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Abstract: Physicists are actively debating the nature of the quantum critical phase transition that
determines the low-temperature properties of metals with heavy fermions. Important experimental
observations of their transport properties incisively probe the nature of the quantum critical phase
transition. In our short review, we consider the transport properties of strongly correlated Fermi
systems like heavy fermion metals and high—Tc superconductors. Their transport properties are
defined by strong inter-particle interactions, forming flat bands in these compounds. These properties
do not coincide with those of conventional metals. Indeed, in contrast to the behavior of the transport
properties of conventional metals, the strongly correlated compounds exhibit linear temperature
resistivity ρ(T) ∝ T. We analyze the magnetoresistance and show that under the application of the
magnetic field, it becomes negative. It is shown that near a quantum phase transition, when the
density of the electronic states diverges, semiclassical physics remains applicable to describe the
resistivity ρ of strongly correlated metals due to the presence of a transverse zero-sound collective
mode, representing the phonon mode in solids. We demonstrate that when T exceeds the extremely
low Debye temperature TD, the resistivity ρ(T) changes linearly with T since the mechanism of
formation of the T-dependence ρ(T) is a similar electron-phonon mechanism, which predominates at
high temperatures in ordinary metals. Thus, in the region of T-linear resistance, electron-phonon
scattering leads to a lifetime of τ quasiparticles practically independent of the material, which is
expressed as the ratio of the Planck constant h̄ to the Boltzmann constant kB, Tτ ∼ h̄/kB. We
explain that due to the non-Fermi-liquid behavior, the real part of the frequency-dependent optical
conductivity σR

opt(ω) exhibits a scaling behavior and demonstrates the unusual power law behavior
σR

opt(ω) ∝ ω−1, rather than the well-known one shown by conventional metals, σR
opt(ω) ∝ ω−2. All

our theoretical considerations are illustrated and compared with the corresponding experimental
facts. Our results are in a good agreement with experimental observations.

Keywords: quantum phase transitions; heavy fermions; non-Fermi liquid behavior; scaling behavior;
topological phase transitions

1. Introduction

An explanation of the rich and striking behavior of a strongly correlated electron liquid
in heavy fermion (HF) metals, high-temperature superconductors, quasicrystals, etc., is
among the main problems of condensed matter physics. Quantum phase transitions (QPTs)
define the non-Fermi liquid (NFL) low-temperature properties of strongly correlated Fermi
systems. Their behavior in the NFL state is so radical that the traditional quasiparticle
Landau paradigm cannot describe it. The underlying nature of QPT continues to challenge
theoretical understanding. Attempts have been made to use concepts such as the Kondo
lattice and quantum and thermal fluctuations in QPT [1–5]. Alas, when these approaches
are designed to describe one property that is considered central, they cannot explain others,
even the simplest ones, such as the Kadowaki-Woods relation [6,7]. This relationship, which
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naturally arises with the leading role of quasiparticles of the effective mass M∗, can hardly
be explained within the framework of a theory that assumes the absence of quasiparticles;
see [7–10]. Arguments that quasiparticles in strongly correlated Fermi liquids become heavy
and die during QPT are usually based on the assumption that the quasiparticle weight
factor Z vanishes at the point of the corresponding second-order phase transition [11,12].
However, this scenario does not correspond to experimental facts [7,13,14]. Numerous
experimental facts have been discussed within the framework of such a concept, but how it
can quantitatively explain the physics of HF metals remains an open question. The theory of
fermion condensation was proposed and developed, preserving quasiparticles. The fermion
condensation (FC) takes place at the topological fermion condensation quantum phase
transition (FCQPT), and leads to both flat bands, which was predicted in 1990 [15], and to
the unlimited growth of the effective mass M∗; at the same time, the extensive research has
shown that this theory provides an adequate theoretical explanation for the vast majority
of experimental results with various HF metals [7–10,15–22]. Unlike the Landau paradigm,
which is based on the assumption that M∗ is approximately constant, in the FC theory,
M∗ strongly depends on temperature T, applied magnetic field B, etc. It is important to
note that the extended quasiparticle paradigm has been introduced. The essential point is
that, as before, well-defined quasiparticles determine the thermodynamic and transport
properties of strongly correlated Fermi systems [7]. Indeed, the width of quasiparticles
tends to zero at T → 0, and they are well-defined excitations up to T ∼ 100 K [7,23]. In fact,
this observation is in accordance with numerous experimental observations; for example,
the typical behavior of the heat capacity of HF metals defined by quasiparticles is observed
in a wide range of temperatures; see [7]. The dependence of the effective mass M∗ on T
and B leads to both the observed NFL behavior and the restoration of the Landau Fermi
liquid behavior at low temperatures under the application of magnetic fields [7–10]. The
most fruitful strategy for studying and uncovering the nature of QPT is to focus on those
properties that exhibit the most dramatic deviations from the Landau Fermi liquid (LFL)
behavior of ordinary metals at low temperatures [24–26].

In our review, we consider the transport properties that allow one to disclose the
nature of QPT governing the behavior HF metals. In particular, measurements of the
magnetoresistance clarifies the dependence of the effective mass M∗ on applied magnetic
field B since, in contrast to ordinary metals, the magnetoresistance becomes negative
under the application of B; see [27–29]. This point is considered in Sections 2 and 3.
Relationships between the NFL resistivity ρ(T) ∝ T and the so-called Planckian limit open
new possibilities to analyze the properties of QPT that govern the transport properties of
HF metals [30,31]; see Sections 4 and 5. Precise experimental measurements of the optical
conductivity of HF metals YbRh2Si2 and La2−xSrxCuO4 have been carried out (see [32,33]),
which probe the nature of their QPT. It was discovered that at low temperatures, the
optical conductivity is very different from the well-known optical conductivity of ordinary
metals [32,33]; see Sections 4 and 6. In Section 2, we consider general properties of the
effective mass M∗ in magnetic fields. Section 7 is devoted to the main conclusion of
our review.

2. The Behavior of the Effective Mass

We start with analyzing the scaling behavior of the effective mass M∗ and the schematic
T-B phase diagram of HF metals based on the homogeneous HF liquid, thereby avoiding
complications associated with the crystalline anisotropy of solids [7,9]. Before the topo-
logical FCQPT, the temperature and magnetic field dependencies of the effective mass
M∗(T, B) were governed by the Landau equation [24–26]:

1
M∗σ(T, B)

=
1
m

+ ∑
σ1

∫ pFp
p3

F
Fσ,σ1(pF, p)

× ∂nσ1(p, T, B)
∂p

dp
(2π)3 . (1)
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where Fσ,σ1(pF, p) is the Landau interaction, pF is the Fermi momentum, and σ is the spin
label. We note that Equation (1) is an exact one, as it can be shown within the framework
of the Density Function Theory; see [7,9,34]. To simplify matters, we ignore the spin
dependence of the effective mass, noting that M∗(T, B) is nearly independent of spin in
weak fields. The quasiparticle distribution function n(p, T) is given by

nσ(p, T) =
{

1 + exp
[
(ε(p, T)− µσ)

T

]}−1

, (2)

where ε(p, T) is the single-particle spectrum. In the case being considered, the spectrum
depends on spin only weakly. However, the chemical potential µσ depends non-trivially on
spin due to the Zeeman splitting, µ± = µ± BµB, where ± corresponds to states with the
spin “up” or “down.” Numerical and analytical solutions of this equation show that the
dependence of the effective mass M∗(T, B) on the temperature T and magnetic field B leads
to the appearance of three different regimes with increasing temperature. The Fermi-Dirac
distribution function can presented as follows:

ε(p)− µ = T ln
1− n(p)

n(p)
, (3)

where µ is the chemical potential, and n(p) is the quasiparticle occupation number. In the
theory of fermion condensation, if the system is located near the topological FCQPT on
its ordered side, the quasiparticle occupation number loses its temperature dependence
at sufficiently low T [7,15,23]. In the interval pi ≤ p ≤ p f , the quasiparticle distribution
function n(p) < 1; therefore, the logarithm in Equation (3) is finite, and at T = 0, the
product on the right-hand side of Equation (3) is zero. As a result, on the ordered side of
the topological FCQPT, the spectrum contains a flat band [7,15,23]:

ε(p)− µ = 0 if pi ≤ p ≤ p f . (4)

The existence of the solution of Equation (4) means that the single-particle spectrum
ε(p, T) has a flat band. Since ε(p) = µ in the range pi ≤ p ≤ p f , the Fermi surface
spreads into a Fermi band, that is, in the case of the three-dimensional Fermi sphere, the
two-dimensional Fermi surface transforms into a three-dimensional structure. Obviously,
this transformation gives rise to a change in the topological structure of the single particle
Green function, which makes us refer to the systems with FC as a new class of Fermi liquids
being different from both the Landau Fermi liquid [24] and the marginal Fermi liquid
(see [35]) and with its specific topological charge [16,19]. We note that Equations (3) and (4)
are exact; see [7,9,34].

It is seen from Equation (3) that at any finite temperature, the flat band given by
Equation (4) vanishes, and the effective mass becomes finite [7,36]. On the disordered
side, at finite B and sufficiently low temperatures T, we have the LFL state with M∗(T) '
M∗ + aT2, where a is a positive constant. Thus, the effective mass grows as a function of
T, reaching a maximum M∗M at a certain temperature TM and then decreasing (see, for
example, [7,36,37]):

M∗(T) ∝ T−2/3. (5)

The application of magnetic field restores the LFL behavior, and at T ≤ TM, the
effective mass depends on B as [7]

M∗(B) ∝ (B− Bc0)
−2/3, (6)

as it is seen from Figure 1.



Symmetry 2023, 15, 2055 4 of 20

0 5 1 0 1 5 2 0

0 . 1

0 . 2

0 . 3

Y b R h 2 S i 2

 B = 4  T
 B = 6  T
 B = 8  T
 B = 1 0  T
 B = 1 2  T
 B = 1 4  T
 B = 1 6  T
 B = 1 8  T

C el /T
 (J

K-2 mo
l-1 )

T  ( K )

T M

Figure 1. Electronic heat capacity YbRh2Si2, Cel/T, as a function of temperature T and as a function
of magnetic field B [37], shown in the legend. As an example, the maximum value MM taking place
at TM and B = 8 T is shown by the arrow.

Note that in some cases, the critical magnetic field Bc0 that tunes HF metal to its
FCQPT can be zero, Bc0 = 0. For instance, the HF metal CeRu2Si2 is characterized by
Bc0 = 0 and shows no signs of magnetic ordering, superconductivity, or the LFL behavior
down to the lowest temperatures [38]. Moreover, the closer the control parameter B is to its
critical value Bc0 = 0, the higher the growth rate. In this case, the peak value of M∗M also
increases, but the temperature TM, at which M∗ reaches its maximum value, decreases, and
M∗M(TM, B → Bc0) → ∞. At T > TM, the LFL behavior disappears. When the system is
near FCQPT, the approximate interpolation solution to the Equation (1) has the form [7]

M∗

M∗M
= M∗N(TN) ≈ c0

1 + c1T2
N

1 + c2T8/3
N

. (7)

Here, TN = T/TM is the normalized temperature, with c0 = (1+ c2)/(1+ c1) in terms
of fitting parameters c1 and c2. Since the magnetic field enters Equation (2) in the form
µBB/T, we conclude that

T/TM = TN ∝
T

µBB
, (8)

where µB is the Bohr magneton. It follows from Equation (8) that

TM ' a1µBB. (9)

As a result, we conclude from Equations (8) and (9) that MN(y) exhibits the scaling
behavior as a function of both the variables y = T/B and y = B/T. Equation (7) reveals
the scaling behavior of the normalized effective mass M∗N(TN = y): Values of the effective
mass M∗(T, B) at different magnetic fields B merge into a single mass value M∗N in terms of
the normalized variable TN ∝ T/B ∝ B/T [7,9]. Figure 2 demonstrates the scaling behavior
of the normalized effective mass M∗N versus the normalized temperature TN . The LFL
phase prevails at T � TM, followed by the T−2/3 regime at T & TM. The latter phase is
designated as NFL due to the strong dependence of the effective mass on temperature.
The temperature region T ' TM covers the transition between the LFL regime with almost
constant effective mass and the LPL behavior described by the Equation (5). Thus, T ∼ TM
defines a transition region characterized by the intersection of the LFL and NFL regimes.
The inflection point Tinf of M∗N versus TN is depicted by arrows in Figure 2.
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Figure 2. The schematic plot of the normalized effective mass versus the normalized temperature. The
transition regime, where M∗N reaches its maximum value at TN = T/TM = (T/B)N = (B/T)N = 1,
is shown as the hatched area. Arrows indicate the LFL region, transition one, inflection point Tinf and
NFL behavior with M∗N ∝ (T/B)−2/3.

The transition (crossover) temperature TM(B) is not actually the temperature of a
phase transition. Its specification is necessarily ambiguous because it depends on the
criteria used to determine the point the crossover. Typically, the temperature T∗(B) is
obtained from the field dependence of the charge transfer, for example, from the resistivity
ρ(T), determined by the expression

ρ(T) = ρ0 + ATβ, (10)

where ρ0 is the residual resistivity, and A is a T-independent coefficient. The term ρ0
is ordinarily attributed to impurity scattering. The LFL state is characterized by the Tβ

dependence of the resistivity with index β = 2. The schematic phase diagram of a HF
metal is depicted in Figure 3, with the magnetic field B serving as the control parameter.
The crossover (through the transition regime shown as the hatched area in Figure 3) takes
place at temperatures where the resistance starts to deviate from LFL behavior, with the
exponent β shifting from 2 into the range 1 < β < 2. At B = 0, the HF metal acquires a flat
band corresponding to a strongly degenerate state.

The NFL mode reigns at elevated temperatures and a fixed magnetic field. As B
increases, the system moves from the NFL region to the LFL domain. As shown in Figure 3,
the system moves from the NFL mode to the LFL mode by the horizontal arrow, and from
the LFL mode to the NFL mode by the vertical arrow. The magnetic field tuned QCP
is indicated by an arrow and is located at the beginning of the phase diagram since the
application of a magnetic field destroys the flat band and transfers the system to the LFL
state [7–10]. The shaded area, denoting the transition region, separates the NFL state from
the weakly polarized LFL state and contains the dashed line displaying TM(B). Referring
to Equation (9), this line is defined by T = a1µBB. It is worth noting that the transition
from the NFL behavior to the LFL taking place under the application of the magnetic
field, as it is seen in Figures 2 and 3, is the special property of the topological FCQPT and
described by Equation (7) [7,39]. This important property is in a good agreement with
experimental facts and allows one to use it as the versatile tool to explore the physics of
HF compounds, including the violation of both the particle-hole symmetry and the time
invariance symmetry; this violation is directly related to the concept of flat bands [7,40], see
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Sections 5 and 6. In contrast, these properties are not considered in a number of theories,
including the theory of marginal Fermi liquid, see e.g., [35].

 LFL

NFL

NFL

 

Magnetic field B

T
e

m
p

e
ra

tu
re

 T

Topological

FCQPT

T
M
(B)

Crossover

Figure 3. Schematic T-B phase diagram of a HF compound, with magnetic field B as control parameter.
The hatched area corresponds to the crossover domain at TM(B). At a fixed magnetic field and
elevated temperature (vertical arrow), there is a LFL-NFL crossover. The horizontal arrow indicates
a NFL-LFL transition at a fixed temperature and elevated magnetic field. The topological FCQPT
(shown by the arrow) occurs at T = 0 and B = 0.

3. Longitudinal Magnetoresistance

Consider longitudinal magnetoresistance (LMR)

ρ(B, T) = ρ0 + A(B)T2, (11)

as a function of B at fixed T. In this case, the classical contribution to LMR formed by
the orbital motion of carriers induced by the Lorentz force is small. In the LFL state, the
Kadowaki-Woods relation is given by [6,7]

K = A/γ2
0 ∝ A/χ2 = const, (12)

which allows us to employ M∗ to construct the coefficient A since γ0 ∝ χ ∝ M∗. Here, γ0 is
the Sommerfeld coefficient, and χ is the magnetic susceptibility. Omitting the classical con-
tribution to LMR, we obtain that ρ(B, T)− ρ0 ∝ (M∗)2 [39]. The magnetic field dependence
of the muon spin-lattice relaxation rate 1/Tµ

1 is given by [39,41]

1
Tµ

1 T
= η[M∗(T, B)]2, (13)

where η is a constant. We note here that the experimentally observed relation

1
Tµ

1 T
∝ χ2 (14)

follows explicitly from Equations (12) and (13) [39]. Figure 4 shows the normalized values
of both the magnetoresistance of YbRh2Si2 [28,29]

ρN(BN) = (M∗N(BN))
2 (15)
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and the muon spin-lattice relaxation rate of YbCu5−xAux (x = 0.6) [41](
1

Tµ
1 T

)
N

= (M∗N(BN))
2 (16)

versus normalized magnetic field BN = B/Bin f at different temperatures, shown in the
legend. It is seen from Equations (6), (15) and (16) that both LMR and the the muon spin-
lattice relaxation rate are diminishing functions of magnetic field B. This result is the vivid
feature of the fermion condensation theory that allows one to evaluate the behavior of the
effective mass under the application of magnetic fields; see [7,40].

0 . 1 1 1 0
0 . 0

0 . 4

0 . 8

1 . 2

1 . 6

B N

Y b R h 2 S i 2
  r N

 T = 0 . 3 K  
 T = 0 . 2 K  
 T = 0 . 1 K

Y b C u 5 - x A u x
( 1 / T 1 T ) N

 T = 0 . 0 2 K
 T h e o r y

(1/
T 1µ  T)

N & 
ρ N 

I n f l e c t i o n  p o i n t

Figure 4. Magnetic field dependence of both the normalized magnetoresistance ρN and the muon
spin-lattice relaxation rate (1/Tµ

1 T)N versus normalized magnetic field BN . ρN was extracted from
the LMR of YbRh2Si2 at different temperatures [28,29] listed in the legend. Magnetic field dependence
of normalized muon spin-lattice relaxation rate 1/Tµ

1 T in YbCu4.4Au0.6 is shown by diamonds and
extracted from [41]. The data are normalized in the inflection point and shown by the arrow. The
solid line represents our calculations; see Equations (6), (15) and (16).

The normalization procedure deserves a remark here. Namely, since the magnetic
field dependence (both theoretical and experimental) of 1/Tµ

1 and LMR do not have
“peculiar points” like extrema, the normalization is performed in the inflection point,
corresponding to the maximum of the corresponding derivative. It is seen that such a
procedure immediately reveals the universal magnetic field behavior of both the reciprocal
relaxation time and LMR, showing their proportionality to the effective mass square; see
Equations (15) and (16). This behavior obtained directly from the experimental findings is
vivid evidence that the above quantities’ behavior is predominantly governed by the field
B and temperature T dependence of the effective mass M∗(B, T) given by Equation (7).
We note that the entire field (and temperature) dependence of both 1/Tµ

1 T and LMR is
completely determined by the corresponding dependence of the effective mass M∗N shown
in Figure 2. The fact that the effective mass becomes field B, temperature T and the
other external dependent parameters is the key consequence of the FC theory. Both the
theoretical curve and the experimental data are normalized by their inflection points, which
also reveal the universal scaling behavior: the curves at different temperatures merge into a
single one in terms of scaled variable BN . Figure 4 shows clearly that both the normalized
magnetoresistance ρN and the muon spin-lattice relaxation rate time 1/Tµ

1 T well obey the
scaling behavior given by Equations (7), (15) and (16) and shown in Figure 2.
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4. Linear in Temperature Resistivity

To analyze the resistivity given by Equation (10) at elevated temperatures T and under
the application of magnetic field B, we assume that the electron system of the HF metal
contains a flat band. The flattening of the single-particle spectrum ε(p) is directly related
to the problem being solved, since as a result of Umklapp processes, quasiparticles of
the flat band create a contribution to ρ0 indistinguishable from the contribution due to
the scattering of impurities [42]. Furthermore, it is crucial that the flat band somehow
becomes destroyed at T → 0, and under the application of a magnetic field, the HF metal
transits to the LFL state; see Figure 3. This destruction entails a strong suppression of
the flat band contribution to ρ0 [42]. Before proceeding to the analysis of this destruction,
we pay attention to the vivid consequences of the flattening of ε(p) in strongly correlated
Fermi systems. The theoretical possibility of this phenomenon and its consequences, also
called swelling of the Fermi surface or the fermion condensation, was discovered a few
decades ago [15,16,43]; for recent reviews; see [7–10]. At T = 0, the ground state of the flat
band system is degenerate, and so the occupation number n0(p) of single-particle states
belonging to the flat band forming the fermion condensate are continuous functions of
momentum that interpolate between standard LFL values {0, 1} in the area occupied by
FC; see Equation (4). This leads to an entropy excess

S0 = −∑
p

n0(p) ln n0(p) + (1− n0(p)) ln(1− n0(p)), (17)

which does not contribute to the specific heat C(T). It is seen from Equation (17) that in
contrast to the corresponding LFL entropy vanishing linearly as T → 0, the entropy of the
system with the fermion condensates S(T → 0)→ S0. In the theory of fermion condensa-
tion, the aforementioned ground-state degeneracy is lifted at any finite temperature, where
FC acquires a small dispersion proportional to T; see Equation (3). However, the removal
of degeneracy with increasing temperature does not change the occupation number n0(p),
which means that the excess entropy S0 will persist down to zero temperature. To avoid
a subsequent violation of Nernst’s theorem, it is necessary to completely eliminate FC at
T → 0. In the most natural scenario, this occurs through a SC phase transition, in which FC
is destroyed with the appearance of a ∆ pairing gap in the single-particle spectrum [7,15,23].
We assume that this scenario is realized in CeCoIn5 at sufficiently weak magnetic fields,
ensuring the elimination of the flat portion in the spectrum ε(p) and the removal of excess
entropy S0 [42]. In stronger external magnetic fields B sufficient to terminate supercon-
ductivity in CeCoIn5, this path becomes ineffective, giving way to an alternative scenario
involving a transition from the FC state to the LFL state with a multiply connected Fermi
surface [7]. In the phase diagram depicted in Figure 3, such a crossover is indicated by the
hatched area between the domains of NFL and LFL behavior and also by the line TM(B). In
case of the HF metal CeCoIn5, the end point of the curve TM(B) nominally separating the
NFL and LFL phases is the magnetic field inducing the topological FCQPT hidden in the SC
state [42,44,45]. This is the most characteristic feature of the phase diagram of the behavior
of resistivity ρ(T, B). Since the entropies of the two phases are different, near the topological
FCQPT, the SC transition should become of the first order [7], which is consistent with the
experimental fact [46]. Moreover, under the application of sufficiently high magnetic field
B, the LFL behavior remains in effect even to T → 0. Thus, the imposition of magnetic field
B drives the system in question from its SC phase to the LFL phase. As a result, the FC
state or, equivalently, the flat portion of the spectrum ε(p) is destroyed. Thus, application
of a high magnetic field to CeCoIn5 causes a step-like drop in its residual resistivity ρ0, as it
is seen experimentally [27]. In addition, it should be expected that the higher the quality
of the CeCoIn5 single crystal, the stronger the suppression of ρ0. Now we consider the
low-temperature transport properties of the normal state of CeCoIn5. We use a two-band
model, one of which is assumed to be flat with dispersion given by Equation (3), and the
second band is assumed to have a single-particle LFL spectrum with finite T-independent
dispersion [42].
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We begin our consideration with the case when a HF metal is in its normal state, where
the resistivity is a linear function of T. This behavior is inherent in electronic systems with
flat bands. Now, we define the conductivity σ(T) in terms of the imaginary part of the
polarization operator Π(j) [26],

σ = lim ω−1ImΠ(j, ω → 0) ∝
1
T

∫ ∫ dυdε

cosh2(ε/2T)

× |T (j, ω = 0)|2ImGR(p, ε)ImGR(p, ε), (18)

where dυ is an element of momentum space, T (j, ω) is the vertex part, j is the electric
current, and GR(p, ε) is the retarded quasiparticle Green function. The imaginary part reads

ImGR(p, ε) = − γ

(ε− ε(p))2 + γ2 (19)

in terms of the spectrum ε(p) and the damping γ related to the band with a finite value
vF of the Fermi velocity. Applying gauge invariance, we obtain T (j, ω = 0) = e∂ε(p)/∂p.
Substituting this equation into Equation (18) and performing some algebra, we arrive at
the standard result

σ(T) = e2n
vF

γ(T)
, (20)

where n is the number density of electrons.
In ordinary pure metals obeying the LFL theory, the damping γ(T) is proportional

to T2, which leads to Equation (10) with β = 2. The NFL behavior of σ(T) is due to the
NFL dependence of γ(T) on the temperature associated with the presence of FC [42]. In a
standard situation, when the volume η occupied by FC is quite small, the overwhelming
contribution to the transport is made by inelastic scattering, schematically presented in
Figure 5a,b, where FC quasiparticles (highlighted by a double line) turn into normal
quasiparticles, or vice versa, normal quasiparticles rotate into FC quasiparticles. The
contributions of these processes to damping γ are estimated based on the simplified
equation [26]:

γ(p, ε) ∝
∫ ∫ ε∫

0

ω∫
0

|Γ(p, p1, q|2ImGR(p− q, ε−ω)

×ImGR(−p1,−ε)ImGR(q− p1, ω− ε)dp1dqdωdε, (21)

where, now, the volume element in momentum space includes summation over different
bands. The straightforward calculations give:

γ(ε) = η(γ0 + γ1ε), ReΣ(ε) = −ηγ1ε ln
εc

|ε| , (22)

where η denotes the volume of momentum space occupied by the flat band, and εc is the
characteristic constant defining the logarithmic term in Σ. Taking vertex corrections into
account [26] provides transparent changes to Equation (21) and cannot be held responsible
for the effects discussed here.

Note that Equation (33) gives the lifetime τ of quasiparticles,

h̄/τ = γ(T) ' a0 + a1T, (23)

where h̄ is Planck’s constant, and a0 and a1 are parameters. Combining Equations (22) and
(23), we obtain

h̄/τ(ε, T) = γ(ε, T) ' a0 + a1T + a2ε. (24)

where a0 ∝ ρ0, a1 and a2 are parameters. This result is in good agreement with the
experimental facts [47,48], as it is seen from Figure 6. Considering Equation (23), one
immediately sees that ρ(T) = ρ0 + AT, i.e., the resistivity ρ(T) of systems containing FC, is
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indeed a linear function of T, which is consistent with the experimental data collected on
CeCoIn5; see Figure 6. Moreover, the ρ0 term appears even if the metal has an ideal lattice
and no impurities at all.

Figure 5. Scattering diagrams contributing to the imaginary part mass operator Σ(ε) related to the
band with a finite value of the Fermi velocity pF. (a) The single line corresponds to a quasiparticle of
this band, (b) the double line to the FC quasiparticle.

FW
HM

 (m
eV

) C e C o I n 5

T ( K )

T h e o r y  

Figure 6. The temperature dependence of the full width at half maximum (FWHM) of the single-
particle scattering rate of the main Kondo resonance [48] is shown by solid squares. The line represents
the best fit: FWHM = 11.8 + 2.69 TkB meV, where kB is Boltzmann’s constant [48]. The solid line is
our calculations [42].

5. T-Linear Resistivity and Planckian Limit

The exotic experimentally observed properties of various classes of HF compounds
still remain largely unexplained due to the lack of a universal underlying physical mech-
anism. These properties are usually attributed to the so-called NFL behavior. The latter
behavior is widely observed in heavy fermion (HF) metals, graphene, and high-Tc (HTSC)
superconductors. Experimental data collected at many of these systems show that at
T = 0, some of the excitation spectrum becomes dispersionless, which leads to flat bands;
see [15–17,49,50]. The presence of flat bands indicates that the system is close to the topo-
logical fermion condensation quantum phase transition (FCQPT) [15–17,49], leading to
the formation of flat bands given by Equation (4). Vivid experimental data on the linear
temperature T dependence of resistivity ρ(T) ∝ T, collected on HTSC, graphene, HF and
ordinary metals, showed that the charge carrier scattering rate 1/τ reaches the so-called
universal Planck limit 1/(Tτ) = kB/h̄ (kB and h̄ = h/2π are the Boltzmann and Planck
constants, respectively) [30,31,49]. Note that this is above the Planck limit used to explain
the universal scattering rate in so-called Planck metals [30,31,49], which can happen by
chance because experimental manifestations in metals other than Planck can be just as well
explained by more traditional physical mechanisms, such as those associated with phonon



Symmetry 2023, 15, 2055 11 of 20

contributions [50]. For example, ordinary metals exhibit a universal linear scattering rate
at room and higher temperatures generated by well-known phonons, which are classical
lattice excitations [30]. It is shown that, within the framework of the theory of fermion
condensation, semiclassical physics is still applicable to describe the universal scattering
rate 1/τ experimentally observed in strongly correlated metals in their quantum critical
region. This is due to the fact that the flat zones responsible for quantum criticality generate
a transverse zero-sound mode, reminiscent of the phonon mode in solids with Debye
temperature TD [50,51]. At T ≥ TD, the mechanism of the linear temperature dependence
of resistivity is the same in both ordinary and strongly correlated metals, and is represented
by electron-phonon scattering. Consequently, it is the scattering of electrons on phonons
at T ≥ TD that gives almost material independence of the lifetime τ. It is expressed as
1/(τT) ∼ kB/h̄. Thus, the exciting experimental observations of the universal scattering
rate related to linear-temperature resistivity of a large number of both strongly correlated
Fermi systems and conventional metals can be explained [30,31,49–51]. The observed
scattering rate is well explained by the appearance of flat bands formed by the topological
FQCPT, rather than by the so-called Planck limit at which the supposed Planck scattering
rate occurs. At low temperatures, the observed resistivity in their normal state for both
HTSC and HF metals obeys the linear law given by Equation (10) with β = 1. On the other
hand, at room temperature, the T-linear resistivity is exhibited by conventional metals,
such as Al, Ag or Cu. In the case of a simple metal with a single pocket on the Fermi surface,
the resistivity has the form e2nρ = pF/(τvF), where τ is the lifetime, e is the electronic
charge, and n is the carrier concentration. The lifetime τ (or inverse scattering rate) of
quasiparticles can be presented as

h̄
τ
' a1 +

kBT
a2

, (25)

and we obtain [50]

a2
e2nh̄
pFkB

∂ρ

∂T
=

1
vF

, (26)

where a1 and a2 are T-independent parameters. There are two challenging points for a
theory. The first point is that experimental data confirm Equation (26) for both strongly cor-
related metals (HF metals and HTSC) and ordinary ones, provided that these demonstrate
the linear T-dependence of their resistivity [30]; see Figure 7. The second point is, that
under the application of a magnetic field, HF metals exhibit the LFL behavior; see Figure 3.
For example, the HF metal CeRu2Si2 exhibits the LFL behavior under the application of
a magnetic field as small as the magnetic field of the Earth [38]. Obviously, both of these
two facts cannot be explained with the standard theories (see [35,52,53]) since the ordinary
metals have nothing to do with the Planckian limit; moreover, such a small magnetic field
cannot destroy the limit since the LFL behavior is not related to the limit.

The coefficient a2 is always close to unity, 0.7 ≤ a2 ≤ 2.7, despite the huge difference
in the absolute values of ρ, T and Fermi velocities vF, which differ by two orders of
magnitude [30]. As a result, it follows from Equation (25) that the T-linear scattering rate
is of universal form 1/(τT) ∼ kB/h̄. This takes place in different systems displaying the
T-linear dependence on the parameter entering Equation (26), a2 ' 1 [30,50]. Indeed,
such a dependence is demonstrated by ordinary metals at temperatures above the Debye
one T ≥ TD, with an electron-phonon mechanism, as well as strongly correlated metals,
that are supposed to be fundamentally different from ordinary ones, in which the linear
dependence at their quantum criticality and temperatures of a few Kelvin are assumed to
be due to electronic excitations rather than phonons [30]. As can be seen from Figure 7, this
scaling relation spans two orders of magnitude in vF, indicating the stability of the observed
empirical law [30]. This behavior is explained within the framework of the PC theory since
for both ordinary and strongly correlated metals, the scattering rate is determined by
phonons [50,51]. In the case of ordinary metals at T > TD it is well known that the main
contribution to the linear dependence of resistivity is made by phonons. On the other hand,
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it is shown that semiclassical physics describes the T-linear dependence of the electrical
resistance of strongly correlated metals at T > TD since the flat bands forming quantum
criticality generate a transverse zero-sound mode with the Debye temperature TD located
inside the area of quantum criticality [50,51]. Consequently, the T-linear dependence is
formed due to electron-phonon scattering both in ordinary metals and in strongly correlated
ones. Thus, it is electron-phonon scattering that leads to the almost material independence
of the lifetime τ, which is expressed as

τT ∼ h̄
kB

. (27)

We emphasize that the Planck limit can arise by chance: it is extremely unlikely that it
will occur in ordinary metals, which obviously cannot be recognized as a Planck limit with
quantum criticality at high or low temperatures. The fact that we observe the same universal
scattering rate behavior in microscopically different highly correlated compounds, such as
HTSC, HF and common metals, suggests that some general theory is needed to provide
a unified explanation for the above set of materials and their behavior. We confidently
conclude that FC theory is a responsible approach to explaining the physics of strongly
correlated Fermi systems.
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Figure 7. Scattering rates per kelvin vary greatly in correlated metals, such as HF, HTSC, organic
and common metals [30]. All these metals have ρ(T) ∝ T and exhibit a change in Fermi velocities vF

by two orders of magnitude. The parameter a2 ' 1 delivers the best fit, displayed by the solid line,
and corresponds to the scattering rate τT = h/(2πkB) with h = 2πh̄; see Equations (26) and (27).
The region occupied by the conventional metals is highlighted by two (blue) arrows. The single
(green) arrow shows the region of strongly correlated metals, including organic ones. Note that at low
temperatures T � TD, the scattering rate per kelvin of a conventional metal is orders of magnitude
lower, and does not correspond to the Planckian limit. The area occupied by ordinary metals is
highlighted by two (blue) arrows. The single (green) arrow shows the region of strongly correlated
metals, including organic ones. We emphasize that at low temperatures T � TD, the scattering
rate per kelvin of an ordinary metal is orders of magnitude lower and is not in accordance with
the Planck limit.

6. The Optical Conductivity of Heavy Fermion Metals

In this section, we use the FC theory to explain the NFL behavior of the optical
conductivity based on experimental facts [32,33,54,55]. We show that ω/T-scaling be-
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havior of optical conductivity σopt(ω, T) is exhibited by HF compounds, where ω and
T are the frequency and temperature, respectively. We show that because of the linear
temperature dependence of the electrical resistivity ρ(T) ∝ T, and at ω/T ≥ 1, the real
part σR

opt(ω, T) of the optical conductivity σopt(ω, T) demonstrates the unusual power law
behavior σR

opt ∝ ω−1.
Modern condensed matter physics is vividly represented by the experimental discov-

ery of flat bands [20,21,49], as they were predicted many years ago [7,15,16,18,23]. One
can expect the existence of a general physical mechanism generated by the presence of
flat bands and manifested in the universal scaling behavior of HF compounds. Indeed,
HF compounds do exhibit universal scaling behavior and specific behavior caused by the
presence of flat bands [7,9,10,22]. Within the framework of the fermion condensation theory,
such a mechanism is represented by the topological FCQPT supporting quasiparticles,
surviving the unlimited growth of the effective mass M∗, forming the non-Fermi liquid
(NFL) behavior and generating flat bands [7,9,15,16,23]. The main goal of the quasiparticle
interaction is to place the system at the topological FCQPT. As a result, the universal scaling
behavior of HF metals can be explained, for it becomes independent of the interactions
near the formation of flat bands. Thus, the universal scaling becomes independent of
the interaction strength and its other properties for sufficiently large interactions [7,9].
However, it is important to explore new properties of HF compounds that are not directly
determined by the effective mass M∗ and cannot be explained within the framework of
theories based on ordinary quantum phase transitions, the Kondo breakdown scenario, etc.;
see, for example, [32,33,54,55]. For example, within the framework of the FC theory, the
linear temperature dependence of electrical resistance ρ(T) ∝ T is explained, which is one
of the main features of the behavior of the NFL [42,51], and can lead to a special behavior
of optical conductivity exhibit HF metals. To analyze the optical conductivity σopt(ω, T),
we use the Drude model (see [25])

σopt(ω, T) = σ0
1

1− iωτ
. (28)

Here, σ0 reads

σ0(T) =
ne2τ(ω, T)

m
|ω=0, (29)

where the lifetime τ is given by Equation (24) [42,50,51]

τ(ω, T) =
1

a0 + a1T + a2ω
. (30)

Here, a0 ∝ ρ0, where ρ0 is the residual resistivity; m, a1 and a2 are coefficients. The
residual resistivity includes two contributions, ρ0 = ρimp + ρFC, where ρimp comes from
the impurities that hold a HF metal, and ρFC is formed by the FC state [42]; see Section 4. It
is seen from Equations (29) and (30) that

ρ(T) = ρ0 +
m

ne2 a1T. (31)

The NFL behavior of the lifetime τ is given by Equation (30), while in the LFL theory
τ is given by [24,25,56]

τ(ω, T) =
1

a0 + c1T2 + c2ω2 , (32)

where c1 and c2 are parameters and a0 ∝ ρimp since FC is absent. As we will see, the NFL
behavior of optical conductivity is determined by the NFL dependence of τ on both temper-
ature T and frequency ω associated with the presence of FC; see Section 4. As a result, the
scattering rate becomes 1/τ ' a0 + a1T. This result is in good agreement with the experi-
mental facts [47,48] presented in Figure 6. Thus, the FC theory successfully explains the be-
havior of both the scattering rate and the resistivity; see Equations (30) and (31) [42,50,51].
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It is worth noting that in the case of HF metals and high-Tc superconductors, the
scattering rate is a linear function of ω. Thus, we have to take into account the general
expression for the optical conductivity since omitting the real part of the scattering rate
leads to the Kramers-Kronig violation [57,58]. To restore the Kramers-Kronig relation, we
employ the complex presentation of the scattering rate

1
τ(ω)

∝
{

η ω ln
∣∣∣∣ ω

ωc

∣∣∣∣+ i(a0 + a2ω)

}
, (33)

with η denoting the volume in momentum space occupied by the flat band, and εc being a
characteristic constant [42,50]. Upon inserting Equation (33) into Equation (28), we obtain

σopt =
ne2

m
1

a0 + a1T + a2ω− iω(1 + η ln
∣∣∣ ω

ωc

∣∣∣) . (34)

Taking into account that the logarithm η ln(ω/ωc) on the right hand side of Equation (34)
is a “slow” function of its variable, we approximate 1 + η ln(ω/ωc) by a constant c, as it is
done in the next Section 6.1. Our calculations show that constant c is a good approximation
for the logarithm.

6.1. Scaling Behavior of the Real Part σR
opt of the Optical Conductivity

Now, we are in position to consider the scaling behavior of σopt(ω, T). In the present
context, the HF compounds are taken to represent strongly correlated Fermi systems as re-
alized in HF metals and high-Tc superconductors. One can expect that HF compounds with
their extremely diverse composition and microscopic structure would demonstrate very dif-
ferent thermodynamic, transport, and relaxation properties. Upon inserting Equation (29)
into Equation (28), we obtain

σopt(ω, T) =
ne2

m
1

a0 + a1T + a2ω− iω
. (35)

To compare our theoretical results with the experimental facts, we subtract the residual
resistivity (or conductivity), as it is done to the experimental facts [32,33,54,55], and obtain

σopt(ω, T)T =
b(1 + ω/T) + icω/T

b2(1 + ω/T)2 + (cω/T)2 , (36)

where b and c are parameters. It is seen from Equation (36) that σopt(ω, T)T depends on the
only variable ω/T. It directly follows from Equation (36) that the real part σR

opt is given by:

σR
optT =

b(1 + ω/T)
b2(1 + ω/T)2 + (cω/T)2 . (37)

Figures 8 and 9 display the scaling of the cuprate La2−xSrxCuO4 and the HF metal
YbRh2Si2 in a wide range of the variable ω/T. At ω/T > 1, the real part is proportional
ω−1, σR

opt ∝ ω−1, and demonstrates the NFL behavior defined by the NFL behavior of τ;
see Equation (30). Figures 10 and 11 show the optical resistivity 1/σR

opt of La2−xSrxCuO4
and the HF metal YbRh2Si2. It is seen that the resistivity is a linear function of the variable,
as it should be, and seen from Figures 8 and 9.

The uniform scaling behavior seen in Figures 8 and 9 arises from the fact that HF
compounds are located near a topological FCQPT that generates their uniform scaling
behavior [7,9]. The emergence of the universal behavior, exhibited by very distinctive HF
metals, supports the conclusion that HF metals represent a new state of matter [9,59]. Un-
like the situation of a conventional quantum phase transition or the unconventional Kondo
breakdown scenario, the scaling induced by topological FCQPT, as seen in Figures 8 and 9,
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occurs up to high temperatures since the behavior of the NPL is determined by quasiparti-
cles, and not by fluctuations or Kondo lattice effects [7,9].

1 1 0 1 0 0

1 0 6

1 0 7

1 0 8

1 0 9

  7 5  K
  1 0 0  K
  1 5 0  K  
  2 0 0  K
  2 5 0  K
  3 0 0  K

σR op
tT 

(Ω
−1

m-1 K)

w / T

L a 2 - x S r x C u O 4
    x = 0 . 2 4

ω- 1

Figure 8. The ω/T scaling behavior of σR
optT of the cuprate La2−xSrxCuO4 [33]. At ω/T ≥ 1

σR
opt ∝ ω−1, as it is shown by the arrow. The solid curve is our theory. Here and below, the

theoretical real part σR
opt(ω, T) is given by Equation (37) with the parameters b and c chosen for the

best description of the whole set of experimental data.
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Figure 9. The ω/T scaling behavior of the real part 1/σR
optT of the HF metal YbRh2Si2 [33]. At

ω/T > 1 σR
opt ∝ ω−1 as it is shown by the arrow. The solid curve is our theory.
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Figure 10. Optical resistivity 1/σR
opt(ω, T) at 75 K of La2−xSrxCuO4 with x = 0.24, which is approxi-

mately linear in frequency up to 0.6 eV [33]. The solid line is our theory.
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Figure 11. Optical resistivity 1/σR
opt(ω, T) at 1.4 K of the HF metal YbRh2Si2, which is approximately

linear in frequency [33]. The solid line is our theory.

Violation of the Scaling Behavior

Now let us consider a possible violation of the observed scaling behavior of optical
conductivity; see Figures 8 and 9. To understand the reasons for the violation, consider the
schematic phase diagram of HF compounds. At T = 0, there is no crossover region, and
the FC state is separated from the LFL region by the first-order phase transition [7] since
the FC state is characterized by a special quantum topological number, being a new type of
Fermi liquid [16,18]. At T > 0, it is not a phase transition that occurs but a crossover [7].
At elevated magnetic fields reaching B ≥ T, the HF compound under consideration goes
into the LFL state with ρ(T) ∝ T2. As a result, we assume that both Equation (32) and
σR

opt ∝ ω−2 become valid, while the NFL behavior of σR
opt ∝ ω−1 vanishes. Such a behavior

can be observed in measurements of the optical conductivity on the HF metal YbRh2Si2 at
low temperatures under the application of magnetic field B > Bc0. Here, Bc0 ' 0.07 T is the
magnetic field that tunes YbRh2Si2 to its antiferromagnetic quantum critical point [60,61].
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It is seen from Figure 12 that at B > Bco and µBB ≥ kBT, YbRh2Si2 exhibits LFL behavior
as it does at low temperatures in an antiferromagnetic state [61]. The HF metal YbRh2Si2 is
one of the purest HF metals. Therefore, the regime of electron motion is ballistic. As a result,
under the application of weak magnetic field B, one can observe a positive contribution
δ ∝ B2 to ρ0 arising from the orbital motion of electrons induced by the Lorentz force. As
seen in Figure 12, ρ0 diminishes since the FC state is destroyed by the application of the
magnetic field or by the antiferromagnetic state, and YbRh2Si2 demonstrates the LFL behavior
with diminishing the magnetoresistance (see Figure 4), while the FC state itself creates the
additional residual resistivity ρFC [22,42]. Thus, under the application of a magnetic field, the
LFL behavior is restored, and the NFL one exhibited by optical conductivity is violated so that
the scaling behavior following from Equations (30) and (35) vanishes. These measurement
confirm both our theoretical consideration of the optical conductivity and the role of the
magnetic field when studying the HF compounds [40]. We note that this role of the magnetic
field is missed in the frameworks of marginal Fermi liquid, Kondo lattice, etc. [7,9].
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0 . 5

1 . 0
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ρ (
µΩ

cm
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T ( K )

B = 0 T

B = 0 . 1 T

Y b R h 2 S i 2

L F L

A F

Figure 12. Temperature dependency of the electrical resistivities of YbRh2Si2 single crystals at
magnetic fields B = 0 T and B = 0.1 T shown by the arrows [60]. The antiferromagnetic (AF) state at
B = 0 T and the LFL state at B = 0.1 T are displayed by the arrows.

7. Conclusions

In our short review, we considered the transport properties of HF metals and high-Tc
superconductors and showed that transport properties are defined by strong inter-particle
interaction, leading to the topological FCQPT that forms flat bands, and makes the linear
temperature resistivity ρ(T) ∝ T. We analyzed the magnetoresistance and showed that
under the application of a magnetic field, it becomes negative. We showed that the quasi-
classical physics remains applicable to the description of the resistivity ρ ∝ T of strongly
correlated metals due to the presence of a transverse zero-sound collective mode. Thus,
in the region of T-linear resistance, electron-phonon scattering provides the lifetime τ of
quasiparticles close to material independence, which is expressed approximately through
the ratio of Plancks constant h̄ to the Boltzmann constant kB, Tτ ∼ h̄/kB. We showed
that due to the NFL behavior of the resistivity ρ(T) ∝ T, the real part σR

opt of the optical
conductivity σopt exhibits a similar NFL behavior σR

opt ∝ ω−1 rather than the well-known
LFL relationship exhibited by ordinary metals σR

opt ∝ ω−2. We predicted that under
the application of a magnetic field, the real part of the optical conductivity behaves like
σR

opt ∝ ω−2 since the corresponding HF metal transits from the NFL behavior to the LFL one.
In summary, we showed that the fermion condensation theory provides a good de-

scription of the transport properties of various HF compounds, as our results are in good
agreement with the experimental observations.
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