 2(b2 + 18a)

1
2 ,

λ̃
(1)
± = 2b± 2(b2 + 22a)

1
2 , (16)

λ
(2)
i = Λ(2)

i (5/4) , s = 5/4 for τ = 0

λ̃
(2)
i = Λ(2)

i (7/4) , s = 7/4 for τ = 1 (17)

where

Λ(2)
1 (s) = 4b− 2r cos(

φ

3
) ,

Λ(2)
2 (s) = 4b + 2r cos(

π

3
− φ

3
) ,

Λ(2)
3 (s) = 4b + 2r cos(

π

3
+

φ

3
) ,

cos(φ) = −64ab
r3 ,

r ≡ r(s) = ±
[

16
3
(b2 + 2a(4s + 1))

] 1
2

, (18)

and the prescription sgn(r) = −sgn(b) has to be satisfied.
The (ξ, τ) multiplets contain one or more physical states with a given L angular

momentum value. The rules determining the allowed values follow from the O(5) ⊃ O(3)
decomposition: Construct τ = 3n∆ + ν, where n∆ = 0, 1, . . . . Then, the allowed L values
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are L = ν, ν + 1, . . . , 2ν− 2, 2ν (note that the value L = 2ν− 1 is missing). Table 1 displays
the allowed L values for the given (ξ, τ) multiplets.

In what follows, the energy scale is redefined such that E = 0 corresponds to the
ground-state energy. The rescaled energy eigenvalues are denoted as

Eξ,τ = εξ,τ − ε1,0 . (19)

With this model, one can obtain parameter-independent values (up to a scale factor) for
energies and transition probabilities at the critical point between spherical and deformed γ-
unstable shapes. These benchmark numbers are summarized in Figure 3, as taken from [22]
for M = 2.
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Figure 3. Benchmark numbers for energies normalized to the excitation energy of the first 2+ (left) and
B(E2) values normalized to B(E2; 2+1 → 0+1 ) = 100 (right) characterizing the transition from the
spherical to the deformed domain within the sextic oscillator model. These quantities are fixed for
any point of the critical parabola separating the two domains. The figures were taken from Ref. [22]
and are licensed under CC BY-SA 4.0.

3. Applications of the Sextic Oscillator in the Bohr Hamiltonian

Due to its flexible shape, the sextic oscillator seems to be a suitable candidate to serve
as the β-potential u(β) in the Bohr Hamiltonian. It is the lowest-order polynomial potential
that admits two minima. With a potential minimum at β = 0, it can describe spherical
nuclear shapes, whereas with a minimum at β > 0, it can account for a nucleus with a
deformed shape. Furthermore, the transition between the two shape phases can be imple-
mented smoothly within an exact analytical framework simply by varying the potential
parameters a and b in (11). These features have been employed in a variety of models
describing a wide range of nuclear shapes and transitions between them. Several review
papers have discussed solvable models within the framework of the Bohr Hamiltonian,
paying special attention to the shape-phase transitions and critical-point solutions related
to them [19,30,39]. In the present review, we focus on models in which the sextic oscillator
was considered as the β potential and report on recent developments in the field, placing
them in the context of earlier results.

3.1. w(γ) = 0

The first application of the sextic oscillator was proposed in 2004 in Ref. [20] to describe
the transition between spherical and γ-unstable nuclear shapes. In this case, the γ shape
variable does not play a role. Based on the corresponding critical-point symmetry, this
approach can be called E(5)-sextic. The formalism was first developed for solutions with
M = 0 and 1, encompassing ten states altogether: three 0+, three 2+, one 3+, two 4+, and
one 6+ levels. These model states can typically be assigned to the first four levels of the
ground-state band Kπ = 0+1 , the first three levels of the quasi-γ band Kπ = 2+, and the
bandheads of two further Kπ = 0+ bands.

The formalism of the sextic oscillator was developed in Ref. [20], where the energy
eigenvalues, wavefunctions, and B(E2) transitions were derived. The evolution of the
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energy spectrum was studied by varying the a and b model parameters, and the structure
of the phase space was established. It was found that the phase transition occurs on the
critical parabola a = b2/11. This follows from selecting c+ = 11/4 in Equation (12), which
corresponds to τ + 2M = 2, i.e., to the combinations τ = 0, M = 1 and τ = 2, M = 0.
Closed-form benchmark numbers were calculated for the energy and B(E2) ratios and
were compared to the benchmark numbers of the E(5) critical-point symmetry and other
models. As an example, the spectroscopic data for the 134Ba nucleus were calculated and
compared to the experimental values.

In the next application of the model [21], the formalism was further developed: matrix
elements with the φ(β) wave functions were calculated analytically in terms of confluent
hypergeometric functions. The model was then systematically applied to the chain of
even-even Ru (A = 98–108), Pd (A = 102–110), and Cd (A = 106–116) isotopes. The
potential parameters were determined from the experimental energy eigenvalues, and
the trajectories of the chains were plotted on the (a, b) phase space. Several nuclei were
identified as potential critical-point candidates, i.e., those close to the critical parabola.
Examples include 104Ru, 102Pd, 106Cd, and 108Cd, which were proposed previously as
candidates using other models, and 116Cd as a new one.

In the applications in [20,21], the key step was assigning appropriate experimental
states to the excited 0+ model states. These states have characteristic decay patterns in
electric quadrupole transitions: the one denoted by (ξ, τ)L = (1, 3)0 is expected to decay
strongly to the second excited 2+ state assigned to (1, 2)2, whereas the node-excited 0+

state (2, 0)0 is expected to decay to the first excited 2+ state (1, 1)2 (see Figure 3 for the
notation).

Further applications of this version of the model have been presented. In Ref. [40],
seven Te isotopes (from A = 110 to 139) and the chain of six Xe isotopes (A = 122–132)
were discussed. All the nuclei were found to lie in the domain of a deformed minimum
(above the critical parabola), with 110Te closest to the position of a critical-point nucleus.
In Ref. [41], the chains of Zr (A = 88–100) and Sn (A = 110–122) nuclei were investigated.
Most of these nuclei were also found to belong to the domain of a deformed minimum;
however, 96Zr and 112Sn were proposed as nuclei close to the critical point.

The sextic oscillator model was developed further in Ref. [22], where the exact analytic
formalism was extended to M = 2, i.e., to a higher degree of the QES solution. In this
case, the roots of a cubic algebraic equation had to be calculated (see the discussion in
Section 2.2). The considerably larger model space (30 states compared to 10) allowed for
a more elaborate comparison with the experimental data but also raised new questions.
The enlarged basis included the ground-state band (up to Lπ = 10+); states that could be
assigned to a Kπ = 2+ band (up to Lπ = 8+); and three excited 0+ states, which act as
bandheads. Two of them were analogous to those appearing in the simple version of the
model ((ξ, τ)L = (1, 3)0 and (2,0)0), whereas the (3,0)0 state was a higher nodally excited
configuration. Identifying the experimental counterpart of the excited 0+ states remained
the key step in the application of the extended model.

Furthermore, a new question arose. In the original version of the model [20,21], the
states belonging to the same (ξ, τ) multiplet were considered degenerate in energy. The
pattern of states with larger L values appearing in the extended model revealed that the
spectrum did not follow this degeneracy; rather, typically, the levels with higher L appeared
higher in the spectrum. For this reason, in Ref. [22], the Hamiltonian was extended by
a phenomenological rotational term cL · L. The justification for this rotational term was
presented in Ref. [22].

In the first application of the extended model [22], the Ru and Pd chains were revisited.
With the larger M, the cπ numbers (in Equation (12)) also changed (c+ = 15/4 was used in-
stead of 11/4), which slightly modified the location of the critical parabola. The conclusions
for the Ru chain were essentially the same as in the limited model: the critical point was
again close to 104Ru. The situation was somewhat different for the Pd chain, perhaps due
to the enlarged model space and the rotational term. Most of the Pd nuclei were located in
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the domain of the spherical minimum (below the critical parabola); however, 108Pd, which
had a rich enough collection of B(E2) values for comparison with the experiment, showed
marked signs of a critical-point nucleus. The results for the energies and B(E2) in 108Pd are
shown in Figure 4. Besides this nucleus, 110Pd was also found to be located close to the
critical parabola.
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Figure 4. Experimental and calculated energy spectrum, as well as B(E2) transitions, for the 108Pd
nucleus using the sextic oscillator. Theoretical E2 transitions are normalized to the experimental
value B(E2; 2+1 → 0+1 ) = 50.4 W.u. Theoretical energy levels indicated in red are predicted ξ= 2 and 3
levels without experimentally assigned partners. The figure was taken from Ref. [22] and is licensed
under CC BY-SA 4.0.

In the next application [23] of the extended model, Pt and Os nuclei were studied close
to the closure of the Z = 82 shell. A thorough analysis of the decay pattern of the excited 0+

states was carried out in order to assign the model states to their experimental counterparts.
It was found that the members of the node-excited band built on the (ξ, τ)0 = (2, 0)0 state
systematically became lower with increasing A, and eventually, the (2,0)0 bandhead state
fell below the (1,3)0 bandhead state for 198Pt. This is shown in Figure 5.

This change was accompanied by a drastic change in the potential shape, indicating
the realization of the phase transition from the γ-unstable to the spherical domain. Similar
trends were also observed for the Os chain. However, the last isotope with a reasonably
comprehensive spectroscopic data set, 192Os, remained clearly in the domain of a γ-unstable
deformed shape. Indirect signs indicated that the shape-phase transition could occur near
194Os, but the spectroscopic information was insufficient to prove this unambiguously. This
study also confirmed that 194Pt and 196Pt were rather good examples of the γ-unstable
configuration (see Figure 6, taken from Ref. [23]), whereas this was less pronounced for the
Os isotopes, which, especially the lighter ones, showed signs of a triaxial configuration.

There have been further studies estimating the performance of the sextic oscillator
as a β potential by abandoning exact solutions. In Ref. [32], higher QES solutions were
considered using numerical calculations. A comparison with a large array of experimental
spectroscopic data for the nuclei discussed in Ref. [21] indicated that the order k = 2 seems
to be the optimal choice in most calculations. This corresponds to M = 2, i.e., the extended
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scheme with M up to 2 presented in Refs. [22,23], providing strong support for this fully
analytical model.

Figure 5. First low-lying systematics for the lowest excited Kπ = 0+ bands for the Pt isotopes. Lines
indicate the theoretical levels: (ξ, τ)L = (1, 3)0 and (1, 4)2 for the first band, and (2, 0)0, (2, 1)2, (2, 2)4,
and (2, 3)6 for the second one. Experimental data are indicated by symbols of the same color. The
figure was taken from Ref. [23] and is licensed under CC BY-SA 4.0.
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Ref. [42] focused on an alternative approach to addressing the problem of degeneracies
in the sextic oscillator model. This problem was addressed in Refs. [22,23] by directly intro-
ducing a phenomenologic rotational term in the Hamiltonian. In Ref. [42], a rotational term
L(L + 1)/β2 was directly incorporated into the u(β) potential to resolve the degeneracy
of the multiplets. Numerical methods were used to calculate the spectroscopic quantities,
and the model was used to reproduce experimental data for a number of Xe isotopes. The
results showed good agreement with the data, especially in the case of the staggering
pattern appearing in the quasi-γ bands.

3.2. w(γ) Non-Zero

As discussed in Section 2, exact solutions for a v(β, γ) potential can be obtained if
the potential can be separated into u(β) and w(γ) components. This requires certain
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assumptions and approximations. To obtain a solvable problem in the γ variable, further
approximations are necessary. Generally, it is assumed that w(γ) has a minimum at either
γ = 0 or γ = π/6, and the potential is expanded around these minima. The two choices
lead to different solutions and different physical systems, i.e., different nuclear shape
configurations.

When the expansion of w(γ) is carried out around γ = 0, the Bohr Hamiltonian
describes nuclear shapes that evolve from an axially symmetric shape to a triaxial one.
By combining this system with a u(β) potential that allows a spherical or deformed min-
imum, phase transitions from the spherical to the axially deformed shapes can be de-
scribed with an X(5) critical-point symmetry [7]. A key development in this area was
presented in Ref. [27], where the sextic oscillator was used as u(β), while the γ potential
was defined as w(γ) = w1 cos(3γ) + w2 cos2(3γ). With an appropriate variable change,
the solutions of the differential equation obtained for the γ component were written in
terms of the spheroidal functions. This model was coined the sextic and spheroidal ap-
proach (SSA) and was later also referred to as X(5)-sextic. Calculations were carried
out for nuclei typically considered candidates for the X(5) symmetry: Os (A = 176–180,
188–190), 150Nd, 156Dy, and Hf (A = 166–68). The predictions were compared to those
of alternative models with different u(β) used in the Bohr Hamiltonian, i.e., the infinite
square well (ISW) and the Davidson (D) potential, and also to those of the coherent state
model (CSM), which is based on a boson operator formalism. It was found that the best
agreement with the experimental energy eigenvalues was found for the D, SSA, and CSM
models, whereas for the B(E2) values, the SSA and the CSM performed slightly better.
Among the nuclei considered, 188Os was found to come closest to the critical point of the
phase transition.

By applying the expansion of the w(γ) around γ = π/6, transitions between the
prolate and oblate shape phases can be described, and the corresponding critical-point
solution is Z(5) [9]. The sextic oscillator was applied in this setting as a u(β), while the γ
potential was defined as w(γ) = µ cos2(3γ) [26]. Solutions to the differential equation of
the γ component were obtained after transforming the latter into the Mathieu equation.
This model was referred to as the sextic and Mathieu approach (SMA) or Z(5)-sextic.
Predictions of the model were calculated for five isotopes—188Os, 190Os, 192Os, 228Th,
and 230Th—which partially overlap with the examples studied in the X(5)-sextic model.
Since transitions among well-deformed nuclei (from prolate to oblate) through a triaxial
critical point were studied, regions where this transition was expected, such as Os and Th
isotopes, were considered. Predictions for the energy spectrum and the electric quadrupole
transitions in the ground, γ, and β bands were compared to the experimental values,
as well as to the results obtained from the coherent state model (CSM). Signatures for
triaxiality were analyzed in the energy spectra. Reasonable agreement was found between
the experimental and the SMA and CSM values. A similar analysis (with similar results)
was carried out for the nuclei 180Hf and 182W [43]. Besides the application of the SMA to
certain nuclei, this work also focused on exploring the relation between the SMA and the
CSM. It was found that the SMA formalism could be obtained by quantizing the classical
CSM equations, and the SMA represented the strong coupling limit of the CSM.

3.3. The γ-Rigid Cases

A special kind of solvability arises when the γ variable is “frozen” to some value,
typically γ = 0 or γ = π/6, i.e., the minimum values of w(γ) in the X(5) and Z(5) models.
This ensures the separation of variables while reducing the number of active variables.

As described in Section 2.1, when γ = 0, the X(5) model reduces to X(3)—the model
that can account for axially symmetric γ-rigid shapes. Combining this with the sextic
oscillator as u(β), the X(3)-sextic model arises [29]. Predictions for some characteristic
energy ratios were calculated, and compared to the corresponding values obtained for
polynomial versions of the X(3) model: X(3), X(3)-β2, X(3)-β4, and X(3)-β6. A simplified
version of this model, without a quartic term, was considered in Ref. [44] and compared to
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the same models. The energy spectrum of the ground and the first two excited β bands was
numerically calculated for a large number of nuclei: Ru (A = 98–108), Mo (A = 100, 102),
Xe (A = 116–130), Ce (A = 132, 134), Nd (A = 146–150), Sm (A = 150, 152), Gd (A = 152,
154), Dy (A = 154, 156), 172Os, Pt (A = 180–196), 190Hg, and 222Ra. The energy eigenvalues
and B(E2) ratios were reproduced reasonably well. A first-order shape-phase transition
between a γ-rigid prolate harmonic vibrator and γ-rigid prolate anharmonic vibrator was
identified, and candidates for the corresponding critical point were proposed. The best
candidates were found to be 104Ru, 120Xe, 126Xe, and 148Nd, while 128Xe, 172Os, and 196Pt
were also close to the critical point. We note that 104Ru was also considered a critical-point
nucleus in the spherical to γ-unstable shape-phase transition, i.e., in the E(5)-sextic model.

The X(3)-sextic model has been further developed along several lines. In Ref. [45],
the minimal length (ML) formalism was incorporated into the model, whereas in Ref. [46],
the deformation-dependent mass (DDM) formalism was considered. As a further option,
in Ref. [47], the order of the QES solutions was varied, and the results were compared.
Calculations were carried out in all three studies for the same set of nuclei as discussed in
Ref. [29]. The quality of the fits was generally improved due to the extra parameters, but
the conclusions concerning the critical-point nuclei essentially remained the same.

Another γ-rigid model can be obtained from Z(5)-sextic by fixing γ to π/6 [28],
leading to Z(4)-sextic. In this case, exact solutions could be obtained for the ground and the
β bands, whereas for the γ band, approximations had to be applied. Numerical calculations
were carried out for the Xe (A = 128-132) and Pt (A = 192-196) nuclei. The results for
the energy spectrum and the B(E2) transitions were compared to the experimental values,
as well as to the predictions of the Z(4) model. Qualitative agreement of the data sets
was found, and a shape-phase transition was identified near 130Xe, where a deformed
minimum gave way to a spherical one. It is notable that these regions were also identified
as candidates for phase transition in the E(5) and X(3) models.

3.4. Unrestricted Sextic Oscillator

The QES formalism restricts the parameters of the sextic oscillator, meaning that the
allowed potential shapes are also restricted. It is known, for example, in [20–22], that in
the case of a double-well structure (left of the critical parabola in Figure 2), the deformed
minimum is always deeper than the spherical one. Double-well structures different from
this one can be studied for the general sextic oscillator; however, in this case, the exact
analytical calculations have to be replaced with numerical approaches.

In Ref. [31], the general double-well sextic potential was used as a β potential to
describe γ-unstable nuclei. The model states were constructed using a numerical diagonal-
ization procedure in a basis classified by the E(5) ⊃ SO(5) ⊃ SO(3) ⊃ SO(2) group chain.
The model parameters were determined by fitting the low-lying energy spectra of Mo
isotopes (A = 96, 98, and 100). Reasonable agreement was found between the theoretical
and experimental energy eigenvalues. The difference between the energy minima showed
a decreasing trend with an increasing mass number, similar to the height of the potential
barrier between the minima. The B(E2) values calculated with the resulting wave functions
also showed reasonable agreement with the experimental values. 100Mo was found to
exhibit properties expected near the critical point.

A similar study was carried out in Ref. [48] within the X(5) formalism to describe
the first-order phase transition between spherical and axially deformed nuclear shapes.
The β potential was a one-parameter double-well sextic oscillator with two degenerate
minima (one spherical and one deformed). The calculated spectrum, as a function of the
free parameter, exhibited predictions in accordance with the SU(3) and X(5)-β6 models in
certain limits of the parameter. Depending on the relative energy of the barrier compared
to the low-energy states, the study identified cases of coexisting shapes in the ground state
and the 0+ β-excited state. The paper discussed critical situations of shape coexistence
from a phenomenological perspective, employing the density of probability distribution
for the deformation and E0 transitions. Experimental evidence supporting these critical
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phenomena was mentioned for a few selected nuclei (152Nd, 170Hf, and 238Pu). Similar
critical potentials with shape coexistence are expected for higher excited states. In addition,
in Ref. [49], along the same lines, the sextic potential was used to show the connections
between shape coexistence and shape transitions.

Lastly, it is worth highlighting the connection between the sextic potential and Catas-
trophe Theory (CT) [50]. This theory provides a framework for understanding abrupt
transitions in various natural and artificial systems. It offers a unique perspective on
the dynamics of complex systems and the potential for abrupt, transformative changes
within them. CT is relevant in multiple fields, including science, economics, psychol-
ogy, engineering, ecology, etc. Specifically, the sextic potential is associated with the A+5
butterfly catastrophe, whose germ is represented by the function x6. In this context, the
potential used is typically expressed as u(β) = β6 + a4β4 + a2β2, where a2 and a4 are free
parameters. Importantly, for γ-independent potentials, this setup not only accounts for
transitions from spherical to deformed shapes through a second-order phase transition
but also accommodates the critical point at which the minima corresponding to spherical
and deformed shapes become degenerate, giving rise to a first-order phase transition. In a
recent publication [51], this relationship was explored within the context of an algebraic
approach, leading to the derivation of the general phase diagram for the butterfly catastro-
phe. This comprehensive phase diagram includes analytical expressions for key features
such as the tricritical point, the critical lines for both first- and second-order transitions, and
additionally, the delineation of spinodal and anti-spinodal lines that demarcate the regions
of coexistence between spherical and deformed shapes. This connection to Catastrophe
Theory provides valuable insights into the complex dynamics of nuclear shape transitions.

3.5. Further Generalizations

The sextic oscillator is not the only quasi-exactly solvable potential. In fact, polynomial
potentials of degree 4ν + 2 belong to this class. Following the sextic oscillator (ν = 1), the
decadic oscillator (ν = 2) also admits similar mathematical formalism. The coefficients
of the potential terms also obey certain constraints. In Ref. [52], the decadic oscillator
was employed to describe nuclei that were supposed to lie near the E(5) critical point,
characterizing the phase transition from the spherical to the γ-unstable shape phases. The
spectroscopic results were compared to the experimental data and the results obtained
from various models (E(5), E(5)-sextic, etc.). It was found that the quality of the fit to the
experimental energy eigenvalues (in terms of χ2) was better for the sextic oscillator and
the decadic oscillator for three and two nuclei, respectively (102Pd, 104Ru, and 116Cd vs.
114Cd and 134Ba), whereas it was of similar quality for one case (108Pd). In the case of six Xe
isotopes, the performance of the decadic oscillator was better for four nuclei. In all cases,
both models performed better than the original E(5) model based on the infinite square
as well as u(β). However, for the B(E2) ratios, the E(5) model almost always performed
best, and the sextic oscillator was the worst. This may be due to the difference in the
asymptotic tail of the wave functions. It is important to note that higher-order polynomial
potentials lead to more intricate recurrence relations and, consequently, more complex
truncation conditions. Exact analytical solutions for such potentials cannot be attained as
straightforwardly, as demonstrated in Equation (12). This significantly reduces the number
of algebraic analytical solutions. With regard to these exact solutions, due to the intricacies
involved in truncating the series expansion, interested readers should be mindful of the
complications outlined in Ref. [53].

Another generalization of the sextic oscillator was discussed in Ref. [54]. The authors
discussed odd-A nuclei in the γ-soft region in a model where the E(5)-sextic Hamiltonian
is combined with a single nucleon on a j = 3/2 orbit. In the resulting E(5/4) model, the
single-particle features are represented by a five-dimensional spin–orbit interaction and
an angular momentum degeneracy-breaking term proportional to J(J + 1). The energy
spectrum and the B(E2) rates were precisely calculated for odd Ir isotopes with A = 187 to
195. Good agreement was found between the experimental data and the model predictions.
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4. Summary and Conclusions

In summary, we have provided an overview of recent research into the phase tran-
sitional behavior exhibited by the equilibrium shapes of atomic nuclei. Our exploration
is based on the Bohr equation and its solutions using simple potentials. We revised and
briefly proposed critical-point solutions (CPSs) linked to the use of an infinite square well
for the β variable and various selections for the γ degree of freedom: E(5), X(5), Z(5), X(3),
and Z(4). These simple CPSs shed light on the structural properties at the phase transitional
point. Then, extensions and alternatives to CPSs by substituting the infinite square well in
β with a sextic potential were revised, offering valuable insights into their relevance and
accuracy. These studies outline the broader landscape of possibilities in understanding
structural evolution within atomic nuclei. This exploration opens up the prospect of a fresh
perspective on the intricate journey of nuclear structure evolution, marking a promising
avenue for future research in the field.

Figure 7 displays the region of the nuclide chart where models based on the sextic
oscillator have been applied in the Bohr Hamiltonian. Only even-even nuclei are shown,
indicating the models in terms of which the given nucleus has been discussed (using both
exact and numerical methods) in any of the works reviewed here. The E(5)-sextic model,
describing the transition from the spherical to the γ-unstable shape phase, is applied on
both sides of the Z = 50 shell closure and to nuclei near the lower side of the Z = 82
shell closure. The spherical phase appears close to the N = 50 shell closure for nuclei with
Z < 50, the N = 82 shell closure for Z > 50, and the N = 126 shell closure for Z < 82. The
X(5) model accounting for the transition from spherical to axially deformed shape phase
in regions further away from shell closures has been applied to nuclei with N > 82 and
Z < 82. The γ-rigid version of this model, X(3), has been applied more extensively in this
region and also on both sides of the Z = 50 shell closure. Frequently, the same nuclei have
been discussed in terms of the X(3) and E(5) frameworks. The Z(5) model, describing
the transition between prolate and oblate shape phases, has been applied to a few nuclei
further away from the shell closures with Z < 82 and N < 126. Its γ-rigid limit has been
applied close to this region and also near the domain near the shell closures with Z > 50
and N < 82. There are a few nuclei that have been discussed in terms of three models
simultaneously (128Xe, 130Xe, 192Pt, 194Pt, and 196Pt: E(5), X(3), and Z(4); 188Os and 190Os:
E(5); and X(5) and Z(5)).

Transitions between nuclear shapes through critical points are also displayed in
Figure 7 in the models reviewed here. A simple pattern (diagonal lines formed by tri-
angles) seems to emerge for the critical-point nuclei in the E(5)-sextic model on both sides
of the Z = 50 shell closure. These nuclei separate the region of spherical nuclei close to shell
closures from that of gamma-unstable nuclei somewhat further away. Regions associated
with the other models are not extensive enough to identify similar systematics.

In conclusion, it is crucial to underscore that the incorporation of a sextic potential
into the Bohr–Mottelson model provides a unique avenue for investigating the evolution of
nuclear shapes across the entire nuclide chart. Within this framework, quasi-exact solutions
hold substantial significance, serving as a pivotal milestone and reference point for any
prospective numerical solutions aimed at comprehensively characterizing the broader
landscape of the sextic potential’s influence on nuclear shapes.



Symmetry 2023, 15, 2059 17 of 19

Figure 7. Even-even nuclei in terms of various models utilizing the sextic oscillator as u(β). The
color and position of the dots inside the boxes identify the models: E(5)-sextic: green dot in the
middle; X(5)-sextic: red dot in the lower-left corner; Z(5)-sextic: black dot in the lower-right corner;
X(3)-sextic: pink dot in the upper-left corner; Z(4)-sextic: blue dot in the upper-right corner. Nuclei
proposed as critical are marked with a triangle (instead of a dot).
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